

IIA strings on a local Calabi-Yau 3-fold

IIA strings on X a compact CY_3	\Longrightarrow 4d $\mathcal{N}=$ 2 SUGRA
D6-D4-D2-D0 bound states	\Longrightarrow BPS black holes
IIA strings on X a non-compact $CY_3 \Longrightarrow 4d \mathcal{N} = 2 QFT$	
D4-D2-D0 bound states	\Longrightarrow BPS particles
	saturating Mass $\geq Z $
	(where $\{Q^1_lpha,Q^2_eta\}=2Z\epsilon_{lphaeta}$)

IIA strings on a local Calabi-Yau 3-fold

```
IIA strings on X a compact CY_3 \Longrightarrow 4d \mathcal{N}=2 SUGRA \Longrightarrow BPS black holes

IIA strings on X a non-compact CY_3 \Longrightarrow 4d \mathcal{N}=2 QFT D4-D2-D0 bound states \Longrightarrow BPS particles saturating Mass \geq |Z| (where \{Q^1_\alpha,Q^2_\beta\}=2Z\epsilon_{\alpha\beta})
```

IIA strings on a local Calabi-Yau 3-fold

```
IIA strings on X a compact CY_3 \Longrightarrow 4d \mathcal{N}=2 SUGRA \Longrightarrow BPS black holes

IIA strings on X a non-compact CY_3 \Longrightarrow 4d \mathcal{N}=2 QFT D4-D2-D0 bound states \Longrightarrow BPS particles saturating Mass \geq |Z| (where \{Q_{\alpha}^1, Q_{\beta}^2\} = 2Z\epsilon_{\alpha\beta})
```

More precisely

IIA strings on X

 \iff M-theory on $X \times S^1$

 \Longrightarrow 5d $\mathcal{N}=1$ SCFT on \mathcal{S}^1 (keeping KK modes)

Behaves like a 4d $\mathcal{N}=2$ Seiberg–Witten theory with an infinite spectrum

IIA strings on a local Calabi–Yau 3-fold

Goal: $\Omega_{\tau}(\gamma)$ counting BPS states of charge γ (weighted by γ^{J_3}) for every value of τ (Kähler moduli of X)

- known in some limits
 Kontsevich–Soibelman
 follow attractor flow to cross walls wall crossing when varying au

New: fully doing it for the simplest $X = K\mathbb{P}^2$ (canonical bundle on \mathbb{P}^2) Ideas should generalize to local del Pezzo

- Split attractor flow conjecture and dendroscopy
- 5 Initial data and orbifold region
- $\ensuremath{\mathbf{6}}$ Scattering diagrams for all values of ψ

Local \mathbb{P}^2 moduli space

Kähler moduli space $\mathcal{M}_{\kappa} = \mathbb{H}/\Gamma_1(3)$

$$\dim_{\mathbb{C}}\mathcal{M}_{\mathcal{K}}=1$$

- Large volume point (cusp): geometric phase, \mathbb{P}^2 large BPS particle = Gieseker stable sheaf (complicated)
- Orbifold point: $K\mathbb{P}^2 o \mathbb{C}^3/\mathbb{Z}_3$ limit BPS particle = stable representation of a quiver

• Conifold point (cusp): no easy description

Local \mathbb{P}^2 charges

Electromagnetic charge $\gamma = [r, d, \chi) = [r, d, \operatorname{ch}_2]$

(Chern vector of homology class wrapped by D-branes)

- $oldsymbol{\circ} \gamma = [1,0,1) \; \mathsf{D4} \; \mathsf{brane} \; \mathcal{O} \; (\mathsf{structure} \; \mathsf{sheaf} \; \mathsf{of} \; \mathbb{P}^2)$
- ullet $\gamma=[0,1,1)$ D2 brane $\mathcal{O}_{\mathcal{C}}$ (structure sheaf of curve $\mathcal{C}\subset\mathbb{P}^2$)
- $oldsymbol{\circ} \gamma = [0,0,1) \; \mathsf{D0} \; \mathsf{brane} \; (\mathsf{skyscraper} \; \mathsf{sheaf} \; \mathsf{at} \; \mathsf{point} \; \mathsf{of} \; \mathbb{P}^2)$

Central charge $Z_{\tau}([r,d,\operatorname{ch}_2]) = -rT_D(\tau) + dT(\tau) - \operatorname{ch}_2$

Picard-Fuchs equation (from susy localization or mirror symmetry) gives

$$\begin{pmatrix} T \\ T_D \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{3} \end{pmatrix} + \int_{T_0}^{\tau} \begin{pmatrix} 1 \\ u \end{pmatrix} \frac{\eta(u)^9}{\eta(3u)^3} du \qquad \text{on } \mathbb{H}/\Gamma_1(3), \text{ useful numerically}$$

