Review on S-matrix bootstrap

Yifei He
CNRS \& LPENS, Paris

French Strings Meeting 2023, LAPTh
May 25, 2023

Snowmass White Paper: S-matrix Bootstrap

Martin Kruczenski
Department of Physics and Astronomy
Purdue University, West Lafayette, IN 47907, USA.
João Penedones
Fields and String Laboratory, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Rte de la Sorge, BSP 728, CH-1015 Lausanne, Switzerland

Balt C. van Rees
CPHT, CNRS, Ecole Polytechnique,
Institut Polytechnique de Paris,
Route de Saclay, 91128 Palaiseau, France

Old S-matrix bootstrap

before quark model: ideas developed for understanding strong interaction

$$
A(s, t)=\frac{\Gamma(-\alpha(s)) \Gamma(-\alpha(t))}{\Gamma(-\alpha(s)-\alpha(t))}
$$

string theory

Regge trajectory
Veneziano amplitude

Old S-matrix bootstrap

before quark model: ideas developed for understanding strong interaction

$$
A(s, t)=\frac{\Gamma(-\alpha(s)) \Gamma(-\alpha(t))}{\Gamma(-\alpha(s)-\alpha(t))} \quad \longleftrightarrow \text { string theory }
$$

Veneziano amplitude

Regge trajectory

S-matrix bootstrap: solve strong interaction in a self-consistent way symmetries+analyticity+crossing+unitarity
hindsight: too optimistic
infinitely many consistent QFTs compatible with bootstrap principles
hindsight: too optimistic
infinitely many consistent QFTs compatible with bootstrap principles

Modern perspective:

> symmetries+analyticity+crossing+unitarity

+
 convex optimization

hindsight: too optimistic
infinitely many consistent QFTs compatible with bootstrap principles

Modern perspective:

> symmetries+analyticity+crossing+unitarity

convex optimization

- explore the landscape of QFTs non-perturbatively
- bound physical quantities
- extremal theories

2-to-2 S-matrix

$$
\mathbf{S}=U(+\infty,-\infty) \quad \mathbf{S}^{\dagger} \mathbf{S}=\mathbb{I}
$$

2-to-2 S-matrix

$$
\mathbf{S}=U(+\infty,-\infty) \quad \mathbf{S}^{\dagger} \mathbf{S}=\mathbb{I}
$$

2-to-2 scattering lightest particle in massive QFT

$$
\begin{gathered}
s=\left(p_{1}+p_{2}\right)^{2} \quad t=\left(p_{1}-p_{3}\right)^{2} \quad u=\left(p_{1}-p_{4}\right)^{2} \\
p_{i}^{2}=m^{2}
\end{gathered}
$$

$$
\left\langle p_{3}, p_{4}\right| \mathbf{S}\left|p_{1}, p_{2}\right\rangle=S(s, t, u)^{\prime}(2 \pi)^{d} \delta^{(d)}\left(p_{3}+p_{4}-p_{1}-p_{2}\right)
$$

scattering amplitude

2-to-2 S-matrix

$$
\mathbf{S}=U(+\infty,-\infty) \quad \mathbf{S}^{\dagger} \mathbf{S}=\mathbb{I}
$$

2-to-2 scattering lightest particle in massive QFT

$$
\begin{array}{cc}
s=\left(p_{1}+p_{2}\right)^{2} \quad t=\left(p_{1}-p_{3}\right)^{2} \quad u=\left(p_{1}-p_{4}\right)^{2} \\
p_{i}^{2}=m^{2} & s+t+u=4 m^{2}
\end{array}
$$

$$
\left\langle p_{3}, p_{4}\right| \mathbf{S}\left|p_{1}, p_{2}\right\rangle=S(s, t, u)(2 \pi)^{d} \delta^{(d)}\left(p_{3}+p_{4}-p_{1}-p_{2}\right)
$$

scattering amplitude

$$
\text { 2-particle irreps states } \quad\left|p_{1}, p_{2}\right\rangle \rightarrow\left|p_{1}, \ell\right\rangle
$$

physical kinematics: $\quad s>4 m^{2} \quad 4 m^{2}-s<t<0$

$$
\left\langle p^{\prime}, \ell\right| \mathbf{S}|p, \ell\rangle=\boldsymbol{S}_{\ell}(s) \delta_{\ell \ell^{\prime}}(2 \pi)^{d} \delta^{(d)}\left(p-p^{\prime}\right)
$$

2-to-2 S-matrix

$$
\mathbf{S}=U(+\infty,-\infty) \quad \mathbf{S}^{\dagger} \mathbf{S}=\mathbb{I}
$$

2-to-2 scattering lightest particle in massive QFT

$$
\begin{array}{cc}
s=\left(p_{1}+p_{2}\right)^{2} \quad t=\left(p_{1}-p_{3}\right)^{2} \quad u=\left(p_{1}-p_{4}\right)^{2} \\
p_{i}^{2}=m^{2} & s+t+u=4 m^{2}
\end{array}
$$

$$
\left\langle p_{3}, p_{4}\right| \mathbf{S}\left|p_{1}, p_{2}\right\rangle=S(s, t, u)(2 \pi)^{d} \delta^{(d)}\left(p_{3}+p_{4}-p_{1}-p_{2}\right)
$$

scattering amplitude

3+1d: $\quad S_{\ell}(s)=\frac{\pi}{4} \sqrt{\frac{s-4}{s}} \int_{-1}^{1} d \cos \theta P_{\ell}(\cos \theta) S\left(s^{+}, t\right)$

$$
\text { 2-particle irreps states } \quad\left|p_{1}, p_{2}\right\rangle \rightarrow\left|p_{1}, \ell\right\rangle
$$

$$
\left\langle p^{\prime}, \ell\right| \mathbf{S}|p, \ell\rangle=S_{\ell}(s)^{\prime} \delta_{\ell \ell^{\prime}}(2 \pi)^{d} \delta^{(d)}\left(p-p^{\prime}\right)
$$

Physical constraints: analyticity and crossing

analyticity:

$$
\begin{aligned}
& S(s, t, u) \quad \text { analytic function in } s, t, u \\
& \text { singularities } \longleftrightarrow \text { on-shell processes } \\
& \text { poles: bound states } \\
& \text { cuts: multiple particle states }
\end{aligned}
$$

