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The Strasbourg scanning tables

 A motorized collimator with a 10μm precision.

 A system allowing the placement of the detector 
in vertical and horizontal positions.

 A laser alignment system.

 Detector scanned in this work: the symmetric 
S001 crystal, with a 137Cs source. 
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The scanning process

 1 vertical (X,Y) and 1 horizontal(X,Z) 
scan.

 To get a 3D databases, a χ2 analysis 
of  both datasets is done.

 This method has been validated and 
published but it’s very time 
consuming (5 days for the PSCS 
analysis)

B. De Canditiis et al., Eur. Phys. J. A 57 (2021), B. De Canditiis and G. Duchêne, Eur. Phys. J. A 56 (2020) Picture from Michael Ginsz’s PhD thesis
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Neural networks to produce the 3D databases 

Training
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Neural networks: LSTM

 2 Long short-term memory (LSTM) layers 
were used.
 LSTMs can process sequences of data like 

the signals.

 Are very robust and are not affected by 
time misalignments.

 The loss function was calculated only for 
the two known axis, this allows the 
network to learn patterns of each dataset 
without affecting the other.
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Data preparation

 The data must be homogenous to avoid bias from the neural network.

 Only 10 signals/voxel are kept.

 500k signals per scan in total.

 Gate on the 662KeV photopeak and selection of segment multiplicity of 1.

 To avoid Compton scattering signals and assure the signals at the right position.

 This will favor double hits in one segment resulting in reduced number of signals at the 
segment borders.

 Remove dummy signals and filter bad signals.
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Analysis of neural network results

 The two known axis are compared with the predictions of the network.

 The bad predictions can be due to bad signals.
 Only the predictions with error on the known axis of less than 1mm are 

kept.
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Training of the neural network

 Trained using RTX6000 GPU

 Using TensorFlow python library

 Took 30 minutes for training and 1 hour for inference

8



Analysis of neural network results

 Only 2% of the predicted segments were wrong.
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Neural network results: Vertical scan 
distribution
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Neural network results: Horizontal 
scan distribution
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Neural network results: Vertical Signals
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Neural network results: Horizontal signals
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PSCS method signals
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Neural network Vs PSCS
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Imaging using Compton scattering

Experimental position error Two times the experimental position error Experimental position error with bad tracking

Imaging of a source located at (0,0,50)mm in the sphere of AGATA
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Results: 3D signal basis 
reconstruction
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ProspectsResults

 Although this is still preliminary, 
the 3D signal basis seems to be 
compatible with the standard 
PSCS basis.

 The neural network 30 minutes for 
training and 1 hour to process the 
two scans compared to 5 day for 
the PSCS method.

 The imaging method will be used to 
characterize the PSA and validate the neural 
network results.

 Reprocess the data taking 2 hits in the 
detector segments.

 Have a neural network and the validation 
method ready to apply it on the A005 crystal 
that will be scanned at Strasbourg.



Classifying and denoising bad 
signals using autoencoders

 It encodes the signal into a small 
latent space.

 Reconstructs the signal from this 
latent space removing the 
uncommon parts.

 We used 10 dense layers with 
latent space of 10.
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Training of the neural network

 Trained using RTX6000 GPU

 Using TensorFlow python library.

 The loss function used is mean squared error.

 Took 30 minutes for training.
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Radial uniformity.

 The network was misclassifying the signals closer to the core.

 The signals closer to the core were uncommon for the network due to the global homogeneity function applied before.

 The data was reprocessed to apply a radial uniformity function.
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Autoencoder results.
21

The worst 2% reconstructed core signals The normal core signals



Autoencoder limitations and 
prospects.

 Can’t be sure of the validity of 
network due to lack of 
information on the ratio of bad 
signals in the dataset.

 The reconstructed signals must 
be validated.
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Limitations Prospects

 The data will be reprocessed to 
remove filters on bad signals.

 One segment has particularly
bad signals and will be used as
a benchmark for the network.

 The reconstructed signals will 
be validated using the 3D basis 
neural network.



Thank you for your attention.



Imaging using Compton scattering
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Imaging using 3D histograms 28



Imaging using Compton scattering
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Imaging using an optimizer

• The scattering angle can be calculated 
from the energy and from the position.

• Minimizing the difference between the 
two will give the source position
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Results of the minimizer with experimental 
data 29

• This source run was conducted during GANIL campaign in the autumn of 
2021.

• The source used is Eu located at (0,0,-55)mm. 

[ -3.63   0.55 -48.23] [ -3.8   0.5 -54.58] [ -3.71   0.52 -55.46]

FWHM:           4.5mm                                  3.83mm                                       3.78mm



Neural network results
30
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