Local \mathbb{P}^2 example: the small-volume fate of D2 branes

- At large volume D2 brane wraps hyperplane class in \mathbb{P}^2
- Below each wall of marginal stability it becomes unstable and splits. E.g., for the middle wall it splits as D4 and anti-D4 (with D2 flux) The wall is the locus where Z_{D2} , Z_{D4} , $Z_{\overline{D4}(-1)}$ have equal phases

May 25, 2023, Annecy

How to compute $\Omega_{\tau}(\gamma)$? Universal wall-crossing

 $\Omega_{\tau}(\gamma)$ is piecewise constant and jumps across walls of marginal stability $W(\gamma_1, \gamma_2)$ of codim_{\mathbb{R}} = 1, where arg $Z(\gamma_1) = \arg Z(\gamma_2)$ and $\gamma = \gamma_1 + \gamma_2$ [Denef Moore '07, Manschot Pioline Sen '11]

BPS dendroscopy on local \mathbb{P}^2

Jump governed by universal wall-crossing formula

[Kontsevich Soibelman '08, Joyce Song '08]

How to compute $\Omega_{\tau}(\gamma)$? Universal wall-crossing

 $\Omega_{\tau}(\gamma)$ is piecewise constant and jumps across walls of marginal stability $W(\gamma_1, \gamma_2)$ of codim_R = 1, where arg $Z(\gamma_1) = \arg Z(\gamma_2)$ and $\gamma = \gamma_1 + \gamma_2$ [Denef Moore '07, Manschot Pioline Sen '11]

Jump governed by universal wall-crossing formula

[Kontsevich Soibelman '08, Joyce Song '08]

- For 4d $\mathcal{N}=2$ Seiberg–Witten theories, often finitely many walls
- ullet For IIA on $K\mathbb{P}^2$, dense set of walls but finitely many for a fixed γ \implies to depict everything, pick a phase ψ and track only states with

$$Z_{\tau}(\gamma)\in\mathrm{i}e^{\mathrm{i}\psi}(0,+\infty)$$

How to compute $\Omega_{\tau}(\gamma)$? Universal wall-crossing

 $\Omega_{\tau}(\gamma)$ is piecewise constant and jumps across walls of marginal stability $W(\gamma_1, \gamma_2)$ of codim_R = 1, where arg $Z(\gamma_1) = \arg Z(\gamma_2)$ and $\gamma = \gamma_1 + \gamma_2$ [Denef Moore '07, Manschot Pioline Sen '11]

Jump governed by universal wall-crossing formula

[Kontsevich Soibelman '08, Joyce Song '08]

- For 4d $\mathcal{N}=2$ Seiberg–Witten theories, often finitely many walls
- ullet For IIA on $K\mathbb{P}^2$, dense set of walls but finitely many for a fixed γ \implies to depict everything, pick a phase ψ and track only states with

$$Z_{ au}(\gamma)\in\mathrm{i}e^{\mathrm{i}\psi}(0,+\infty)$$

⇒ diagrams like

Definition [Kontsevich-Soibelman 2006, Gross-Siebert 2011, Bridgeland 2016

Scattering diagram \mathcal{D}_{ψ} :

- ullet codim $_{\mathbb{R}}$ -1 rays $\mathcal{R}_{\psi}(\gamma)=\{ au\mid Z_{ au}(\gamma)\in \mathrm{i} e^{\mathrm{i} \psi}(0,+\infty),\ ar{\Omega}_{ au}(\gamma)
 eq 0\}$
- equipped with $\mathcal{U}_{\tau}(\gamma) = \exp(\bar{\Omega}_{\tau}(\gamma)\mathcal{X}_{\gamma}/(y^{-1}-y))$ formal variables $\mathcal{X}_0 = 1$ and $\mathcal{X}_{\gamma}\,\mathcal{X}_{\gamma'} = (-y)^{\langle \gamma,\gamma' \rangle}\mathcal{X}_{\gamma+\gamma'}$

Wall-crossing
$$\iff$$
 consistency $\prod_{\text{rays around } \tau}^{\curvearrowleft} \mathcal{U}(\gamma)^{\pm 1} = 1$