Physical constraints: analyticity and crossing

analyticity

$$
\begin{aligned}
& \qquad(s, t, u) \quad \text { analytic function in } \quad s, t, u \\
& \text { singularities } \longleftrightarrow \text { on-shell processes } \\
& \text { poles: bound states } \\
& \text { cuts: multiple particle states }
\end{aligned}
$$

crossing:

$$
S(s, t, u)=S(s, u, t)=S(u, t, s) \quad \text { e.g. single flavor case }
$$

Physical constraints: unitarity

$$
\mathbf{S}^{\dagger} \mathbf{S}=\mathbb{I}
$$

take a subsector D of state space, and a state $|\alpha\rangle \in D$
$\langle\alpha| \mathbf{S}^{\dagger} \mathbf{S}|\alpha\rangle=\langle\alpha \mid \alpha\rangle$
insert complete basis

$$
\sum_{|\beta\rangle \in D}\langle\alpha| \mathbf{S}^{\dagger}|\beta\rangle\langle\beta| \mathbf{S}|\alpha\rangle+\sum_{|\beta\rangle \notin D}\langle\alpha| \mathbf{S}^{\dagger}|\beta\rangle\langle\beta| \mathbf{S}|\alpha\rangle=\langle\alpha \mid \alpha\rangle
$$

Physical constraints: unitarity

$$
\mathbf{S}^{\dagger} \mathbf{S}=\mathbb{I}
$$

take a subsector D of state space, and a state $|\alpha\rangle \in D$
$\langle\alpha| \mathbf{S}^{\dagger} \mathbf{S}|\alpha\rangle=\langle\alpha \mid \alpha\rangle$
insert complete basis

$$
\sum_{|\beta\rangle \in D}\langle\alpha| \mathbf{S}^{\dagger}|\beta\rangle \underbrace{\langle\beta| \mathbf{S}|\alpha\rangle}_{S_{\ell}(s)}+\sum_{|\beta\rangle \notin D}\langle\alpha| \mathbf{S}^{\dagger}|\beta\rangle\langle\beta| \mathbf{S}|\alpha\rangle=\langle\alpha \mid \alpha\rangle
$$

$$
\text { take } D \rightarrow \text { subsector of two particle states }|p, \ell\rangle
$$

$$
S_{\ell}^{*}(s) S_{\ell}(s)+(\text { positive stuff })=1
$$

Physical constraints: unitarity

$$
\mathbf{S}^{\dagger} \mathbf{S}=\mathbb{I}
$$

take a subsector D of state space, and a state $|\alpha\rangle \in D$

$$
\langle\alpha| \mathbf{S}^{\dagger} \mathbf{S}|\alpha\rangle=\langle\alpha \mid \alpha\rangle
$$

- insert complete basis

$$
\sum_{|\beta\rangle \in D}\langle\alpha| \mathbf{S}^{\dagger}|\beta\rangle \underbrace{\langle\beta| \mathbf{S}|\alpha\rangle}_{S_{\ell}(s)}+\sum_{|\beta\rangle \notin D}\langle\alpha| \mathbf{S}^{\dagger}|\beta\rangle\langle\beta| \mathbf{S}|\alpha\rangle=\langle\alpha \mid \alpha\rangle
$$

$$
\text { take } D \rightarrow \text { subsector of two particle states }|p, \ell\rangle
$$

$$
S_{\ell}^{*}(s) S_{\ell}(s)+(\text { positive stuff })=1
$$

unitarity:

$$
\left|S_{\ell}(s)\right|^{2} \leq 1 \quad s>4 m^{2} \quad \forall \ell
$$

$$
\left(\begin{array}{cc}
1 & S_{\ell}(s) \\
S_{\ell}^{*}(s) & 1
\end{array}\right) \succeq 0
$$

$1+1 \mathrm{~d}$

no scattering angle $\quad u=0 \quad t=4 m^{2}-s \quad$ one independent Mandelstam variable $\quad s \quad S(s)$

$1+1 \mathrm{~d}$

no scattering angle

$$
u=0 \quad t=4 m^{2}-s \quad \text { one independent Mandelstam variable } \quad s \quad S(s)
$$

analyticity: analytic function $\quad S\left(s^{*}\right)=S^{*}(s)$

$1+1 \mathrm{~d}$

no scattering angle

$$
u=0 \quad t=4 m^{2}-s \quad \text { one independent Mandelstam variable } \quad s \quad S(s)
$$

analyticity: analytic function $\quad S\left(s^{*}\right)=S^{*}(s)$

specialty in 1+1d:

$1+1 \mathrm{~d}$

no scattering angle $u=0 \quad t=4 m^{2}-s \quad$ one independent Mandelstam variable $\quad s \quad S(s)$ analyticity: analytic function $\quad S\left(s^{*}\right)=S^{*}(s)$

$$
\text { cut } s>4 m^{2} \text { and possible poles }
$$

crossing: $\quad S(s)=S\left(t=4 m^{2}-s\right)$
e.g. single flavor case
unitarity: $\quad|S(s)| \leq 1 \quad s>4 m^{2}$

specialty in 1+1d:

analyticity+crossing+unitarity+factorization \longrightarrow exactly solvable integrable S-matrices

Modern S-matrix bootstrap program

[Paulos, Penedones, Toledo, van Rees, Vieira, 2016]

$1+1 d$, single flavor, one bound state

$$
S(s)=-\frac{g}{s-m_{b}^{2}}-\frac{g}{4 m^{2}-s-m_{b}^{2}}+\tilde{S}(s)
$$

Modern S-matrix bootstrap program

[Paulos, Penedones, Toledo, van Rees, Vieira, 2016]

$1+1 d$, single flavor, one bound state

$$
S(s)=-\frac{g}{s-m_{b}^{2}}-\frac{g}{4 m^{2}-s-m_{b}^{2}}+\tilde{S}(s)
$$

analyticity

$$
S\left(s^{*}\right)=S^{*}(s)
$$

crossing

$$
S(s)=S\left(4 m^{2}-s\right)
$$

unitarity

$$
|S(s)| \leq 1, \quad s \geq 4 m^{2}
$$

Modern S-matrix bootstrap program

[Paulos, Penedones, Toledo, van Rees, Vieira, 2016]

$1+1 d$, single flavor, one bound state

$$
S(s)=-\frac{g}{s-m_{b}^{2}}-\frac{g}{4 m^{2}-s-m_{b}^{2}}+\tilde{S}(s)
$$

analyticity	$S\left(s^{*}\right)=S^{*}(s)$
crossing	$S(s)=S\left(4 m^{2}-s\right)$
unitarity	$\|S(s)\| \leq 1, \quad s \geq 4 m^{2}$

$$
\text { fix } m_{b}, g^{\max }=?
$$

Modern S-matrix bootstrap program

[Paulos, Penedones, Toledo, van Rees, Vieira, 2016]

