

Machine Learning for HISPEC/DESPEC at GSI

Helena M. Albers, GSI Darmstadt

OASIS WS on Machine Learning and AI in the AGATA community, 17th Jan 2023

DEcay SPECtroscopy@FAIR

2020-2021 Setup

• The **βPlast** detectors: 3-mm thick plastic scintillators (UWS, GSI)

May 2022

• DEGAS triple clusters + 2EB + wide AIDA/βPlast

June 2022

Improved position resolution of the βPlast detectors

- The β Plast detectors: 3-mm thick plastic scintillators UWS, GSI
- Used as a veto (light ions, punchthroughs), β/α -gamma timing
- SiPMs at the edges coupled to readout channels
- Processed using in-house TAMEX electronics

- Two 8x8-cm² (or 24x8-cm²) detectors sandwiching AIDA
- Excellent timing resolution (~100s ps)
- Students: <u>Alessandro Montalbano</u> (U Palermo) GET_INvolved program <u>Güler Aggez</u> (Uni Istanbul) PhD Student

 β Plast Time-over-Threshold (ToT) distributions

Improved position resolution of the βPlast detectors, Part 1

- In the first part of the project, heavy-ion interactions are considered
 - These are relatively easy to deal with as large amounts of light is produced in the scintillator material

- Data was generated during a DESPEC experiment in 2021
- Heavy ions with mass A~220-230 and Z~80-90 (Hg to Sr) were incident on a stack of detectors
- Two βPlast detectors sandwiched three 'AIDA' detectors
- AIDA detectors are segmented, with a pixel size ~0.5 mm and >99% efficiency

- Hit pattern on the first AIDA detector shows the position of the ions
- Beam was defocussed in x but narrow in y
- Events were selected such that:
 - AIDA 1 recorded a hit
 - Hit is unique
 - All of the β Plast channels fired

- Problem large light output means saturated SiPMs... no usable energy information!
- Therefore *timing* information is used

- Problem large light output means saturated SiPMs... no usable energy information!
- Therefore *timing* information is used

 Channels are aligned such that time difference distributions are centred at 0

 Time difference distributions between Ch0 and Ch3 for different gates

- 'Lookup Table' generated, with averaged time differences of all channels *for each pixel of AIDA* (i.e. 128x128 entries)
- Tables generated using 100k, 200k and 500k events

PosX	PosY	dT0	dT1	dT2	dT3	dT4	dT5	dT6	dT7	dT8	dT9	dT10	dT11	dT12	dT13	dT15
91	90	0	-0.0642287	-0.109513	-0.109452	-0.108665	-0.0907854	-0.0489191	0.0202923	-0.0406718	-0.0174948	-0.00612049	0.00687765	0.00670136	-0.00197111	-0.0563917
91	91	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
91	92	0	-0.0793157	-0.12705	-0.134371	-0.143239	-0.117952	-0.0978655	-0.0299068	-0.0708435	-0.042535	-0.0373934	-0.0321594	-0.0295418	-0.0245802	-0.0758714
91	93	0	-0.0765231	-0.154894	-0.155575	-0.153685	-0.134458	-0.0862165	0.00163878	-0.073651	-0.0469462	-0.0368783	-0.021429	0.00015852	-0.0188813	-0.070994
91	94	0	-0.0832659	-0.153694	-0.151327	-0.157002	-0.125989	-0.0851999	-0.0187286	-0.0693139	-0.055176	-0.0339633	-0.0171839	-0.032586	-0.0394784	-0.0735781
91	95	0	-0.0857524	-0.158187	-0.153342	-0.162543	-0.125704	-0.0889414	-0.0116579	-0.0802292	-0.0486826	-0.0402342	-0.0240862	-0.0203965	-0.0318646	-0.0764803
91	96	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
91	97	0	-0.112228	-0.167083	-0.167885	-0.159266	-0.129581	-0.0975844	0.00202333	-0.0720296	-0.0487381	-0.0263663	-0.0256226	-0.0167393	-0.0264432	-0.0736081

- KDTrees: space-partitioning data structures, points represented in kdimensional space
- The K-dimensional space is recursively partitioned into 2 sections
- Allows us to search for the 'r' nearest neighbour of a query point

- Each level has a 'cutting dimension'

- The dimension changes as you go 'down' the tree

Simple example: 2D Euclidean space

Each node contains an (X,Y) coordinate In the first level, X is the cutting dimension Next node with (X',Y') is positioned either in the 'left' hyperspace or 'right' hyperspace depending on whether X'>X or X'<X

- Implemented in Python using scikit learn machine learning library
- Queries for 1000 independent test events

class sklearn.neighbors.KDTree(X, leaf_size=40, metric='minkowski', **kwargs)

$$\Delta X = X_{label} - X$$
$$\Delta Y = Y_{label} - Y$$

 $\Delta X = X_{label} - X$ $\Delta Y = Y_{label} - Y$

Remaining questions:

- How to reduce 'chance' matches?
- Best way to construct tree?
- How to define 'resolution' (i.e. are X and Y independent?)
- How to deal with label errors?
- Effect of dimension ordering?
- How much data is required for Lookup table generation?
- Comparison with brute force?
- ...

