

Observation of Four Top Quark Production in the ATLAS Experiment

Top LHC France 2023

2023/05/16

Xiang Chen

Shanghai JiaoTong University, University Paris Saclay

Four Top Quark Production

- tttt production is a rare top quark process predicted in the SM. It is one of the heaviest final state accessible at LHC
 - NLO (QCD+EW): $\sigma(t\bar{t}t\bar{t}) = 12 \text{ fb } \pm 20\% \text{ [JHEP 02 (2018) 031]}$
 - NLO+NLL: $\sigma(t\bar{t}t\bar{t}) = 13.4 \text{ fb} \pm 11\% \text{ [arXiv:2212.03259]}$

- tttt cross section is sensitive to anomalous top Yukawa coupling and Higgs CP properties
- A sensitive probe for new physics, such as EFT, 2HDM model

<u>cea</u> irfu

Four Top Quark Production Analysis

- $t\bar{t}t\bar{t}$ will decay into $W+W-W+W-b\bar{b}b\bar{b}$. Depending on the decay mode of the W bosons, it could lead to 2 channels
 - 2 lepton same-sign / 3 leptons (2LSS / 3L)
 - 1 lepton only / 2 lepton opposite sign (1L / 2LOS)

 This analysis is the refinement of the 2LSS/3L analysis which established evidence for the 4 top process for full Run 2 dataset

Evidence paper -- Eur. Phys. J. C 80 (2020) 1085

Outline Overview

irfu

cea

- Analysis setup and strategy
- Background modeling
- Signal extraction and results
- BSM Interpretations

Four Top Process Signature

Multi-lepton channel: the most sensitive channel with small backgrounds

- High jet and b-jet multiplicity
- Small branching ratio (~12%)

Signal region selection:

- ≥ 6 jets ≥ 2 b-jets
- $HT = \sum pT(lepton) + \sum pT(jets) \ge 500 \text{ GeV}$

Background Estimation

irfu

cea

- SM model physics process (~85%):
 - ttZ + jets, ttH + jets, ttW+jets
- Fake/non-prompt leptons: coming from reconstruction fakes or charge misidentified electrons (~15%):
 - Processes with electron charge misidentified
 - Events with non-prompt or fake leptons

Fake/non-prompt and QmisID Backgrounds

Fake/non-prompt backgrounds

- Define regions enriched in backgrounds to estimate normalization factors from data
- Heavy flavor electron and heavy flavor muon
- Material conversions
- Virtual photon conversion

NF _{Mat. Conv.}	$NF_{Low \ m_{\gamma^*}}$	$NF_{HF} e$	$\rm NF_{\rm HF}\mu$
$1.80^{+0.47}_{-0.41}$	$1.08^{+0.37}_{-0.31}$	$0.66^{+0.75}_{-0.46}$	$1.27^{+0.53}_{-0.46}$

Charge misidentification backgrounds

Applying charge flip rate from data

Data-driven Method for ttW Background

• Define 4 parameters to estimate ttW per jet bin:

$$NF_{t\bar{t}W@nj} = NF_{t\bar{t}W^+@4j} \times \prod_{n'=4}^{n'=n-1} [a_0 + \frac{a_1}{1 + (n'-4)}] + NF_{t\bar{t}W^-@4j} \times \prod_{n'=4}^{n'=n-1} [a_0 + \frac{a_1}{1 + (n'-4)}].$$

• Derive the parameters from ttW and 1b control regions, with charge split

Signal Extration - GNN

irfu

cea

- In order to improve the signal sensitivity, we tried different MVA methods and Graph Neutral Network (GNN) is the final choice
- GNN is constructed to combine the information about objects (jets, lepton, MET) in an event into graphs, with node, edge, and global properties.
 - Trained with the un-weighted 4top LO, nominal backgrounds MC and upweighted ttW sample
 - GNN modeling checked in the 1LOS channel and ttW VR

Four Top Cross Section Results

- Perform a maximum-likelihood fit to the GNN score distribution in SR and distributions in 8 CRs
- The observed significance is 6.1 sigma: the first observation of 4top production!