1+1d, single flavor, one bound state

$$
S(s)=-\frac{g}{s-m_{b}^{2}}-\frac{g}{4 m^{2}-s-m_{b}^{2}}+\tilde{S}(s)
$$

analyticity	$S\left(s^{*}\right)=S^{*}(s)$
crossing	$S(s)=S\left(4 m^{2}-s\right)$
unitarity	$\|S(s)\| \leq 1, s \geq 4 m^{2}$

$$
\text { fix } m_{b}, g^{\max }=?
$$

once the spectrum of states is given, it may not be possible to make a particular coupling constant too large without introducing new "bound" states

$\log \left(g^{\max }\right)^{2}$

$\log \left(g^{\max }\right)^{2}$

Sine-Gordon breather S-matrix
$S_{S G}(s)=\frac{\sqrt{s} \sqrt{4 m^{2}-s}+m_{b} \sqrt{4 m^{2}-m_{b}^{2}}}{\sqrt{s} \sqrt{4 m^{2}-s}-m_{b} \sqrt{4 m^{2}-m_{b}^{2}}}$
obtaining extremal amplitude
can be obtained analytically

$$
\log \left(g^{\max }\right)^{2}
$$

Rigorous Bounds on Coupling Constants in Two-Dimensional Field Theories*

Michael Creutz

Center for Theoretical Physics, Department of Physics and Astronomy,
University of Maryland, College Park, Maryland 20742

(Received 13 July 1972)

We show that renormalized three-particle coupling constants in a field theory with one space and one time dimension are bounded. This bound depends on the particle spectrum and assumes only analyticity, crossing, unitarity, and polynomial boundedness of the S matrix at infinity.

Bounding the space of S-matrices

analyticity+crossing+unitarity
defines
space of consistent
S-matrices (amplitudes)

Bounding the space of S-matrices

Bounding the space of S-matrices

obtain the amplitude non-perturbatively

$\mathrm{O}(\mathrm{N})$ global symmetry

tension between crossing and unitarity

$\mathrm{O}(\mathrm{N})$ global symmetry

tension between crossing and unitarity

$\left\langle p_{3}, c ; p_{4}, d\right| \mathbf{S}\left|p_{1}, a ; p_{2}, b\right\rangle=(2 \pi)^{2} \delta^{(2)}\left(p_{3}+p_{4}-p_{1}-p_{2}\right)$

$$
\times\left\{S_{\text {singlet }}(s) \frac{\delta_{a b} \delta_{c d}}{N}+S_{\text {sym }}(s)\left(\frac{\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}}{2}-\frac{\delta_{a b} \delta_{c d}}{N}\right)+S_{\text {antisym }}(s) \frac{\delta_{a c} \delta_{b d}-\delta_{a d} \delta_{b c}}{2}\right\}
$$

unitarity: $\quad\left|S_{a}(s+i \epsilon)\right| \leq 1, s \geq 4 m^{2} \quad a=$ singlet, sym, antisym

$\mathrm{O}(\mathrm{N})$ global symmetry

tension between crossing and unitarity

$$
\times\left(S_{T}(s) \delta_{a c} \delta_{b d}+S_{A}(s) \delta_{a b} \delta_{c d}+S_{R}(s) \delta_{a d} \delta_{b c}\right)
$$

$$
\left\langle p_{3}, c ; p_{4}, d\right| \mathbf{S}\left|p_{1}, a ; p_{2}, b\right\rangle=(2 \pi)^{2} \delta^{(2)}\left(p_{3}+p_{4}-p_{1}-p_{2}\right)
$$

$$
\times\left\{S_{\text {singlet }}(s) \frac{\delta_{a b} \delta_{c d}}{N}+S_{\mathrm{sym}}(s)\left(\frac{\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}}{2}-\frac{\delta_{a b} \delta_{c d}}{N}\right)+S_{\mathrm{antisym}}(s) \frac{\delta_{a c} \delta_{b d}-\delta_{a d} \delta_{b c}}{2}\right\}
$$

$$
\text { unitarity: } \quad\left|S_{a}(s+i \epsilon)\right| \leq 1, s \geq 4 m^{2} \quad a=\text { singlet, sym, antisym }
$$

$\mathrm{O}(\mathrm{N})$ S-matrix bootstrap

[YH, Irrgang, Kruczenski; Cordova, Vieira; Paulos, Zheng, 2018]

three analytic functions $S_{a}(s) \quad a=$ singlet, sym, antisym
assume no bound states
parametrized by boundary values
numerics: discretize

$$
S_{a}\left(s_{i}\right), \quad i=1, \ldots, M
$$

$\mathrm{O}(\mathrm{N})$ S-matrix bootstrap

[YH, Irrgang, Kruczenski; Cordova, Vieira; Paulos, Zheng, 2018]

three analytic functions

$$
S_{a}(s) \quad a=\text { singlet }, \text { sym }, \text { antisym }
$$

assume no bound states
parametrized by boundary values
numerics: discretize

$$
S_{a}\left(s_{i}\right), \quad i=1, \ldots, M
$$

$$
S_{a}\left(4 m^{2}-s\right)=C_{a b} S_{b}(s) \quad C_{a b}=\left(\begin{array}{ccc}
\frac{1}{N} & -\frac{N}{2}+\frac{1}{2} & \frac{N}{2}+\frac{1}{2}-\frac{1}{N} \\
-\frac{1}{N} & \frac{1}{2} & \frac{1}{2}+\frac{1}{N} \\
\frac{1}{N} & \frac{1}{2} & \frac{1}{2}-\frac{1}{N}
\end{array}\right)
$$

linear constraints

$$
\left.\left.\begin{array}{c:cc}
\begin{array}{c}
\text { convex } \\
\text { space }
\end{array} & S_{a}(s) \\
& S_{a}^{*}(s) & 1
\end{array}\right) \geq 0 \begin{array}{cc}
1 & s \geq m^{2} \\
& S_{a}^{*}
\end{array}\right)
$$