13 / 24

Definition [Kontsevich-Soibelman 2006, Gross-Siebert 2011, Bridgeland 2016

- $\operatorname{codim}_{\mathbb{R}}$ -1 rays $\mathcal{R}_{\psi}(\gamma) = \{ \tau \mid Z_{\tau}(\gamma) \in \operatorname{i}\! e^{\mathrm{i}\psi}(0,+\infty), \ \bar{\Omega}_{\tau}(\gamma) \neq 0 \}$
- equipped with $\mathcal{U}_{\tau}(\gamma) = \exp(\bar{\Omega}_{\tau}(\gamma)\mathcal{X}_{\gamma}/(y^{-1}-y))$ formal variables $\mathcal{X}_0 = 1$ and $\mathcal{X}_{\gamma}\,\mathcal{X}_{\gamma'} = (-y)^{\langle \gamma,\gamma' \rangle}\mathcal{X}_{\gamma+\gamma'}$

Wall-crossing
$$\iff$$
 consistency $\prod_{\text{rays around } \tau}^{\curvearrowleft} \mathcal{U}(\gamma)^{\pm 1} = 1$

Definition [Kontsevich-Soibelman 2006, Gross-Siebert 2011, Bridgeland 2016

- $\operatorname{codim}_{\mathbb{R}}$ -1 rays $\mathcal{R}_{\psi}(\gamma) = \{ \tau \mid Z_{\tau}(\gamma) \in \operatorname{i}\! e^{\mathrm{i}\psi}(0,+\infty), \ \bar{\Omega}_{\tau}(\gamma) \neq 0 \}$
- equipped with $\mathcal{U}_{\tau}(\gamma) = \exp(\bar{\Omega}_{\tau}(\gamma)\mathcal{X}_{\gamma}/(y^{-1}-y))$ formal variables $\mathcal{X}_0 = 1$ and $\mathcal{X}_{\gamma}\,\mathcal{X}_{\gamma'} = (-y)^{\langle \gamma,\gamma' \rangle}\mathcal{X}_{\gamma+\gamma'}$

Wall-crossing
$$\iff$$
 consistency $\prod_{\text{rays around } \tau}^{\curvearrowleft} \mathcal{U}(\gamma)^{\pm 1} = 1$

Definition [Kontsevich-Soibelman 2006, Gross-Siebert 2011, Bridgeland 2016

- ullet codim $_{\mathbb{R}}$ -1 rays $\mathcal{R}_{\psi}(\gamma)=\left\{ au\mid Z_{ au}(\gamma)\in \mathrm{i} e^{\mathrm{i} \psi}(0,+\infty),\ ar{\Omega}_{ au}(\gamma)
 eq 0
 ight\}$
- equipped with $\mathcal{U}_{\tau}(\gamma) = \exp(\bar{\Omega}_{\tau}(\gamma)\mathcal{X}_{\gamma}/(y^{-1}-y))$ formal variables $\mathcal{X}_0 = 1$ and $\mathcal{X}_{\gamma}\,\mathcal{X}_{\gamma'} = (-y)^{\langle \gamma,\gamma' \rangle}\mathcal{X}_{\gamma+\gamma'}$

Wall-crossing
$$\iff$$
 consistency $\prod_{\text{rays around } \tau}^{\curvearrowleft} \mathcal{U}(\gamma)^{\pm 1} = 1$

Definition [Kontsevich-Soibelman 2006, Gross-Siebert 2011, Bridgeland 2016

- ullet codim $_{\mathbb{R}}$ -1 rays $\mathcal{R}_{\psi}(\gamma)=\left\{ au\mid Z_{ au}(\gamma)\in \mathrm{i} e^{\mathrm{i} \psi}(0,+\infty),\ ar{\Omega}_{ au}(\gamma)
 eq 0
 ight\}$
- equipped with $\mathcal{U}_{\tau}(\gamma) = \exp(\bar{\Omega}_{\tau}(\gamma)\mathcal{X}_{\gamma}/(y^{-1}-y))$ formal variables $\mathcal{X}_0 = 1$ and $\mathcal{X}_{\gamma}\,\mathcal{X}_{\gamma'} = (-y)^{\langle \gamma,\gamma' \rangle}\mathcal{X}_{\gamma+\gamma'}$

Wall-crossing
$$\iff$$
 consistency $\prod_{\text{rays around } \tau}^{\curvearrowleft} \mathcal{U}(\gamma)^{\pm 1} = 1$

Definition [Kontsevich-Soibelman 2006, Gross-Siebert 2011, Bridgeland 2016

- ullet codim $_{\mathbb{R}}$ -1 rays $\mathcal{R}_{\psi}(\gamma)=\left\{ au\mid Z_{ au}(\gamma)\in \mathrm{i} e^{\mathrm{i} \psi}(0,+\infty),\ ar{\Omega}_{ au}(\gamma)
 eq 0
 ight\}$
- equipped with $\mathcal{U}_{\tau}(\gamma) = \exp(\bar{\Omega}_{\tau}(\gamma)\mathcal{X}_{\gamma}/(y^{-1}-y))$ formal variables $\mathcal{X}_0 = 1$ and $\mathcal{X}_{\gamma}\,\mathcal{X}_{\gamma'} = (-y)^{\langle \gamma,\gamma' \rangle}\mathcal{X}_{\gamma+\gamma'}$

