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Plan

1. Higher-spin (HS) fields
I The HS zoo: species, origins and natural habitats
I Metric-like formulation in flat space: constraints, equations

of motion, gauge symmetries

2. Anti-de Sitter (AdS) space embedded in flat ambient space
I Ambient-space description of the intrinsic AdS geometry
I Radial reduction of ambient-space fields

3. String-like BRST formulation in flat space
I Tensionless limit of the bosonic string
I “Triplet” formulation of HS fields

4. BRST-invariant inner product and codimension-one
Lagrangians
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Some higher-spin basics
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HS basics

HS fields naturally arise as generalisations of the lower-spin
particles of the Standard Model:

I spin-0 (scalar) particles (e.g., the Brout-Englert-Higgs
boson)

I spin-1
2 particles (e.g., electron, neutrino),

I spin-1 particles (e.g., photon, W±, Z-bosons),

as well as of hypothetical particles arising in (super-)gravity
theories:

I spin-3
2 gravitino,

I spin-2 graviton.

In particle experiments, short-living massive higher-spin
particles are observed as baryon resonances.
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HS basics

In the [hep-th] world, HS fields are encountered:

I in the spectrum of string theory.

For example, massless higher-spin fields arise in the
tensionless limit of the open bosonic string [Bengtsson,

Ouvry-Stern’86].

I in the AdS/CFT correspondence.

In particular, conserved currents of the O(N)-vector model
in a d-dimensional conformally flat space are dual to
massless higher-spin particles in the (d+ 1)-dimensional
AdS spacetime [Klebanov-Polyakov’02].
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HS basics
Metric-like formulation for a symmetric spin-s field in the
Minkowski spacetime (equations of motion):

I a symmetric rank-s tensor φµ1...µs(x) subject to the
off-shell constraints (transversality and tracelessness)

∂νφνµ1...µs−1(x) = 0 , φννµ1...µs−2(x) = 0 .

I On-shell condition - the Klein-Gordon equation:

(�+m2)φµ1...µs(x) = 0 .

I In the massless limit m2 → 0 some of the degrees of
freedom decouple, which signals the emergence of the gauge
symmetry

φµ1...µs ∼ φµ1...µs + ∂(µ1εµ2...µs) ,

with ∂νενµ2...µs−1 = 0, εννµ3...µs−1 = 0 and �εµ1...µs−1 = 0
(recall Maxwell’s electrodynamics in the Lorentz gauge).
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HS basics

Metric-like formulation for a symmetric spin-s field in the
Minkowski spacetime (Lagrangian formulation)
[Singh-Hagen’74,Fronsdal’78]:

I a multiplet of traceless symmetric tensors

{φµ(s)(x), φµ(s−2)(x), φµ(s−3)(x), . . . , φ}

I In the massless limit m2 → 0 some of the degrees of
freedom decouple, leaving one with a pair of traceless fields

{φµ(s)(x), φµ(s−2)(x)} ⇔ φ̄λνλν µ(s)(x) = 0 .

Emergence of the gauge symmetry

φµ(s)(x) ∼ φµ(s)(x) + ∂µεµ(s−1)(x) .

with εννµ(s−2)(x) = 0.
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Ambient-space description of AdS fields
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Ambient space

The (d+ 1)-dimensional AdS spacetime AdSd+1 can be realised
as a quadric in the flat ambient space R2,d parametrised by the
Cartesian coordinates XA (A = 0′, 0, 1, . . . , d):

−r2 := −(X0′)2 − (X0)2 + (X1)2 + · · ·+ (Xd)2 = −`2 .

The region r > 0 is R2,d
+
∼= AdSd+1 × R+.

Figure 1:
Foliation of the open region r > 0 in R2,d by AdSd+1

(the light cone r = 0 pictured in red)
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Ambient space
Intrinsic AdS geometry is induced from the ambient-space. For
example, the volume form on AdSd+1:
I Radial vector field X · ∂ = r∂r is orthogonal to AdSd+1.
I Adapted coordinates (r, xµ) (µ = 0, 1, . . . , d).
I From the volume form V = dd+2X ∈ Ωd+2(R2,d) one

constructs

VX = iXV = rd+2√−g dx0 ∧ dx1 ∧ · · · ∧ dxd ∈ Ωd+1(R2,d) .

Figure 1:
Foliation of the open region r > 0 in R2,d by AdSd+1

(the light cone r = 0 pictured in red)
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Radially-constrained fields in the ambient space
Fields Φ(X) in R2,d

+ can be used to parametrise fields φ(x) in
AdSd+1.

I Fixing radial behaviour of Φ(X) by imposing the radial
constraint: (

XA ∂

∂XA
+ ∆

)
Φ(X) = 0 , ∆ ∈ R .

By virtue of XA ∂
∂XA = r ∂∂r , one can resolve the above

constraint
Φ(X) = r−∆ φ(x) .

I The ambient d’Alembertian decomposes into its radial and
“angular” parts. For fields subject to the radial constraint:

�Φ(X) = r−∆
(
∇2 +

∆(d−∆)

r2

)
φ(x)

Radial dimensional reduction: massless ambient field +
radial constraint = AdS field with mass m(∆).
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Radially-constrained fields in the ambient space
A simple example: spherical harmonics Y`,m(θ, ϕ).