O(N) S-matrix bootstrap

[YH, Irrgang, Kruczenski; Cordova, Vieira; Paulos, Zheng, 2018]

three analytic functions $S_{a}(s) \quad a=$ singlet, sym, antisym
assume no bound states
parametrized by boundary values
numerics: discretize

$$
S_{a}\left(s_{i}\right), \quad i=1, \ldots, M
$$

$$
S_{a}\left(4 m^{2}-s\right)=C_{a b} S_{b}(s) \quad C_{a b}=\left(\begin{array}{ccc}
\frac{1}{N} & -\frac{N}{2}+\frac{1}{2} & \frac{N}{2}+\frac{1}{2}-\frac{1}{N} \\
-\frac{1}{N} & \frac{1}{2} & \frac{1}{2}+\frac{1}{N} \\
\frac{1}{N} & \frac{1}{2} & \frac{1}{2}-\frac{1}{N}
\end{array}\right)
$$

linear constraints

NLSM

$\mathrm{O}(\mathrm{N})$ nonlinear sigma model $\mathcal{L}=\frac{1}{g_{0}} \sum_{i=1}^{N}\left(\partial_{\mu} n_{i}\right)^{2} \quad \vec{n}^{2}=1$
N scalar particles with mass m no bound states no free parameters asymptotic freedom
exact S-matrix obtained using integrability [Zamolodchikov $\times 2,1979$]

NLSM @ a vertex

$\mathrm{O}(\mathrm{N})$ nonlinear sigma model $\mathcal{L}=\frac{1}{g_{0}} \sum_{i=1}^{N}\left(\partial_{\mu} n_{i}\right)^{2} \quad \vec{n}^{2}=1$
N scalar particles with mass m no bound states no free parameters asymptotic freedom exact S-matrix obtained using integrability [Zamolodchikov $\times 2,1979$]

NLSM @ a vertex [YH, Irrgang, Kruczenski, 2018]
unitarity saturation \square boundary of the space
no free parameters \square rigid point \rightarrow vertex
numerical evidence: many functionals lead to it

Map out the space of $\mathrm{O}(\mathrm{N})$ theories

rich geometrical structure infinite dimensional space of functions $\quad S_{a}(s)$

Map out the space of $\mathrm{O}(\mathrm{N})$ theories

rich geometrical structure infinite dimensional space of functions $S_{a}(s)$

3-dimensional projection: $\quad\left(S_{A}\left(s_{0}\right), S_{T}\left(s_{0}\right), S_{R}\left(s_{0}\right)\right)$

Map out the space of $\mathrm{O}(\mathrm{N})$ theories

rich geometrical structure infinite dimensional space of functions $\quad S_{a}(s)$

3-dimensional projection: $\quad\left(S_{A}\left(s_{0}\right), S_{T}\left(s_{0}\right), S_{R}\left(s_{0}\right)\right)$

$$
\mathcal{F}\left[S_{a}(s)\right]=\sum_{a} n_{a} S_{a}\left(s_{0}\right)
$$

choose the vector $\vec{n}=\left(n_{A}, n_{T}, n_{R}\right)$
uniformly distributed on a unit sphere and scan

1+1d $\mathrm{O}(\mathrm{N})$ monolith

[Cordova, YH, Kruczenski, Vieira, 2019]

The NLSM kink

Dual S-matrix bootstrap

explicitly construct scattering amplitudes satisfying all the constraints
parameter space $S(s)$

Dual S-matrix bootstrap

explicitly construct scattering amplitudes satisfying all the constraints
parameter space $S(s)$
space of Lagrange multipliers $K(s)$

Dual S-matrix bootstrap

explicitly construct scattering amplitudes satisfying all the constraints
parameter space $S(s)$ Lagrangian formulation space of Lagrange multipliers $K(s)$

$$
\max _{\{S(s)\}} \mathcal{F}_{P} \leq \min _{\{K(s)\}} \mathcal{F}_{D}
$$

Dual S-matrix bootstrap

explicitly construct scattering amplitudes satisfying all the constraints
parameter space $S(s)$ Lagrangian formulation space of Lagrange multipliers $K(s)$

Dual S-matrix bootstrap

explicitly construct scattering amplitudes satisfying all the constraints
parameter space $S(s)$ Lagrangian formulation space of Lagrange multipliers $K(s)$

strict bounds

1+1d dual problem

$$
\begin{aligned}
S\left(s_{0}\right)=\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{S(s)}{s-s_{0}} d s & =\frac{1}{2 \pi i} \oint_{\mathcal{C}} S(s) K(s) d s \\
& K(s) \text { has pole at } s_{0} \text { with residue } 1
\end{aligned}
$$

1+1d dual problem

$$
\begin{gathered}
S\left(s_{0}\right)=\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{S(s)}{s-s_{0}} d s=\frac{1}{2 \pi i} \oint_{\mathcal{C}} S(s) K(s) d s \\
\text { blow up contour } \quad K(s) \text { has pole at } s_{0} \text { u }
\end{gathered}
$$ drop infinity

assume properties

$$
=\frac{2}{\pi} \int_{4}^{\infty} \operatorname{Im}[S(s) K(s)] d s
$$

physical region integral

1+1d dual problem

$$
\begin{aligned}
& S\left(s_{0}\right)=\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{S(s)}{s-s_{0}} d s=\frac{1}{2 \pi i} \oint_{\mathcal{C}} S(s) K(s) d s \\
& \text { blow up contour } \\
& \text { drop infinity } \\
& \text { assume properties } \\
& =\frac{2}{\pi} \int_{4}^{\infty} \operatorname{Im}[S(s) K(s)] d s \leq \frac{2}{\pi} \int_{4}^{\infty}\left|S\left(s^{+}\right) K\left(s^{+}\right)\right| d s \leq \frac{2}{\pi} \int_{4}^{\infty}\left|K\left(s^{+}\right)\right| d s \\
& \text { physical region integral }
\end{aligned}
$$

1+1d dual problem

Primal vs Dual

3+1d amplitudes

single flavor pion scattering: identical scalar particles, no bound state

$$
\begin{gathered}
\pi\left(p_{1}\right)+\pi\left(p_{2}\right) \rightarrow \pi\left(p_{3}\right)+\pi\left(p_{4}\right) \\
\mathbf{S}=\mathbb{I}+i \mathbf{T} \\
\left\langle p_{3}, p_{4}\right| \mathbf{T}\left|p_{1}, p_{2}\right\rangle=T(s, t, u)_{i}^{\prime}(2 \pi)^{4} \delta^{(4)}\left(p_{3}+p_{4}-p_{1}-p_{2}\right)
\end{gathered}
$$

interacting amplitude

3+1d amplitudes

single flavor pion scattering: identical scalar particles, no bound state

$$
\begin{gathered}
\pi\left(p_{1}\right)+\pi\left(p_{2}\right) \rightarrow \pi\left(p_{3}\right)+\pi\left(p_{4}\right) \\
\mathbf{S}=\mathbb{I}+i \mathbf{T} \\
\left\langle p_{3}, p_{4}\right| \mathbf{T}\left|p_{1}, p_{2}\right\rangle=T(s, t, u)^{\prime}(2 \pi)^{4} \delta^{(4)}\left(p_{3}+p_{4}-p_{1}-p_{2}\right)
\end{gathered}
$$

interacting amplitude
analyticity: $\quad T(s, t, u)$ cuts

$$
s>4 m^{2}, t>4 m^{2}, u>4 m^{2}
$$

$$
\text { recall } s+t+u=4 m^{2}
$$ analytic functions of two variables

crossing: $\quad T(s, t, u)=T(s, u, t)=T(u, t, s)$
unitarity: $\quad\left|S_{\ell}(s)\right|^{2} \leq 1 \quad s>4 m^{2} \quad \forall \ell$

