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Plan

. Higher-spin (HS) fields

» The HS zoo: species, origins and natural habitats
» Metric-like formulation in flat space: constraints, equations
of motion, gauge symmetries

Anti-de Sitter (AdS) space embedded in flat ambient space

» Ambient-space description of the intrinsic AdS geometry
» Radial reduction of ambient-space fields

String-like BRST formulation in flat space

» Tensionless limit of the bosonic string
> “Triplet” formulation of HS fields

BRST-invariant inner product and codimension-one
Lagrangians
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Some higher-spin basics
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HS basics

HS fields naturally arise as generalisations of the lower-spin
particles of the Standard Model:

» spin-0 (scalar) particles (e.g., the Brout-Englert-Higgs
boson)

> spin—% particles (e.g., electron, neutrino),

» spin-1 particles (e.g., photon, W¥, Z-bosons),
as well as of hypothetical particles arising in (super-)gravity
theories:

> spin—% gravitino,

P> spin-2 graviton.
In particle experiments, short-living massive higher-spin
particles are observed as baryon resonances.
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HS basics

In the [hep-th] world, HS fields are encountered:

» in the spectrum of string theory.
For example, massless higher-spin fields arise in the
tensionless limit of the open bosonic string [Bengtsson,
OQuvry-Stern’86].

» in the AdS/CFT correspondence.
In particular, conserved currents of the O(NN)-vector model
in a d-dimensional conformally flat space are dual to
massless higher-spin particles in the (d + 1)-dimensional
AdS spacetime [Klebanov-Polyakov’02].
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HS basics

Metric-like formulation for a symmetric spin-s field in the
Minkowski spacetime (equations of motion):

» a symmetric rank-s tensor ¢, .., (z) subject to the
off-shell constraints (transversality and tracelessness)

8”¢W1.H#871(:p) =0, ¢VV#1~~~#5—2(x) =0.
» On-shell condition - the Klein-Gordon equation:
O+ m2) Gupps () =0.

» In the massless limit m? — 0 some of the degrees of
freedom decouple, which signals the emergence of the gauge
symmetry

Pprrs ~ Pprors + O Epopia) 5

with 0%epps. pe_1 = 0, €%0pg. sy = 0 and Oeyyy .y, =0
(recall Maxwell’s electrodynamics in the Lorentz gauge).
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HS basics

Metric-like formulation for a symmetric spin-s field in the
Minkowski spacetime (Lagrangian formulation)
[Singh-Hagen’74,Fronsdal’78]:

> a multiplet of traceless symmetric tensors

{¢u(s) (l’), ¢u(s—2) (IL‘), ¢,u,(s—3) (ZL‘), ceey ¢}

» In the massless limit m? — 0 some of the degrees of
freedom decouple, leaving one with a pair of traceless fields

{qs,u(s) (lﬂ)’ ¢,u(372) (‘/E)} g a))\y)\u wu(s) (1‘) =0.
Emergence of the gauge symmetry
Du(s)(T) ~ Dpu(s) (@) + Opep(s—1) () -
with EVV“(S_Q)(:B) =0.
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Ambient-space description of AdS fields
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Ambient space

The (d + 1)-dimensional AdS spacetime AdS;;1 can be realised
as a quadric in the flat ambient space R*>% parametrised by the
Cartesian coordinates X4 (A =(/,0,1,...,d):

—r? = (XY = (X0 4+ (X 4 (X = 0

The region r > 0 is Ri’d = AdSg4+1 X R4

Foliation of the open region r > 0 in R*>? by AdS4,1

Figure 1: (the light cone 7 = 0 pictured in red)
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Ambient space
Intrinsic AdS geometry is induced from the ambient-space. For
example, the volume form on AdSg,1:
» Radial vector field X - 0 = r0, is orthogonal to AdSg1.
» Adapted coordinates (r,z#) (p =0,1,...,d).
» From the volume form V = d4*2X € Q¥+2(R%9) one
constructs

Vx =ixV =712 /—gda® Adz! A--- Ada? € QITH(RY).

Foliation of the open region r > 0 in R*>? by AdS4

Figure 1: (the light cone 7 = 0 pictured in red)
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Radially-constrained fields in the ambient space
Fields ®(X) in Ri’d can be used to parametrise fields ¢(z) in
AdSgy1.