Wall-crossing
$$\iff$$
 consistency $\prod\limits_{\mathsf{rays\ around\ }\tau}^{\curvearrowleft} \mathcal{U}(\gamma)^{\pm 1} = 1$

Definition [Kontsevich-Soibelman 2006, Gross-Siebert 2011, Bridgeland 2016

Scattering diagram \mathcal{D}_{ψ} :

- ullet codim $_{\mathbb{R}}$ -1 rays $\mathcal{R}_{\psi}(\gamma)=\left\{ au\mid Z_{ au}(\gamma)\in \mathrm{i} e^{\mathrm{i} \psi}(0,+\infty),\ ar{\Omega}_{ au}(\gamma)
 eq 0
 ight\}$
- equipped with $\mathcal{U}_{\tau}(\gamma) = \exp(\bar{\Omega}_{\tau}(\gamma)\mathcal{X}_{\gamma}/(y^{-1}-y))$ formal variables $\mathcal{X}_0 = 1$ and $\mathcal{X}_{\gamma}\,\mathcal{X}_{\gamma'} = (-y)^{\langle \gamma,\gamma' \rangle}\mathcal{X}_{\gamma+\gamma'}$

Wall-crossing
$$\iff$$
 consistency $\prod\limits_{\mathsf{rays\ around\ }\tau}^{\curvearrowleft} \mathcal{U}(\gamma)^{\pm 1} = 1$

13 / 24

Definition [Kontsevich-Soibelman 2006, Gross-Siebert 2011, Bridgeland 2016

- ullet codim $_{\mathbb{R}}$ -1 rays $\mathcal{R}_{\psi}(\gamma)=\left\{ au\mid Z_{ au}(\gamma)\in \mathrm{i} e^{\mathrm{i} \psi}(0,+\infty),\ ar{\Omega}_{ au}(\gamma)
 eq 0
 ight\}$
- equipped with $\mathcal{U}_{\tau}(\gamma) = \exp(\bar{\Omega}_{\tau}(\gamma)\mathcal{X}_{\gamma}/(y^{-1}-y))$ formal variables $\mathcal{X}_0 = 1$ and $\mathcal{X}_{\gamma}\,\mathcal{X}_{\gamma'} = (-y)^{\langle \gamma,\gamma' \rangle}\mathcal{X}_{\gamma+\gamma'}$

Wall-crossing
$$\iff$$
 consistency $\prod\limits_{\mathsf{rays\ around\ }\tau}^{\curvearrowleft} \mathcal{U}(\gamma)^{\pm 1} = 1$

Definition [Kontsevich-Soibelman 2006, Gross-Siebert 2011, Bridgeland 2016

- ullet codim $_{\mathbb{R}}$ -1 rays $\mathcal{R}_{\psi}(\gamma)=\left\{ au\mid Z_{ au}(\gamma)\in \mathrm{i} e^{\mathrm{i} \psi}(0,+\infty),\ ar{\Omega}_{ au}(\gamma)
 eq 0
 ight\}$
- equipped with $\mathcal{U}_{\tau}(\gamma) = \exp(\bar{\Omega}_{\tau}(\gamma)\mathcal{X}_{\gamma}/(y^{-1}-y))$ formal variables $\mathcal{X}_0 = 1$ and $\mathcal{X}_{\gamma}\,\mathcal{X}_{\gamma'} = (-y)^{\langle \gamma,\gamma' \rangle}\mathcal{X}_{\gamma+\gamma'}$

Wall-crossing
$$\iff$$
 consistency $\prod_{\text{rays around } \tau}^{\curvearrowleft} \mathcal{U}(\gamma)^{\pm 1} = 1$

Definition [Kontsevich-Soibelman 2006, Gross-Siebert 2011, Bridgeland 2016

- ullet codim $_{\mathbb{R}}$ -1 rays $\mathcal{R}_{\psi}(\gamma)=\left\{ au\mid Z_{ au}(\gamma)\in \mathrm{i} e^{\mathrm{i} \psi}(0,+\infty),\ ar{\Omega}_{ au}(\gamma)
 eq 0
 ight\}$
- equipped with $\mathcal{U}_{\tau}(\gamma) = \exp(\bar{\Omega}_{\tau}(\gamma)\mathcal{X}_{\gamma}/(y^{-1}-y))$ formal variables $\mathcal{X}_0 = 1$ and $\mathcal{X}_{\gamma}\,\mathcal{X}_{\gamma'} = (-y)^{\langle \gamma,\gamma' \rangle}\mathcal{X}_{\gamma+\gamma'}$