3+1d amplitudes

single flavor pion scattering: identical scalar particles, no bound state

$$
\begin{gathered}
\pi\left(p_{1}\right)+\pi\left(p_{2}\right) \rightarrow \pi\left(p_{3}\right)+\pi\left(p_{4}\right) \\
\mathbf{S}=\mathbb{I}+\boldsymbol{i} \mathbf{T} \\
\left\langle p_{3}, p_{4}\right| \mathbf{T}\left|p_{1}, p_{2}\right\rangle=T(s, t, u)^{\prime}(2 \pi)^{4} \delta^{(4)}\left(p_{3}+p_{4}-p_{1}-p_{2}\right)
\end{gathered}
$$

interacting amplitude
analyticity: $\quad T(s, t, u)$ cuts

$$
s>4 m^{2}, t>4 m^{2}, u>4 m^{2}
$$

$$
\text { recall } s+t+u=4 m^{2}
$$ analytic functions of two variables

crossing: $\quad T(s, t, u)=T(s, u, t)=T(u, t, s)$
unitarity:

$$
\left|S_{\ell}(s)\right|^{2} \leq 1 \quad s>4 m^{2} \quad \forall \ell
$$

more severe tension between crossing and unitarity

$$
S_{\ell}(s)=\frac{\pi}{4} \sqrt{\frac{s-4}{s}} \int_{-1}^{1} d \cos \theta P_{\ell}(\cos \theta) S\left(s^{+}, t\right)
$$

3+1d primal bootstrap

[Paulos, Penedones, Toledo, van Rees, Vieira, 2017]

1, analyticity+crossing

$$
T=\text { poles }+\sum_{a+b+c \leq N} \alpha_{(a b c)} \rho_{s}^{a} \rho_{t}^{b} \rho_{u}^{c}
$$

$$
\begin{gathered}
S_{\ell}(s)=1+i \frac{\pi}{4} \sqrt{\frac{s-4}{s}} \int_{-1}^{1} d \cos \theta P_{\ell}(\cos \theta) T\left(s^{+}, t, u\right) \\
\left|S_{\ell}(s)\right|^{2} \leq 1 \quad s>4 m^{2} \quad \forall \ell
\end{gathered}
$$

3, maximize a linear functional, extrapolate the results, bounds

3+1d primal bootstrap

[Paulos, Penedones, Toledo, van Rees, Vieira, 2017]

1, analyticity+crossing

$$
T=\text { poles }+\sum_{a+b+c \leq N} \alpha_{(a b c)} \rho_{s}^{a} \rho_{t}^{b} \rho_{u}^{c}
$$

$$
\begin{gathered}
S_{\ell}(s)=1+i \frac{\pi}{4} \sqrt{\frac{s-4}{s}} \int_{-1}^{1} d \cos \theta P_{\ell}(\cos \theta) T\left(s^{+}, t, u\right) \\
\left|S_{\ell}(s)\right|^{2} \leq 1 \quad s>4 m^{2} \quad \forall \ell
\end{gathered}
$$

3, maximize a linear functional, extrapolate the results, bounds
generalize to various contexts: isospin [Guerrieri, Penedones, Vieira, 2018] spinning particles [Hebbar, Karateev, Penedones, 2020]

Semi-phenomenological pion bootstrap

pion: pseudo-Goldstone boson of chiral symmetry breaking

$$
\text { O(3) setup: } T^{(0)}, T^{(1)}, T^{(2)}
$$

Semi-phenomenological pion bootstrap

pion: pseudo-Goldstone boson of chiral symmetry breaking

$$
\text { O(3) setup: } \quad T^{(0)}, T^{(1)}, T^{(2)}
$$

e.g.
imposing rho resonance from experimental data:

$$
S_{\ell=1}^{(1)}\left(m_{\rho}^{2}\right)=0
$$

explore the allowed space of Adler zeros:

$$
S_{\ell=0}^{(0)}\left(s_{0}\right)=1 \quad S_{\ell=0}^{(2)}\left(s_{2}\right)=1
$$

Bounding non-perturbative coupling

[Paulos, Penedones, Toledo, van Rees, Vieira, 2017]
analyticity+crossing+unitarity $\max / \min \quad \lambda \equiv T\left(\frac{4}{3} m^{2}, \frac{4}{3} m^{2}, \frac{4}{3} m^{2}\right)$
quartic coupling of single pion scattering

Bounding non-perturbative coupling

[Paulos, Penedones, Toledo, van Rees, Vieira, 2017]
analyticity+crossing+unitarity $\quad \mathrm{max} / \mathrm{min} \quad \lambda \equiv T\left(\frac{4}{3} m^{2}, \frac{4}{3} m^{2}, \frac{4}{3} m^{2}\right) \quad$ quartic coupling of single pion scattering

Bounding non-perturbative coupling

[Paulos, Penedones, Toledo, van Rees, Vieira, 2017]
analyticity+crossing+unitarity $\quad \mathrm{max} / \mathrm{min} \quad \lambda \equiv T\left(\frac{4}{3} m^{2}, \frac{4}{3} m^{2}, \frac{4}{3} m^{2}\right) \quad$ quartic coupling of single pion scattering

extremal amplitudes has a pole at multiple particle threshold

Bounding non-perturbative coupling

[Paulos, Penedones, Toledo, van Rees, Vieira, 2017]
analyticity+crossing+unitarity \quad max/min $\quad \lambda \equiv T\left(\frac{4}{3} m^{2}, \frac{4}{3} m^{2}, \frac{4}{3} m^{2}\right) \quad$ quartic coupling of single pion scattering

extremal amplitudes has a pole at multiple particle threshold

Bounding non-perturbative coupling

[Paulos, Penedones, Toledo, van Rees, Vieira, 2017]
analyticity+crossing+unitarity $\quad \mathrm{max} / \mathrm{min} \quad \lambda \equiv T\left(\frac{4}{3} m^{2}, \frac{4}{3} m^{2}, \frac{4}{3} m^{2}\right) \quad$ quartic coupling of single pion scattering

extremal amplitudes has a pole at multiple particle threshold

explore the space of theories not assuming such dynamical structure \rightarrow non-constructive dual approach