I Eigenfunctions of the Laplace operator on S2,

∆S2Y`,m = −`(`+ 1)Y`,m .

I The “ambient space” R3\{0} ∼= S2 × R+ with the radial
variable r2 = x2 + y2 + z2. Polynomial functions Φ(x, y, z)
subject to the radial constraint

I Harmonic polynomials subject to the radial constraint:

∆R3Φ = 0 , r∂rΦ = `Φ ⇔ Φ =
∑̀
m=−`

cm r
`Y`,m(θ, ϕ)

I Correspondence:

S2 → AdSd+1 , R3\{0} → R2,d
+ , SO(3)→ SO(2, d) .
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String-like BRST description of HS fields
in the flat ambient space
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BRST formulation of strings
String theories in flat space admit a BRST formulation
[Kato-Ogawa’83, Witten’85, Ohta’86]

I String oscillators αµm with m ∈ Z and the conjugation rule
(αµm)† = αµ−m

[αµm, α
ν
n] = mδm+n,0 η

µν , αµm |0〉 = 0 for m > 1 ,

the ghosts cm and anti-ghosts bm with m ∈ Z

{cm, bn} = δm+n,0 ,

b0 |0〉 = 0 , bm |0〉 = 0 , cm |0〉 = 0 for m > 1 .

I The string field |φ〉 is spanned over the basis generated
from |0〉, with coefficients φµ1...µk(x) .

I The nilpotent BRST operator Q built from αµm, cm, bm
singles out physical states, with gh(|φ〉) = 0, gh(|ε〉) = −1:

Q |φ〉 = 0 , |φ〉 ∼ |φ〉+Q |ε〉 .
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String-like BRST description of ambient HS fields
Symmetric HS fields in flat spacetimes via the tensionless limit
of an open bosonic string [Bengtsson’86,

Sagnotti-Tsulaia’03] and the related BRST formulation
[Barnich-Grigoriev-Semikhatov-Tipunin’04]:

I We consider BRST description of strings on R2,d, and
concentrate on the ghost-degree-0 “triplets”

|Φs〉 = 1
s! BA1...As(X)αA1

−1 . . . α
As
−1 |0〉

+ 1
(s−1)! CA1...As−1(X)αA1

−1 . . . α
As−1

−1 c0b−1 |0〉

+ 1
(s−2)! DA1...As−2(X)αA1

−1 . . . α
As−2

−1 c−1b−1 |0〉

I Upon appropriate rescaling of the oscillators one can take
the tensionless limit α′ → 0, which leads to the following
nilpotent BRST operator on the space of “triplets”:

Q0 = c0�+ c−1 α
A
+1

∂

∂XA
− c+1α

A
−1

∂

∂XA
+ cub. term .
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String-like BRST description of ambient HS fields

The string-like BRST description of HS fields in flat space
admits a natural Lagrangian formulation: for the “triplet” |Φs〉
and the BRST operator

Q0 = c0�+ c−1 α
A
+1

∂

∂XA
− c+1α

A
−1

∂

∂XA
+ cub. term ,

one has the quadratic Lagrangian

Ls = 〈Φs|Q0 |Φs〉 .

Question: Describe radial reduction of the string-like BRST
Lagrangian formulation in the ambient space.
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String-like BRST description of ambient HS fields
The string-like BRST description of HS fields in flat space
admits a natural Lagrangian formulation: for the “triplet” |Φs〉
and the BRST operator

Q0 = c0�+ c−1 α
A
+1

∂

∂XA
− c+1α

A
−1

∂

∂XA
+ cub. term ,

one has the quadratic Lagrangian

Ls = 〈Φs|Q0 |Φs〉 .

Question: Describe radial reduction of the string-like BRST
Lagrangian formulation in the ambient space.

Motivation1: Avoid working with the intrinsic AdS geometry
(see [Sagnotti-Tsulaia’03, Buchbinder-Krykhtin-Lavrov’06]).
Ambient flat space is technically simpler than AdS.
Motivation2: Constructing yet unknown AdS Lagrangians in
the metric-like formulation for some “exotic” HS fields (e.g.,
partially massless fields).
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Dimensional radial reduction: possible issues

Hidden traps:

I Mismatch of dimensions: AdSd+1 is a codimension-1
submanifold in R2,d

+ . Suitable Lagrangians are (d+ 1)-forms
on the (d+ 2)-dimensional ambient space:

L[Φs] = L[Φs]VX ∈ Ωd+1(R2,d
+ ) , L[Φs] ∼ L[Φs] + dH ,

where H ∈ Ωd(R2,d
+ ).
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Dimensional radial reduction: possible issues

Hidden traps:

I Mismatch of dimensions: AdSd+1 is a codimension-1
submanifold in R2,d

+ . Suitable Lagrangians are (d+ 1)-forms
on the (d+ 2)-dimensional ambient space:

L[Φs] = L[Φs]VX ∈ Ωd+1(R2,d
+ ) , L[Φs] ∼ L[Φs] + dH ,

where H ∈ Ωd(R2,d
+ ).