Wall-crossing
$$\iff$$
 consistency $\prod\limits_{\mathsf{rays\ around\ }\tau}^{\curvearrowleft} \mathcal{U}(\gamma)^{\pm 1} = 1$

Definition [Kontsevich-Soibelman 2006, Gross-Siebert 2011, Bridgeland 2016

- ullet codim $_{\mathbb{R}}$ -1 rays $\mathcal{R}_{\psi}(\gamma)=\left\{ au\mid Z_{ au}(\gamma)\in \mathrm{i} e^{\mathrm{i} \psi}(0,+\infty),\ ar{\Omega}_{ au}(\gamma)
 eq 0
 ight\}$
- equipped with $\mathcal{U}_{\tau}(\gamma) = \exp(\bar{\Omega}_{\tau}(\gamma)\mathcal{X}_{\gamma}/(y^{-1}-y))$ formal variables $\mathcal{X}_0 = 1$ and $\mathcal{X}_{\gamma}\,\mathcal{X}_{\gamma'} = (-y)^{\langle \gamma,\gamma' \rangle}\mathcal{X}_{\gamma+\gamma'}$

Wall-crossing
$$\iff$$
 consistency $\prod\limits_{\mathsf{rays\ around\ }\tau}^{\curvearrowleft} \mathcal{U}(\gamma)^{\pm 1} = 1$

Definition [Kontsevich-Soibelman 2006, Gross-Siebert 2011, Bridgeland 2016

- ullet codim $_{\mathbb{R}}$ -1 rays $\mathcal{R}_{\psi}(\gamma)=\left\{ au\mid Z_{ au}(\gamma)\in \mathrm{i} e^{\mathrm{i} \psi}(0,+\infty),\ ar{\Omega}_{ au}(\gamma)
 eq 0
 ight\}$
- equipped with $\mathcal{U}_{\tau}(\gamma) = \exp(\bar{\Omega}_{\tau}(\gamma)\mathcal{X}_{\gamma}/(y^{-1}-y))$ formal variables $\mathcal{X}_0 = 1$ and $\mathcal{X}_{\gamma}\,\mathcal{X}_{\gamma'} = (-y)^{\langle \gamma,\gamma' \rangle}\mathcal{X}_{\gamma+\gamma'}$

Wall-crossing
$$\iff$$
 consistency $\prod_{\text{rays around } \tau}^{\curvearrowleft} \mathcal{U}(\gamma)^{\pm 1} = 1$

Definition [Kontsevich-Soibelman 2006, Gross-Siebert 2011, Bridgeland 2016

- ullet codim $_{\mathbb{R}}$ -1 rays $\mathcal{R}_{\psi}(\gamma)=\left\{ au\mid Z_{ au}(\gamma)\in \mathrm{i} e^{\mathrm{i} \psi}(0,+\infty),\ ar{\Omega}_{ au}(\gamma)
 eq 0
 ight\}$
- equipped with $\mathcal{U}_{\tau}(\gamma) = \exp(\bar{\Omega}_{\tau}(\gamma)\mathcal{X}_{\gamma}/(y^{-1}-y))$ formal variables $\mathcal{X}_0 = 1$ and $\mathcal{X}_{\gamma}\,\mathcal{X}_{\gamma'} = (-y)^{\langle \gamma,\gamma' \rangle}\mathcal{X}_{\gamma+\gamma'}$

Wall-crossing
$$\iff$$
 consistency $\prod\limits_{\mathsf{rays\ around\ }\tau}^{\curvearrowleft} \mathcal{U}(\gamma)^{\pm 1} = 1$

Definition [Kontsevich-Soibelman 2006, Gross-Siebert 2011, Bridgeland 2016

Scattering diagram \mathcal{D}_{ψ} :

- $\operatorname{codim}_{\mathbb{R}}$ -1 rays $\mathcal{R}_{\psi}(\gamma) = \{ \tau \mid Z_{\tau}(\gamma) \in \operatorname{i}\! e^{\mathrm{i}\psi}(0,+\infty), \ \bar{\Omega}_{\tau}(\gamma) \neq 0 \}$
- equipped with $\mathcal{U}_{\tau}(\gamma) = \exp(\bar{\Omega}_{\tau}(\gamma)\mathcal{X}_{\gamma}/(y^{-1}-y))$ formal variables $\mathcal{X}_0 = 1$ and $\mathcal{X}_{\gamma}\,\mathcal{X}_{\gamma'} = (-y)^{\langle \gamma,\gamma' \rangle}\mathcal{X}_{\gamma+\gamma'}$