» Fixing radial behaviour of ®(X) by imposing the radial
constraint:

0
XA 4+ A)P(X) = A€R.
By virtue of X4 5 X o1 = r%, one can resolve the above
constraint

O(X) =r 2 o(x).
» The ambient d’Alembertian decomposes into its radial and
“angular” parts. For fields subject to the radial constraint:

A(d - A)

72

O0(X) =12 (V2 + )o(x)

Radial dimensional reduction: massless ambient field +
radial constraint = AdS field with mass m(A).
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Radially-constrained fields in the ambient space
A simple example: spherical harmonics Y7 ,,,(6, ¢).

» Eigenfunctions of the Laplace operator on S2,
Ag2Ypm = —Ll+1)Y, .

» The “ambient space” R3\{0} = S? x R, with the radial
variable 2 = 22 + y? + 22. Polynomial functions ®(z,y, z)
subject to the radial constraint

» Harmonic polynomials subject to the radial constraint:

)4
Age® =0, 10,2 =LD & D= > cnr'Vym(0,9)
m=—/
» Correspondence:

5% = AdSqi1, RON\{0} =R, SO(3) = SO(2,d).
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String-like BRST description of HS fields
in the flat ambient space
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BRST formulation of strings

String theories in flat space admit a BRST formulation
[Kato-Ogawa’83, Witten’85, Ohta’86]
» String oscillators af, with m € Z and the conjugation rule
(am)T = o,

[ah ar] = mopminon™, ob|0) =0 for m>1,

the ghosts ¢, and anti-ghosts b,, with m € Z

{Cm7 bn} = 5m+n,0 )
bo|0) =0, by,|0) =0, ¢, |0)=0 for m>1.
» The string field |¢) is spanned over the basis generated
from |0), with coefficients ¢, ., (x) .

» The nilpotent BRST operator Q built from o4, ¢, bm
singles out physical states, with gh(|¢)) =0, gh(|e)) = —1:

Qle) =0, o) ~[d) +Qle) .
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String-like BRST description of ambient HS fields

Symmetric HS fields in flat spacetimes via the tensionless limit
of an open bosonic string [Bengtsson’86,
Sagnotti-Tsulaia’03] and the related BRST formulation
[Barnich-Grigoriev-Semikhatov-Tipunin’04]:
» We consider BRST description of strings on R%?, and
concentrate on the ghost-degree-0 “triplets”

|B5) = & Ba,.a(X) e o 0)
A
+ 52 O, (X) @ a5 by [0)

i Dara o (X) a2 e1b g [0)

» Upon appropriate rescaling of the oscillators one can take
the tensionless limit o/ — 0, which leads to the following
nilpotent BRST operator on the space of “triplets”:

0 0
Qo =cold+c_q ozﬂlaX—A — CHOEl&XiA + cub. term.
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String-like BRST description of ambient HS fields

The string-like BRST description of HS fields in flat space
admits a natural Lagrangian formulation: for the “triplet” |®)
and the BRST operator

0 0
QO = CQD +c_1 aﬁlm — C+]_O[éla)(7A + cub. term,
one has the quadratic Lagrangian

Ls = <(I)s‘ QO ’(I)s> .

Question: Describe radial reduction of the string-like BRST
Lagrangian formulation in the ambient space.
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String-like BRST description of ambient HS fields

The string-like BRST description of HS fields in flat space
admits a natural Lagrangian formulation: for the “triplet” |®,)
and the BRST operator

0
axA
one has the quadratic Lagrangian

Ls = <<I)3| Qo |‘1)S> :

0
Qo=cd+c_q ozfl — C“O‘éla)TA + cub. term,

Question: Describe radial reduction of the string-like BRST
Lagrangian formulation in the ambient space.

Motivation;: Avoid working with the intrinsic AdS geometry
(see [Sagnotti-Tsulaia’03, Buchbinder-Krykhtin-Lavrov’06]).
Ambient flat space is technically simpler than AdS.
Motivationy: Constructing yet unknown AdS Lagrangians in
the metric-like formulation for some “exotic” HS fields (e.g.,
partially massless fields).
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Dimensional radial reduction: possible issues

Hidden traps:

» Mismatch of dimensions: AdSg41 is a codimension-1
submanifold in Ri’d. Suitable Lagrangians are (d + 1)-forms
on the (d + 2)-dimensional ambient space:

L[®,] = L[@,] Vx € QT (RYY), L&) ~ L[®,] +dH,

where H € Qd(Ri’d).
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Dimensional radial reduction: possible issues

Hidden traps:

» Mismatch of dimensions: AdSg,1 is a codimension-1
submanifold in Ri’d. Suitable Lagrangians are (d + 1)-forms
on the (d + 2)-dimensional ambient space:

L[®,] = L[®s] Vx € QTLRYY), L[®,] ~ L[®,] +dH,

2,d
where H € Q4(R7?).
> What is the variational principle in codimension-1?