3+1d dual approach

[YH, Kruczenski, 2021]

dual amplitude $K(s, t)=-\frac{1}{\left(s-s_{0}\right)\left(t-t_{0}\right)}+\frac{i}{\pi^{2}} \int_{4 m^{2}}^{\infty} d x \int_{4 m^{2}-x}^{0} d y \frac{\bar{k}(x, y) \cdots \ldots . .}{(s-x)(t-y)}$
dual partial waves: $k_{\ell}(s)=\frac{(2 \ell+1)}{\pi^{3}} \sqrt{s\left(s-4 m^{2}\right)} \int_{-1}^{1} d \cos \theta P_{\ell}(\cos \theta) k(s, t)$
"Lagrange multipliers", space of constraints, parametrize the dual problem
dual partial waves encodes the information about 2-to-2 scattering

3+1d dual approach

[YH, Kruczenski, 2021]

dual amplitude $K(s, t)=-\frac{1}{\left(s-s_{0}\right)\left(t-t_{0}\right)}+\frac{i}{\pi^{2}} \int_{4 m^{2}}^{\infty} d x \int_{4 m^{2}-x}^{0} d y \frac{\bar{k}(x, y) \cdots . . .}{(s-x)(t-y)}$

"Lagrange multipliers", space of constraints, parametrize the dual problem

3+1d dual

boundary of the space

$$
\min _{\left\{k_{\ell}(s)\right\}} \mathcal{F}_{D}=\sum_{\ell \text { even }} \int_{4 m^{2}}^{\infty} d s\left(\left|k_{\ell}(s)\right|-\operatorname{Re} k_{\ell}(s)\right)+M_{\mathrm{reg}}| | \operatorname{Re} K \|
$$

$$
S_{\ell}(s)=\frac{k_{\ell}(s)}{\left|k_{\ell}(s)\right|} \quad \begin{gathered}
\text { dual partial waves encodes the } \\
\text { information about 2-to-2 scattering }
\end{gathered}
$$

3+1d dual approach

[YH, Kruczenski, 2021]

dual amplitude $\quad K(s, t)=-\frac{1}{\left(s-s_{0}\right)\left(t-t_{0}\right)}+\frac{i}{\pi^{2}} \int_{4 m^{2}}^{\infty} d x \int_{4 m^{2}-x}^{0} d y \frac{\bar{k}(x, y) \cdots \cdots}{(s-x)(t-y)}$

"Lagrange multipliers", space of constraints, parametrize the dual problem

3+1d dual

$$
\min _{\left\{k_{\ell}(s)\right\}} \mathcal{F}_{D}=\sum_{\ell \text { even }} \int_{4 m^{2}}^{\infty} d s\left(\left|k_{\ell}(s)\right|-\operatorname{Re} k_{\ell}(s)\right)+M_{\mathrm{reg}}| | \operatorname{Re} K \|
$$

boundary of the space

$$
S_{\ell}(s)=\frac{k_{\ell}(s)}{\left|k_{\ell}(s)\right|} \quad \begin{gathered}
\text { dual partial waves encodes the } \\
\text { information about 2-to-2 scattering }
\end{gathered}
$$

dual partial waves are constraints free after optimization, recover the analyticity+crossing+unitarity of physical amplitudes

S-wave: phase shift

$\max \quad \lambda \equiv T\left(\frac{4}{3} m^{2}, \frac{4}{3} m^{2}, \frac{4}{3} m^{2}\right)$

Quartic coupling bounds - primal vs dual

Expanding the space of theories

$$
\begin{gathered}
1+1 d \\
\Lambda \equiv T\left(s=2 m^{2}\right)
\end{gathered}
$$

quartic coupling bounds
max/min extremal amplitudes
higher d

$$
\lambda \equiv T\left(\frac{4}{3} m^{2}, \frac{4}{3} m^{2}, \frac{4}{3} m^{2}\right)
$$

Expanding the space of theories

$$
\begin{array}{ccc}
1+1 d & \text { higher d } \\
\Lambda \equiv T\left(s=2 m^{2}\right) & \text { quartic coupling bounds } & \lambda \equiv T\left(\frac{4}{3} m^{2}, \frac{4}{3} m^{2}, \frac{4}{3} m^{2}\right)
\end{array}
$$

$\Lambda^{(n)} \equiv \lim _{s \rightarrow 2 m^{2}} \partial_{s}^{n} T(s) \quad$ expansion coeff around symmetric point $\quad m^{d-4} T(s, t)=\sum_{k, l=0}^{\infty} \lambda_{k, l} m^{-2(k+l)}\left(s-4 m^{2} / 3\right)^{k}\left(t-4 m^{2} / 3\right)^{l}$

Expanding the space of theories

$1+1 d$

$$
\Lambda \equiv T\left(s=2 m^{2}\right)
$$

higher d

$$
\begin{array}{cl}
\text { quartic coupling bounds } \\
\text { max/min extremal amplitudes }
\end{array} \quad \lambda \equiv T\left(\frac{4}{3} m^{2}, \frac{4}{3} m^{2}, \frac{4}{3} m^{2}\right)
$$

$\Lambda^{(n)} \equiv \lim _{s \rightarrow 2 m^{2}} \partial_{s}^{n} T(s) \quad$ expansion coeff around symmetric point $\quad m^{d-4} T(s, t)=\sum_{k, l=0}^{\infty} \lambda_{k, l} m^{-2(k+l)}\left(s-4 m^{2} / 3\right)^{k}\left(t-4 m^{2} / 3\right)^{l}$

examine details of extremal amplitudes

Connect with UV: form factor bootstrap
[Karateev, Kuhn, Penedones, 2019]
nonperturbative definition of QFT as RG flow from UV to IR fixed point

$$
\left|\psi_{1}\right\rangle=\left|p_{1}, p_{2}\right\rangle_{\text {in }}, \quad\left|\psi_{2}\right\rangle=\left|p_{1}, p_{2}\right\rangle_{\text {out }}, \quad\left|\psi_{3}\right\rangle=\int d x e^{i\left(p_{1}+p_{2}\right) \cdot x} \mathcal{O}(x)|0\rangle
$$