Wall-crossing
$$\iff$$
 consistency $\prod\limits_{\mathrm{rays\ around\ }\tau}^{\curvearrowleft}\mathcal{U}(\gamma)^{\pm 1}=1$

Convergence hard due to dense rays! Use a cutoff function

$$\varphi_{\tau}(\gamma) = d - r x(\tau)$$

To compute a single $\Omega_{\tau}(\gamma)$, simpler approach: attractor flows

Attractor flow

In principle, to compute one $\Omega_{\tau}(\gamma)$, move along the moduli space towards simpler points, deal with wall-crossing. Need to pick path, find walls

Attractor flow

In principle, to compute one $\Omega_{\tau}(\gamma)$, move along the moduli space towards simpler points, deal with wall-crossing. Need to pick path, find walls

Attractor flow in Kähler moduli space \mathcal{M}_K , for a charge γ

[Ferrara-Kallosh-Strominger '95]

$$\frac{\mathrm{d}z^{i}}{\mathrm{d}u} = -g^{i\bar{j}}\partial_{\bar{j}}|Z_{z}(\gamma)|^{2}$$

Attractor flow

In principle, to compute one $\Omega_{\tau}(\gamma)$, move along the moduli space towards simpler points, deal with wall-crossing. Need to pick path, find walls

Attractor flow in Kähler moduli space \mathcal{M}_K , for a charge γ

[Ferrara-Kallosh-Strominger '95]

$$\frac{\mathrm{d}z^i}{\mathrm{d}\mu} = -\mathbf{g}^{ij}\partial_j \|\overline{Z_z(\gamma)}\|^2$$
 • Kähler potential $K_K = -\log Z_{S^2}[\mathrm{GLSM}$ with target $X]$

- Central charge of D-branes $Z_z(\gamma) = Z_{\text{hemi-}S^2}[\text{GLSM}, \text{brane}]$

Attractor flow

In principle, to compute one $\Omega_{ au}(\gamma)$, move along the moduli space towards simpler points, deal with wall-crossing. Need to pick path, find walls

Attractor flow in Kähler moduli space \mathcal{M}_K , for a charge γ

[Ferrara-Kallosh-Strominger '95]

$$\frac{\mathrm{d}z^i}{\mathrm{d}\mu} = -\mathbf{g}^{i\bar{j}}\partial_{\bar{j}} |\overline{Z_z(\gamma)}|^2$$
 • Kähler potential $K_K = -\log Z_{S^2}[\mathrm{GLSM}$ with target $X]$

- Central charge of D-branes $Z_z(\gamma) = Z_{\text{hemi-} S^2}[\text{GLSM}, \text{brane}]$

For non-compact X, $Z_z(\gamma)$ is holomorphic in z so

$$\frac{\mathrm{d} Z_z(\gamma)}{\mathrm{d} u} = -g^{i\bar{j}} \partial_i Z_z(\gamma) \partial_{\bar{j}} |Z_z(\gamma)|^2 = -|\partial Z_z(\gamma)|^2 Z_z(\gamma)$$

hence $Z_z(\gamma)$ keeps a **constant phase** and **decreasing norm**

Along the attractor flow of $Z(\gamma)$, when crossing wall $W(\gamma_1, \gamma_2)$,

- $\Omega_z(\gamma)$ jumps by a combination of $\Omega_z(k\gamma_1)$ and $\Omega_z(l\gamma_2)$, $k,l \geq 1$
- the rational DT invariant

$$ar{\Omega}_{z}(\gamma) := \sum_{m|\gamma} rac{y-y^{-1}}{m(y^m-y^{-m})} \Omega_{z}(\gamma/m)|_{y o y^m}$$

jumps by $(coef)\bar{\Omega}_z(\gamma_1)\bar{\Omega}_z(\gamma_2)$, studied in turn using the attractor flow

Along the attractor flow of $Z(\gamma)$, when crossing wall $W(\gamma_1, \gamma_2)$,

- $\Omega_z(\gamma)$ jumps by a combination of $\Omega_z(k\gamma_1)$ and $\Omega_z(l\gamma_2)$, $k,l \geq 1$
- the rational DT invariant

$$ar{\Omega}_z(\gamma) := \sum_{m|\gamma} rac{y-y^{-1}}{m(y^m-y^{-m})} \Omega_z(\gamma/m)|_{y o y^m}$$

jumps by $(coef)\bar{\Omega}_z(\gamma_1)\bar{\Omega}_z(\gamma_2)$, studied in turn using the attractor flow

Examples in local \mathbb{P}^2 :

Split Attractor Flow Formula

$$ar{\Omega}_z(\gamma) = \sum_{ ext{tree that splits } \gamma = \gamma_1 + \dots + \gamma_n} (ext{combinatorics}) \prod_{i=1}^n ar{\Omega}_{z_i}(\gamma_i)$$

Sum over attractor flow trees rooted at z and ending at attractor points z_i where $Z_{z_i}(\gamma_i) = 0$.