I What is the variational principle in codimension-1?

For example, an analog of the fundamental lemma of
calculus of variations for constrained fields:∫

δΦF [Φ]VX = 0 ⇒ F [Φ] = ?
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Dimensional radial reduction: possible issues
Hidden traps:

I Mismatch of dimensions: AdSd+1 is a codimension-1
submanifold in R2,d

+ . Suitable Lagrangians are (d+ 1)-forms
on the (d+ 2)-dimensional ambient space:

L[Φs] = L[Φs]VX ∈ Ωd+1(R2,d
+ ) , L[Φs] ∼ L[Φs] + dH ,

where H ∈ Ωd(R2,d
+ ).

I What is the variational principle in codimension-1?

I in order to obtain the correct equations of motion
Q0Φs = 0 from the Lagrangian

L[Φs] = 〈Φs, Q0Φs〉 VX ,

one needs Q0 = Q†0 with respect to the inner product
〈·, ·〉 VX . This is not the case when radial constraint is
imposed on Φs.
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Dimensional radial reduction: possible issues

Example: consider ψ(t, y) subject to the constraint
(∂y + w)ψ(t, y) = 0, i.e. ψ(t, y) = h(t)e−wy. Take the inner
product (

ψ, χ
)

= ψ(t, y)χ(t, y) dt

(note that usually one has dt dy).

I Then since ∂y acts algebraically, one has ∂†y = ∂y = −w
(instead of the usual conjugation rule for partial derivatives

∂†y = −∂y). Hence, if an operator is self-adjoint in the usual
case, and contains first-order derivatives ∂y, it is not
self-adjoint with respect to

(
·, ·
)
.
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Dimensional radial reduction: possible issues

Example: consider ψ(t, y) subject to the constraint
(∂y + w)ψ(t, y) = 0, i.e. ψ(t, y) = h(t)e−wy. Take the inner
product (

ψ, χ
)

= ψ(t, y)χ(t, y) dt

(note that usually one has dt dy).

I Then since ∂y acts algebraically, one has ∂†y = ∂y = −w
(instead of the usual conjugation rule for partial derivatives

∂†y = −∂y). Hence, if an operator is self-adjoint in the usual
case, and contains first-order derivatives ∂y, it is not
self-adjoint with respect to

(
·, ·
)
.

I To cure the problem, one deforms the inner product:(
ψ, χ

)
w

=
(
e2w yψ, χ

)
,

such that ∂†y = −∂y.
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Dimensional radial reduction:
the deformed inner product

There exists a unique Ωd+1(R2,d)-valued pairing of “triplets”(
Ψs,Φs

)
K

= 〈KΨs,Φs〉 VX ,

such that Q†0 = Q0.
I Radial decomposition of ambient oscillators αA−1:

ρ−1 = r−1XAα
A
−1 (the radial oscillator), αµ−1 .

Radial decomposition of fields (with respect to the degree in
the radial oscillator):

Φs =

s⊕
m=0

Φ(m)
s .

I The deformation operator

K = r−(d−2∆)UDU−1 , where U = 1+
2

r
c0 (b−1ρ+1 + b+1ρ−1)

And D is diagonal on the radial decomposition.
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Dimensional radial reduction: the deformed inner
product

There exists a unique Ωd+1(R2,d)-valued pairing of “triplets”(
Ψs,Φs

)
K

= 〈KΨs,Φs〉 VX .

I Radial decomposition of fields (with respect to the degree in
the radial oscillator):

Φs =

s⊕
m=0

Φ(m)
s .

I The deformation operator K = r−(d−2∆) UDU−1, with

DΦ
(m)
s = ν

(s|n)
∆ Φ

(n)
s and

ν
(s|n)
∆ =

[
d
2 + s− 2

]
n[

∆ + s− 2
]
n

2F1

(
−n, d

2 −∆
d
2 + s− 1− n ; −1

)
,

where [x]n = x(x− 1) . . . (x− n+ 1) denotes the falling
Pochhammer symbol.
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Summary
1. A uniform Lagrangian description of free symmetric HS

fields on AdSd+1, massless and (partially) massless, is
available via the radial dimensional reduction of the
string-like BRST description of massless symmetric HS
fields on the flat ambient space R2,d:
I Lagrangians are (d+ 1)-forms L[Φ] = L[Φ]VX , which belong

to a particular subset in Ωd+1(R2,d
+ ).

I Pullback of L[Φ] to AdSd+1 in the case of partially massless
fields leads to yet unknown Lagrangians in the metric-like
formulation.

2. An adapted ambient (codimension-one) variational calculus
is developed in terms of jet bundles.
I The formalism is suitable for generalised ambient spaces A

with a volume form V, which are trivial line bundles over a
codimension-one manifold Σ ↪→ A. In particular, neither
metric nor flatness are assumed for A.

I Variational derivative is given by a simple explicit formula:
one can vary ambient Lagrangians like if ambient fields were
unconstrained.
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Thank you for your attention.
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