$$\mu = 1.9 \pm 0.4(\text{stat}) {}^{+0.7}_{-0.4}(\text{syst}) = 1.9 {}^{+0.8}_{-0.5}$$

$$\sigma_{t\bar{t}t\bar{t}} = 22.5^{+4.7}_{-4.3}$$
(stat) $^{+4.6}_{-3.4}$ (syst) fb = 22.5 $^{+6.6}_{-5.5}$ fb

Setups	Significance(σ)
Realistic	4.3 (12fb)/ 4.7(13fb)
Observed	6.1
Realistic (evidence)	2.69
Data obs (evidence)	4.3

Four Top Production Results

- The largest uncertainties come from 4top modeling and the data-driven ttW parameters
- Good agreement in high GNN regions with data and MC

The improvements come from:

- Updated lepton and jet selections
- Use of the GNN discriminant
- Better modeling of the ttt backgrounds

Interpretations- top Yukawa coupling

irfu

cea

 Four top production with off-shell Higgs leads to the possibility to measure the top-Higgs Yukawa coupling

0000000

0000000

H

 The four top cross-section can be enhanced by the CP-odd coupling parameters

Interpretations-EFT

$$\sigma_{t\bar{t}t\bar{t}} = \sigma_{t\bar{t}t\bar{t}}^{SM} + \frac{1}{\Lambda^2} \sum_i C_i \sigma_i^{(1)} + \frac{1}{\Lambda^4} \sum_{i \le j} C_i C_j \sigma_{i,j}^{(2)}$$

- Four top productions is sensitive to heavy flavor fermion operators in EFT framework
- It also is sensitive to self-energy correction of the Higgs boson Ĥ that affects off-shell Higgs interaction (Ĥ=0 in the SM)

Limits on EFT operators sensitive to four top production (one operator at a time)

Operators	Expected C_i/Λ^2 [TeV $^{-2}$]	Observed C_i/Λ^2 [TeV $^{-2}$]
O_{OO}^1	[-2.4, 3.0]	[-3.5, 4.1]
$O_{Ot}^{\tilde{1}\tilde{c}}$	[-2.5, 2.0]	[-3.5, 3.0]
$O_{tt}^{\widetilde{1}}$	[-1.1, 1.3]	[-1.7, 1.9]
O_{Qt}^8	[-4.2, 4.8]	[-6.2, 6.9]

Limit on Higgs oblique parameter Ĥ

Interpretations-Three Top Cross Section

- SM three top production is even rarer than 4 top and is not discovered yet.
- Three top final state is very similar to four top: polluted in high GNN region

100

 $\sigma(\text{ttt} W) \sim 1 \text{ fb}$

 $\sigma(\text{ttt q}) \sim 0.6 \text{ fb}$

Limit on 3top production

Processes	95% CL cross section interval [fb]		
	$\mu_{t\bar{t}t\bar{t}}=1$	$\mu_{t\bar{t}t\bar{t}} = 1.9$	
tīt	[4.7, 60]	[0, 41]	
tītW	[3.1, 43]	[0, 30]	
tītq	[0, 144]	[0, 100]	

- We tried also to constrain the 3top production
- The correlation between 4top and 3top is very large (-93%) after free-floating both cross sections

Summary

- Re-analyzing the full Run2 dataset in the multilepton channel in ATLAS:
 - The first observation of 4top: the observed (expected) significance of 4top reaches 6.1 (4.3) σ
 - Many interpretations also included: top-Higgs Yukawa coupling, EFT, Higgs oblique, 3 top cross-section
 - Accepted by EPJC <u>arXiv 2303.15061</u>
- Many improvements in this analysis:
 - Objection definitions: PLIV isolations, loose lepton/jet pT cuts
 - New MVA: the GNN method
 - Background modeling: ttW data-driven method, 3top treatments

Thank You

Backups

Object Definations

Generally, the objection definations is similar to the evidence paper

Main changes coming from:

- b-tagging changed from mv2c10 to DL1r
- Loosing the pT selection for lepton (jets) from 28 (25) GeV to 15 (20) GeV
- Lepton isolations changed to PLIV to suppress fake leptons

	Electrons		Muons		Jets	<i>b</i> -jets
	loose	tight	loose	tight		
$p_{\rm T}$ [GeV]	>	15	> 15	5	> 20	> 20
$ \eta $	< 1.37 or 1.52 – 2.47		< 2	5	< 2.5	< 2.5
ID quality	mediumLH ECIDS (<i>ee</i> , <i>e</i> µ)	tightLH ECIDS ($ee, e\mu$)	mediu	m	cleaning + JVT	DL1r 77%
Isolation	Loose_VarRad	PLImprovedTight	PflowLoose_FixedRad	PLImprovedTight		
Track vertex :						
$ - d_0 / \sigma_{d_0} $	< 5		< 3			
$ - z_0 \sin \theta $ [mm]	< 0.5		< 0.:	5		

Control Regions and Signal Regions

Pagion	Channel	nel N.		N. N.	Other	Fitted
Region	Channel	Λvj	INB.	selection	variable	
CD I	66	1		ℓ_1 or ℓ_2 is from virtual photon (γ^*) decay		
CR Low m_{γ^*}	γ^* SS, ee or $e\mu$ $4 \le N_j < 6$		$v_j < 6 \ge 1$	ℓ_1 and ℓ_2 are not from photon conversion	counting	
CR Mat. Conv.	SS, ee or $e\mu$	$4 \le N_{\rm j} < 6$	≥ 1	ℓ_1 or ℓ_2 is from photon conversion	counting	
				$100 < H_{\rm T} < 300 {\rm GeV}$		
CP HE	or	>1	- 1	$E_{\rm T}^{\rm miss} > 50 { m GeV}$	_l3	
$CK \Pi^{\mu} \mu$		21	- 1	total charge = ± 1	p_{T}	
				$100 < H_{\rm T} < 275 { m GeV}$		
CPUE		>1	-1	$E_{\rm T}^{\rm miss} > 35 { m GeV}$	_l3	
CKHFE	eee or eeµ	21	= 1	total charge = ± 1	P_{T}	
				$ \eta(e) < 1.5$		
				when $N_b = 2$: $H_T < 500$ GeV or $N_j < 6$		
CR ttW++jets	SS, $e\mu$ or $\mu\mu$	≥ 4	≥ 2	when $N_b \ge 3$: $H_T < 500 \text{ GeV}$	Nj	
				total charge > 0		
				$ \eta(e) < 1.5$		
				when $N_b = 2$: $H_T < 500$ GeV or $N_j < 6$		
CR $t\bar{t}W^-$ +jets	SS, $e\mu$ or $\mu\mu$	≥ 4	≥ 2	when $N_b \ge 3$: $H_T < 500 \text{ GeV}$	Nj	
				total charge < 0		
				ℓ_1 and ℓ_2 are not from photon conversion		
CR 1b(+)	2LSS+3L	≥ 4	= 1	$H_{\rm T} > 500 { m ~GeV}$	Ni	
				total charge > 0	-	
				ℓ_1 and ℓ_2 are not from photon conversion		
CR 1b(-)	2LSS+3L	≥ 4	= 1	$H_{\rm T} > 500 { m ~GeV}$	Nj	
				total charge < 0		
SR	2LSS+3L	≥ 6	≥ 2	$H_{\rm T} > 500 { m GeV}$	GNN score	

ttW Data-Driven Check

irfu

cea

- Validation of ttW data-driven method
- Difference between the number of positive events and the number of negative events (N+ - N-) as a function of the number of jets (Nj) in the sum of four *ttW* CRs and the SR

Systematics Models

Theory/modeling uncertainties:

- SM tttt: x-sec (20%), PDF (1%), generator (MG vs Sherpa 2210 QCD), μR/F variations (QCD scale), PS (Pythia vs Herwig)
- 2. ttt / ttZ / ttH / ttW QCD+EW:
 - QCD scale µR/F
 - Generator: ttZ: MG vs. Sherpa2211 ttH: PH vs. MG ttW: Sherpa 2210 vs. Old MG FxFx Heavy flavor content: 50% on ttX+1b, 50% on ttX+ ≥ 2b
 - x-sec: 12% on ttZ, 10% on ttH, 30% on ttt; PDF on ttZ/ttH (1%)
- 3. x-sec for others:

٠

- VVV+VH(other) / ttWW / rare ttVV: 50%
- VV: 40%; tt LF: 100% tZ+tWZ: 30%
- 4. >3 / >= 3 truth b-jets:
 - VV / VVV+VH(other) / ttWW / rare ttVV / tZ+tWZ - 50% / 50% for events with =3 / > 3 true b-jets,
 - ttt 50% for events with > 3 true b-jets, tt+jets Heavy flavor content - 30% / 30% for events with =3 / >3 true b-jets

Experimental uncertainties

Systematic uncertainty	Short description		
Event			
Luminosity	uncertainty on the total integrated luminosity		
Pileup reweighting	uncertainty on data SF used for the computation of pileup reweighting		
	Electrons		
ATLAS_EL_SF_TRIGGER ATLAS_EL_SF_RECO ATLAS_EL_SF_ID ATLAS_EL_SF_ISO EG_SCALE_ALL	trigger efficiency uncertainty reconstruction efficiency uncertainty ID efficiency uncertainty isolation efficiency uncertainty energy scale uncertainty		
EG_RESOLUTION_ALL	energy resolution uncertainty		
AILAS_EL_SF_ChargeID_Stat	uncertainties associated to the efficiencies of the ECIDS		
	Muons		
ATLAS_MU_SF_TRIG_Stat ATLAS_MU_SF_TRIG_Syst	trigger efficiency uncertainty		
ATLAS_MU_SF_ID_Stat ATLAS_MU_SF_ID_Syst ATLAS_MU_SF_ISO_Stat	identification/reconstruction efficiency uncertainty for $p_T > 15 \text{ GeV}$		
ATLAS_MU_SF_ISO_Syst	isolation efficiency uncertainty		
ATLAS_MU_SF_TTVA_Stat ATLAS_MU_SF_TTVA_Syst	track-to-vertex association efficiency uncertainty		
MUONS_SCALE MUON SAGITTA DATASTAT	energy scale uncertainty variations in the scale of the momentum (charge dependent)		
MUONS_SAGITTA_RESBIAS	variations in the scale of the momentum (charge dependent)		
MUONS_CB	energy resolution uncertainty from muon system		
	Small-R Jets		
IES_EffectiveNP (15 terms) JES_EtaIntercalibration (6 terms) JES_Flavour (2 terms) JES_Pileup (4 terms) JES_PunchThrough (FS,AFII 2 terms) JES_RelativeNonClosure_MC16_AFII JES_SingleParticle_HightPt (1 terms) BJETS_Response (1 terms)	jet energy scale uncertainties		
JER_EffectiveNP (12 terms) JER_DataVsMC (FS,AFII 2 terms)	jet energy resolution uncertainties		
JvtEfficiency	JVT efficiency uncertainty		
b-tagging DL1r B[0-44] b-tagging DL1r C[0-19] b-tagging DL1r Light[0-19]	<i>b</i> -tagging efficiency uncertainties: 45 components for <i>b</i> -jets, 20 for <i>c</i> -jets and 20 for light jets		
Jet PCBT high p_T	<i>b</i> -tagging emciency uncertainty on the extrapolation on high <i>p</i> _T -jets		
	$E_{\rm T}^{\rm mas}$ -Terms		
MET_SoftTrk_ResoPerp MET_SoftTrk_ResoPara MET_SoftTrk_Scale	track-based soft term related to transversal resolution uncertainty track-based soft term related to longitudinal resolution uncertainty track-based soft term related to longitudinal scale uncertainty		