Split Attractor Flow Formula

$$ar{\Omega}_z(\gamma) = \sum_{ ext{tree that splits } \gamma = \gamma_1 + \dots + \gamma_n} (ext{combinatorics}) \prod_{i=1}^n ar{\Omega}_{z_i}(\gamma_i)$$

Sum over attractor flow trees rooted at z and ending at attractor points z_i where $Z_{z_i}(\gamma_i) = 0$. Conjecture: the sum is finite

we proved it for local \mathbb{P}^2

Split Attractor Flow Formula

$$ar{\Omega}_{z}(\gamma) = \sum_{ ext{tree that splits } \gamma = \gamma_1 + \dots + \gamma_n} (ext{combinatorics}) \prod_{i=1}^n ar{\Omega}_{z_i}(\gamma_i)$$

Sum over attractor flow trees rooted at z and ending at attractor points z_i where $Z_{z_i}(\gamma_i) = 0$. Conjecture: the sum is finite

we proved it for local \mathbb{P}^2

Remark: attractor flow trees \subset scattering diagram (all Z(...) same phase)

Quiver description near the orbifold point

 \mathbb{KP}^2 is a resolution of the orbifold $\mathbb{C}^3/\mathbb{Z}_3$

- $K\mathbb{P}^2 \to \mathsf{Higgs}$ branch
- Kähler parameters of $K\mathbb{P}^2 \to \mathsf{Fayet}$ -Iliopoulos parameters θ
- $\Omega_{\tau}(\gamma) = \#\{\text{BPS states of charge } \gamma = n_1\gamma_1 + n_2\gamma_2 + n_3\gamma_3\}$ = index of world-volume theory of n_i fractional D0 branes (counts stable representations)

Quiver description near the orbifold point

 \mathbb{KP}^2 is a resolution of the orbifold $\mathbb{C}^3/\mathbb{Z}_3$

- $K\mathbb{P}^2 \to \mathsf{Higgs}$ branch
- Kähler parameters of $K\mathbb{P}^2 \to \mathsf{Fayet}$ -lliopoulos parameters θ
- $\Omega_{\tau}(\gamma) = \#\{\text{BPS states of charge } \gamma = n_1\gamma_1 + n_2\gamma_2 + n_3\gamma_3\}$ = index of world-volume theory of n_i fractional D0 branes (counts stable representations)

Quiver representations have been very extensively studied

Theorem: consistent scattering diagram

[Bridgeland]

- Formula of $\Omega_{\theta}(\gamma)$ in terms of Ω_* complicated:
 - flow tree formula
 - operadic approach

[Alexandrov-Pioline, Argüz-Bousseau] [Mozgovoy]

• Theorem: split attractor flow conjecture true

[Bousseau-Argüz]

Scattering sequences for $\gamma = (n-1, n, n)$ corresponding to the Hilbert scheme of n points on \mathbb{P}^2 , with n = 1, 2, 3, 4

Side-note on first scattering: $\mathcal{R}(1,0,0)$ with $\mathcal{R}(0,1,0)$ gives $\mathcal{R}(n_1,n_2,0)$ with $\Omega(n_1,n_2,0)$ counting representations of dimension $(n_1,n_2,0)$, hence representations of the Kronecker quiver \circ — \Longrightarrow \circ

Region relevant for the exact diagram with ψ large

Region relevant for the exact diagram with ψ medium

Region relevant for the exact diagram with ψ small

Region relevant for the exact diagram with ψ tiny

Future directions

- Dendroscopy: moduli space, not just $\Omega_{\tau}(\gamma)$ (attractor trees \leftrightarrow strata in $\mathcal{M}_{\tau}(\gamma)$)
- Polynomial-time algorithm to compute $\Omega_{\tau}(\gamma)$ using memoization (exponentially-many trees with common subtrees)
- X = local del Pezzo surface $(\dim_{\mathbb{R}} = 1 \text{ attractor flows}) \subset (\text{codim}_{\mathbb{R}} = 1 \text{ scattering diagrams})$
- Add surface operators, relate to (exponential) spectral networks