Work of Alessandro Montalbano (Uni Palermo, GET_INvolved@GSI)

Multitarget ANN regression model:

- Python and TensorFlow ML library (+standard libraries)
- Relu activation function in hidden layer
- Bounded leaky relu activation function [1] in output layer (prediction of continuous variables in bounded range)
- Batch normalisation and dropout
- Hyperparameter tuning: epochs, learning rate, batch size, number of nodes,...
- Training data, 200k individual events
- Same event selection as for KDTree

[1] S. S. Liew, M. Khalil-Hani and R. Bakhteri, Neurocomputing 216, 718 (2016)

Improved position resolution of the βPlast detectors, Part 2

- Second part of the project concerns position reconstruction for beta decays
- Much more challenging!! Low photon counts, missing data, low statistics...
- Position reconstruction via *timing* or *energy* distribution
- Problem how to generate data with labelled positions?
- Solution GSI Scanner System

 Scanner data taken in 2020, new data is on the way this year

G. Aggez, A. Montalbano, A. Sharma, M. Armstrong

Analysis procedure and data preprocessing:

- LYSO anode gain matching
- 'Standard' gating procedure
- Standardisation: βPlast gain matching
- Event normalisation
- Handling of missing data
- Label scaling [-1,1]
- Training/validation/testing → **70/20/10**

X position [arb]

Variable	Description
Event	The event number
Position x	x coordinate of the event of the β Plast detector
Position y	y coordinate of the event of the β Plast detector
QDC β Plast (1-14)	A measure of charge of the event

A. Montalbano (Palermo), GET_INvolved@GSI

Model performance:

• Mean absolute error, LYSO error still to be determined (1-2mm)

$$\bar{\delta}_{ML} = \frac{|P - \hat{P}|}{N}$$

$$\delta_{tot} = \sqrt{\bar{\delta}_{ML}^2 + \delta_{LYSO}^2}$$

- Initial results promising...
- Could this be improved with combining energy and time information?
- Ongoing work...

3D plot of ΔP

A. Montalbano (Palermo), GET_INvolved@GSI

LISA: LIfetime measurements with Solid Active targets

In nuclei, the **coexistence of single-particle and collective degrees** of freedom in atomic nuclei gives rise to various exotic phenomena.

Where and how collectivity emerges from the single-particle dynamics of protons and neutrons is an **open question in nuclear structure physics** that will be addressed with LISA in a unique way.

Compact array of active target detectors inside AGATA

ERC-COG 101001561-LISA PI: K. Wimmer

- Energy resolution determined by unknown velocity in the target
- Several layers of active targets
- Event-by-event determination of reaction position $\rightarrow (\beta, z)$

Opens new possibilities for lifetime measurements using AGATA at FAIR:

- Evolution of collectivity in Islands of Inversion
- Fate of the N=82 and 126 shell closures
 - And many more

Slide courtesy of K. Wimmer

Layer identification by neural networks

- one-proton knockout reaction
- each layer measures the Z -dependent energy loss of the beam-like particles
- event-by-event Z identification in each layer

- achieved ~ 90% accuracy for identifying the correct layer
- most challenging cases are reactions at the surface of each layer
- improves accuracy for layer identification from 70 to 90% for challenging cases compared to simple gating

Slide courtesy of K. Wimmer

Optical corrections for particle identification

- particle identification at the BigRIPS and ZeroDegree spectrometers by ΔE-Bp-TOF
- using first order matrix elements only
- significantly improved by (empirical) higher-order corrections
- high dimensional parameter space (7-8 dimension just for linear corrections)
- efficient stochastic batch optimization

Slide courtesy of K. Wimmer

What's next?

<u>βPlast position resolution: work ongoing! Full assessment of algorithm performance</u>

- New data being collected for 'wide' βPlast detector configuration in scanner setup
- Combinations of energy and timing information
- Application of algorithm to 'real' physics (data exists already...)!

LISA: Improve and assess performance

- In-beam experiment planned at GSI and HIMAC (RIKEN)
- Explore alternative algorithms

Other upcoming projects: AIDA

- The **A**dvanced **I**mplantation **D**etector **A**rray
- (Edinburgh, Daresbury, Liverpool)
- Triggerless DAQ and high segmentation → large data throughput and noise
- Aim to investigate **improvement of noise recognition capabilities** cf current analytical techniques
- Current methods rely on subsystem coincidence, esp. for longer correlation times \rightarrow reduced efficiency
- Likelihood analyses slow for large datasets investigate use of AI filtering methods (e.g. CNNs, wavelet transforms,...)
- In collaboration with Valencia (simulations) and Uni Bologna (ML) starting in March 2023

Summary and Outlook

- KDTree and MLP-ANN algorithms tested for improved βPlast position resolution
 - Data for heavy-ion and beta interactions investigated results are promising!
- First results for improved proton-number identification with LISA promising
 - New in-beam data coming soon from GSI and HIMAC
- Further work planned!

With thanks to:

K. Wimmer, G. Aggez, T. Arici, M. Armstrong, J. Gerl, M. Górska, I. Kojouharov, **A. Montalbano**, H. Schaffner, A. Sharma, and others

and you for your attention.