For example, an analog of the fundamental lemma of
calculus of variations for constrained fields:

/5<I>F[<I>]VX -0 = F[® =7
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Dimensional radial reduction: possible issues
Hidden traps:

» Mismatch of dimensions: AdSg+1 is a codimension-1
submanifold in Ri’d. Suitable Lagrangians are (d + 1)-forms
on the (d + 2)-dimensional ambient space:

L[®,] = L[@,] Vx € QT (RYY), L&) ~ L[®,] +dH,

d/ip2,d
where H € Q%(R{"%).
» What is the variational principle in codimension-17

» in order to obtain the correct equations of motion
QoPs = 0 from the Lagrangian

L[(I)s] = <(I>87Q0(I)s> Vx ,

one needs Qy = QE') with respect to the inner product
(-,+) Vx. This is not the case when radial constraint is
imposed on P.
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Dimensional radial reduction: possible issues

Example: consider (¢, y) subject to the constraint
(Oy +w)(t,y) =0, i.e. Y(t,y) = h(t)e”™¥. Take the inner
product

(1, x) = ¥(t,y) x(t,y)dt

(note that usually one has d¢ dy).

» Then since 9, acts algebraically, one has 8;; =0y =—w
(instead of the usual conjugation rule for partial derivatives
o = —0y). Hence, if an operator is self-adjoint in the usual
case, and contains first-order derivatives 0y, it is not
self-adjoint with respect to (-, )
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Dimensional radial reduction: possible issues

Example: consider (¢, y) subject to the constraint
(Oy +w)(t,y) =0, i.e. Y(t,y) = h(t)e”™Y. Take the inner
product
(. x) = ¥(t,y) x(t,y) dt
(note that usually one has d¢ dy).

» Then since 9, acts algebraically, one has (9; =0, =-—w
(instead of the usual conjugation rule for partial derivatives
8; = —0y). Hence, if an operator is self-adjoint in the usual
case, and contains first-order derivatives J,, it is not
self-adjoint with respect to (-, )

» To cure the problem, one deforms the inner product:

(1,x),, = (¥, x) ,
such that 8; = —0y.
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Dimensional radial reduction:

the deformed inner product
There exists a unique Q41 (R?%)-valued pairing of “triplets”

(T, @), = (KT, D) Vx

such that Qg = Qo.
> Radial decomposition of ambient oscillators a?;:

p_1=r" X404, (the radial oscillator), ol

Radial decomposition of fields (with respect to the degree in
the radial oscillator):

P, = écbgm).
m=0

» The deformation operator
2
K =r"@2209U"" | where U = 14> ¢y (b_1p41 + bs1p—1)
r

And ® is diagonal on the radial decomposition.
23 /26



Dimensional radial reduction: the deformed inner
product

There exists a unique Q41 (R?%)-valued pairing of “triplets”
(U, @), = (KW, D) Vx .

» Radial decomposition of fields (with respect to the degree in
the radial oscillator):

d, = 52@@.

» The deformation operator K = r~(¢=22) UDU !, with
200 — 18 0" and

d _ d
(sln) [§+s—2] -n, §-A
A T ars oz gt T

where [z], = z(x —1)...(x —n + 1) denotes the falling

Pochhammer symbol.
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Summary

1. A uniform Lagrangian description of free symmetric HS
fields on AdSg.1, massless and (partially) massless, is
available via the radial dimensional reduction of the
string-like BRST description of massless symmetric HS
fields on the flat ambient space R>¢:

» Lagrangians are (d + 1)-forms L[®] = L[®] Vx, which belong
to a particular subset in Qd‘*‘l(Ri’d).

» Pullback of L[®] to AdS441 in the case of partially massless
fields leads to yet unknown Lagrangians in the metric-like
formulation.

2. An adapted ambient (codimension-one) variational calculus
is developed in terms of jet bundles.

» The formalism is suitable for generalised ambient spaces A
with a volume form V, which are trivial line bundles over a
codimension-one manifold ¥ < A. In particular, neither
metric nor flatness are assumed for A.

» Variational derivative is given by a simple explicit formula:
one can vary ambient Lagrangians like if ambient fields were
unconstrained.
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Thank you for your attention.
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