Definition and integrality of refined DT invariants Relation with topological string partition function Modularity properties of generating series arXiv:2301.08066

Future directions

- Dendroscopy: moduli space, not just $\Omega_{\tau}(\gamma)$ (attractor trees \leftrightarrow strata in $\mathcal{M}_{\tau}(\gamma)$)
- Polynomial-time algorithm to compute $\Omega_{ au}(\gamma)$ using memoization (exponentially-many trees with common subtrees)

 Thorsten
- X = local del Pezzo surface $(\dim_{\mathbb{R}} = 1 \text{ attractor flows}) \subset (\text{codim}_{\mathbb{R}} = 1 \text{ scattering diagrams})$
- Add surface operators, relate to (exponential) spectral networks

Definition and integrality of refined DT invariants Relation with topological string partition function Modularity properties of generating series arXiv:2301.08066

M-theory on a local Calabi-Yau 3-fold

Take X = KS canonical bundle over a Fano 2-fold S

S	n _{params}	5d theory	Lagrangian description
	0		
dP ₈	9	E ₈ SCF I	UV limit of $SU(2)$ $N_f = 7$
:	:	:	:
dP_2	3		UV limit of $SU(2)$ $N_f=1$
$\mathbb{F}_0=\mathbb{P}^1 imes\mathbb{P}^1$	2	-	UV limit of pure $SU(2)$
$\mathbb{F}_1=dP_1$	2	$\widetilde{\it E}_{1}$ SCFT	UV limit of pure $SU(2)_\pi$
\mathbb{P}^2	1	E ₀ SCFT	

Dendroscopy for local \mathbb{P}^2 as we vary ψ beyond ± 0.824

Dendroscopy for local \mathbb{P}^2 as we vary ψ beyond ± 0.824

Split Attractor Flow Conjecture

The BPS index $\Omega_{\tau}(\gamma)$ for a given charge γ and moduli τ is a finite sum, over attractor flow trees rooted at τ and ending at "attractor points", of combinations of "attractor indices" $\Omega_*(\gamma_i)$ that count BPS states at these points.

Split Attractor Flow Conjecture

The BPS index $\Omega_{\tau}(\gamma)$ for a given charge γ and moduli τ is a finite sum, over attractor flow trees rooted at τ and ending at "attractor points", of combinations of "attractor indices" $\Omega_*(\gamma_i)$ that count BPS states at these points.

- 1a. By compactness, any split attractor flow must eventually end
- 1b. By $\tau \to \mathrm{i}\infty$ asymptotics it cannot end at large volume
- 1c. Ending at a conifold point is constrained using (3,3,3) and (3,3,6) quivers that cover the conifold neighborhood

Split Attractor Flow Conjecture

The BPS index $\Omega_{\tau}(\gamma)$ for a given charge γ and moduli τ is a finite sum, over attractor flow trees rooted at τ and ending at "attractor points", of combinations of "attractor indices" $\Omega_*(\gamma_i)$ that count BPS states at these points.

- 1a. By compactness, any split attractor flow must eventually end
- 1b. By $au
 ightarrow i\infty$ asymptotics it cannot end at large volume
- 1c. Ending at a conifold point is constrained using (3,3,3) and (3,3,6) quivers that cover the conifold neighborhood
- 2a. Piecewise potential φ : $\begin{cases} c(n_1 + n_2 + n_3) & \text{in orbifold region} \\ 2(d r \lfloor x \mathcal{V}_{\psi} \rfloor) & \text{in large volume region} \end{cases}$
- 2b. Check φ decreases along flow; $\varphi(\text{leaves}) \geq C > 0$

Split Attractor Flow Conjecture

The BPS index $\Omega_{\tau}(\gamma)$ for a given charge γ and moduli τ is a finite sum, over attractor flow trees rooted at τ and ending at "attractor points", of combinations of "attractor indices" $\Omega_*(\gamma_i)$ that count BPS states at these points.

- 1a. By compactness, any split attractor flow must eventually end
- 1b. By $au
 ightarrow i\infty$ asymptotics it cannot end at large volume
- 1c. Ending at a conifold point is constrained using (3,3,3) and (3,3,6) quivers that cover the conifold neighborhood
- 2a. Piecewise potential φ : $\begin{cases} c(n_1 + n_2 + n_3) & \text{in orbifold region} \\ 2(d r\lfloor x \mathcal{V}_{\psi} \rfloor) & \text{in large volume region} \end{cases}$
- 2b. Check φ decreases along flow; $\varphi(\text{leaves}) \geq C > 0$
- 3a. Geometry allows only some constituents to contribute to $\Omega_{ au}(\gamma)$
- 3b. Finite number of trees with given constituents