local operator, connect to the UV

Connect with UV: form factor bootstrap

[Karateev, Kuhn, Penedones, 2019]

nonperturbative definition of QFT as RG flow from UV to IR fixed point

$$
\left|\psi_{1}\right\rangle=\left|p_{1}, p_{2}\right\rangle_{\text {in }}, \quad\left|\psi_{2}\right\rangle=\left|p_{1}, p_{2}\right\rangle_{\text {out }}, \quad\left|\psi_{3}\right\rangle=\int d x e^{i\left(p_{1}+p_{2}\right) \cdot x} \mathcal{O}(x)|0\rangle
$$

local operator, connect to the UV
positive semidefinite condition: $\quad\left\langle\psi_{a} \mid \psi_{b}\right\rangle=\left(\begin{array}{ccc}1 & \mathcal{S}^{*} & \mathcal{F}_{2}^{*} \\ \mathcal{S} & 1 & \mathcal{F}_{2} \\ \mathcal{F}_{2} & \mathcal{F}_{2}^{*} & \rho\end{array}\right) \succeq 0$

Connect with UV: form factor bootstrap

[Karateev, Kuhn, Penedones, 2019]

nonperturbative definition of QFT as RG flow from UV to IR fixed point

$$
\left|\psi_{1}\right\rangle=\left|p_{1}, p_{2}\right\rangle_{\text {in }}, \quad\left|\psi_{2}\right\rangle=\left|p_{1}, p_{2}\right\rangle_{\text {out }}, \quad\left|\psi_{3}\right\rangle=\int d x e^{i\left(p_{1}+p_{2}\right) \cdot x} \mathcal{O}(x)|0\rangle
$$

local operator, connect to the UV
positive semidefinite condition: $\quad\left\langle\psi_{a} \mid \psi_{b}\right\rangle=\left(\begin{array}{ccc}1 & \mathcal{S}^{*} & \mathcal{F}_{2}^{*} \\ \mathcal{S} & 1 & \mathcal{F}_{2} \\ \mathcal{F}_{2} & \mathcal{F}_{2}^{*} & \rho\end{array}\right) \succeq 0$
form factor: $\quad{ }_{\text {out }}\langle\mathbf{n}| \mathcal{O}(x)|0\rangle=e^{-i p \cdot x} \mathcal{F}_{n}\left(p_{1}, \ldots, p_{n}\right)$
two-particle form factor: $\quad \mathcal{F}_{2}\left(p_{1}, p_{2}\right)=\mathcal{F}_{2}(s)$

$$
\mathcal{F}_{2}(s)=-\frac{g^{*} \mathcal{F}_{1}^{*}}{s-m^{2}}+\ldots
$$

analytic function in cut plane $s \geq 4 m^{2}$

Connect with UV: form factor bootstrap

[Karateev, Kuhn, Penedones, 2019]

nonperturbative definition of QFT as RG flow from UV to IR fixed point

$$
\left|\psi_{1}\right\rangle=\left|p_{1}, p_{2}\right\rangle_{\text {in }}, \quad\left|\psi_{2}\right\rangle=\left|p_{1}, p_{2}\right\rangle_{\text {out }}, \quad\left|\psi_{3}\right\rangle=\int d x e^{i\left(p_{1}+p_{2}\right) \cdot x} \mathcal{O}(x)|0\rangle
$$

local operator, connect to the UV
positive semidefinite condition: $\quad\left\langle\psi_{a} \mid \psi_{b}\right\rangle=\left(\begin{array}{ccc}1 & \mathcal{S}^{*} & \mathcal{F}_{2}^{*} \\ \mathcal{S} & 1 & \mathcal{F}_{2} \\ \mathcal{F}_{2} & \mathcal{F}_{2}^{*} & \rho\end{array}\right) \succeq 0$
form factor: $\quad{ }_{\text {out }}\langle\mathbf{n}| \mathcal{O}(x)|0\rangle=e^{-i p \cdot x} \mathcal{F}_{n}\left(p_{1}, \ldots, p_{n}\right)$
spectral density
two-particle form factor: $\quad \mathcal{F}_{2}\left(p_{1}, p_{2}\right)=\mathcal{F}_{2}(s)$

$$
\begin{gathered}
\int d^{d} x e^{-i k \cdot x}\langle 0| \mathcal{O}^{\dagger}(x) \mathcal{O}(0)|0\rangle=(2 \pi) \theta\left(k^{0}\right) \rho\left(-k^{2}\right) \\
\rho(s)=\rho_{1}(s)+\rho_{2}(s)+\ldots
\end{gathered}
$$

$$
\mathcal{F}_{2}(s)=-\frac{g^{*} \mathcal{F}_{1}^{*}}{s-m^{2}}+\ldots
$$

analytic function in cut plane $s \geq 4 m^{2}$

$$
\delta\left(s-m^{2}\right)
$$

$$
\theta\left(s-4 m^{2}\right)
$$

with this setup, one can ask questions relating UV and IR
$1+1 \mathrm{~d}$, trace of stress tensor: $\quad \Theta(z, \bar{z}) \equiv 4 T_{z \bar{z}}(z, \bar{z})$

$$
\begin{gathered}
c_{U V}-c_{I R}=(2 \pi)^{2} \times \frac{3}{4 \pi} \int d^{2} x_{E} x_{E}^{2}\langle 0| \Theta\left(x_{E}\right) \Theta(0)|0\rangle_{T} \quad \text { massive IR } \quad c_{I R}=0 \\
c_{U V}=(2 \pi)^{2} \times \frac{3}{\pi} \int_{0}^{\infty} d s \frac{\rho_{\Theta}(s)}{s^{2}}
\end{gathered}
$$

with this setup, one can ask questions relating UV and IR
$1+1 \mathrm{~d}$, trace of stress tensor: $\quad \Theta(z, \bar{z}) \equiv 4 T_{z \bar{z}}(z, \bar{z})$

$$
\begin{gathered}
c_{U V}-c_{I R}=(2 \pi)^{2} \times \frac{3}{4 \pi} \int d^{2} x_{E} x_{E}^{2}\langle 0| \Theta\left(x_{E}\right) \Theta(0)|0\rangle_{T} \quad \text { massive IR } \quad c_{I R}=0 \\
c_{U V}=(2 \pi)^{2} \times \frac{3}{\pi} \int_{0}^{\infty} d s \frac{\rho_{\Theta}(s)}{s^{2}}
\end{gathered}
$$

given spectrum and couplings of a IR massive QFT, minimal central charge in the UV?
with this setup, one can ask questions relating UV and IR
1+1d, trace of stress tensor: $\quad \Theta(z, \bar{z}) \equiv 4 T_{z \bar{z}}(z, \bar{z})$

$$
\begin{gathered}
c_{U V}-c_{I R}=(2 \pi)^{2} \times \frac{3}{4 \pi} \int d^{2} x_{E} x_{E}^{2}\langle 0| \Theta\left(x_{E}\right) \Theta(0)|0\rangle_{T} \quad \text { massive IR } \quad c_{I R}=0 \\
c_{U V}=(2 \pi)^{2} \times \frac{3}{\pi} \int_{0}^{\infty} d s \frac{\rho_{\Theta}(s)}{s^{2}}
\end{gathered}
$$

given spectrum and couplings of a IR massive QFT, minimal central charge in the UV?
e.g. single flavor no bound states in 1+1d

Explorations in Ising Field Theory

[Correia, Penedones, Vuignier, 2022]

IFT: 2d Ising model near critical point: magnetic deformation
fix $\quad c_{U V}=1 / 2$

Explorations in Ising Field Theory

[Correia, Penedones, Vuignier, 2022]

IFT: 2d Ising model near critical point: magnetic deformation
fix $\quad c_{U V}=1 / 2 \quad$ consider the regime with one stable particle with cubic self-interaction (pole)
$T(s)=-\frac{g^{2}}{s-m^{2}}+\ldots \quad \mathcal{F}(s)=-\frac{\mathcal{F}_{1}^{\Theta} g}{s-m^{2}}+\ldots$
$S\left(m^{2}(1-x)\right)=0 \quad$ related to strength of magnetic field tune the location of the zero X

Explorations in Ising Field Theory

[Correia, Penedones, Vuignier, 2022]

IFT: 2d Ising model near critical point: magnetic deformation
fix $\quad c_{U V}=1 / 2 \quad$ consider the regime with one stable particle with cubic self-interaction (pole)
$T(s)=-\frac{g^{2}}{s-m^{2}}+\ldots \quad \mathcal{F}(s)=-\frac{\mathcal{F}_{1}^{\Theta} g}{s-m^{2}}+\ldots$
$S\left(m^{2}(1-x)\right)=0 \quad$ related to strength of magnetic field tune the location of the zero X

Explorations in Ising Field Theory

[Correia, Penedones, Vuignier, 2022]

IFT: 2d Ising model near critical point: magnetic deformation
fix $\quad c_{U V}=1 / 2 \quad$ consider the regime with one stable particle with cubic self-interaction (pole)
$T(s)=-\frac{g^{2}}{s-m^{2}}+\ldots \quad \mathcal{F}(s)=-\frac{\mathcal{F}_{1}^{\Theta} g}{s-m^{2}}+\ldots$

$$
S\left(m^{2}(1-x)\right)=0 \quad \text { related to strength of magnetic field }
$$ tune the location of the zero X

Bootstrap with Hamiltonian truncation data

[Chen, Fitzpatrick, Karateev, 2021]
isolate a specific theory, instead of constructing generic bounds
massive QFT = UV CFT + relevant deformation
compute observables along the RG from truncated Hilbert space

Bootstrap with Hamiltonian truncation data

[Chen, Fitzpatrick, Karateev, 2021]
isolate a specific theory, instead of constructing generic bounds

> massive QFT = UV CFT + relevant deformation
compute observables along the RG from truncated Hilbert space
data from Hamiltonian truncation:

$$
\begin{array}{ccc}
\text { spectral density } & s \in\left[4 m^{2}, s_{\max }\right]: & \rho_{\Theta}^{\mathrm{LCT}}(s) \\
\text { form factor } & s \in\left[s_{\min }, 0\right]: & \mathcal{F}_{2}^{\Theta \mathrm{LCT}}(s)
\end{array}
$$

Bootstrap with Hamiltonian truncation data

[Chen, Fitzpatrick, Karateev, 2021]

isolate a specific theory, instead of constructing generic bounds
massive QFT = UV CFT + relevant deformation
compute observables along the RG from truncated Hilbert space
data from Hamiltonian truncation:

$$
\text { spectral density } \quad s \in\left[4 m^{2}, s_{\max }\right]: \quad \rho_{\Theta}^{\mathrm{LCT}}(s)
$$

form factor

$$
s \in\left[s_{\min }, 0\right]:
$$

$$
\mathcal{F}_{2}^{\Theta \mathrm{LCT}}(s)
$$

input

S-matrix/form-factor bootstrap: $\left.\quad\left(\begin{array}{cc}1 & \mathcal{S}^{*} \\ \mathcal{S} & 1\end{array}\right) \succeq 0 \begin{array}{ccc}1 & \mathcal{S}^{*} & \mathcal{F}_{2}^{* \Theta} \\ \mathcal{S} & 1 & \mathcal{F}_{2}^{\Theta} \\ \mathcal{F}_{2}^{\Theta} & \mathcal{F}_{2}^{* \Theta} & { }_{2}\end{array}\right) \succeq 0$
$2 \mathrm{~d} \phi^{4}$

— $\bar{\lambda}=1$ — $\bar{\lambda}=10$
— $\bar{\lambda}=3 \quad$ - $\bar{\lambda}=11$
—— $\bar{\lambda}=6 \quad$ - $\bar{\lambda}=12$
— $\bar{\lambda}=7 \quad$ - $\bar{\lambda}=13$

- $\bar{\lambda}=8 \quad-\bar{\lambda}=16$
- $\bar{\lambda}=9 \quad$ - $\bar{\lambda}=18$
--- $\bar{\lambda}=1$ perturbative
.... 2d Ising deformation

Massless scattering

[Elias Miro, Guerrieri, Hebbar, Penedones, Vieira, 2019]

Massless scattering

Other related approaches

- scattering from production: [Tourkine, Zhiboedov, 2021 \& 2023]

Atkinson's method to construct amplitudes satisfying
analyticity+crossing+unitarity(elastic+inelastic+multiparticle) from production input

Other related approaches

- scattering from production: [Tourkine, Zhiboedov, 2021 \& 2023]

Atkinson's method to construct amplitudes satisfying
analyticity+crossing+unitarity(elastic+inelastic+multiparticle) from production input

Other related approaches

- scattering from production: [Tourkine, Zhiboedov, 2021 \& 2023]

Atkinson's method to construct amplitudes satisfying
analyticity+crossing+unitarity(elastic+inelastic+multiparticle) from production input

- EFT bootstrap: bounding Wilson coefficients with positivity - a dual approach

Thank you!

