Large D holographic collisions

European Research Council

Mikel Sanchez-Garitaonandia 2212.14440

Raimon Luna

Universitat de Valencia

After several years relevant QCD features remain unknown

Strongly coupled nature at $E \sim \Lambda_{QCD}$

Phase diagram?

Far from equilibrium

Strongly coupled

Far from the hydrodynamic regime

Policastro, Son & Starinets '01

Chesler & Yaffe '10

Very low viscosity

Rapid hydrodinamization/thermalization

General numerical treatment of Einstein's Equations is very expensive

Simplifications to tackle the problem

Planar chocks (2+1), motivated by the high Lorentz contraction in of real ions

Symmetric/Asymmetric shocks, baryonic charge & phase transitions

Full 3-dimensional collision only in pure gravity (no baryonic charge)

Take the large D limit of GR

Outline

• Large D limit

• General results

• Linear entropy growth

• Conclusions and Future

Large D limit

Emparan, Suzuki & Tanabe '14

Emparan, Suzuki & Tanabe '14

Emparan, Suzuki & Tanabe '14

Effective theory of decoupled modes

Effective theory of a horizon decoupled from a fixed background

Emparan, Izumi, Luna, Suzuki & Tanabe '16

$$I = \int d^D x \sqrt{-g} \left(R - \frac{1}{4} F^2 - 2\Lambda \right)$$

$$ds^{2} = r^{2} \left(-Adt^{2} - \frac{2}{D}C_{i}dtdx^{i} + \frac{1}{D}G_{ij}dx^{i}dx^{j} \right) - 2dtdr$$

Solve order by order in 1/D

Equations for the (t,x) directions

Emparan, Izumi, Luna, Suzuki & Tanabe '16

$$\partial_t \rho + \partial_i \left(\rho v^i \right) = 0$$
$$\partial_t q + \partial_i j^i = 0$$
$$\partial_t (\rho v^i) + \partial_j \left(\rho v^i v^j + \tau^{ij} \right) = 0$$

$$j_{i} = qv^{i} - \rho\partial_{i}\left(\frac{q}{\rho}\right),$$

$$\tau_{ij} = \rho\delta_{ij} - 2\rho_{+}\partial_{(i}v_{j)} - (\rho_{+} - \rho_{-})\partial_{i}\partial_{j}\log\rho$$

Not an expansion in gradients

Higher order transport coefficients identically vanish

Wider exploratory work

Transport coefficients are not as in 3D

Temp of same order all over horizon. Big dissipation of incoming blobs

General results

Hydrodinamization time ~ isotropization time

Small quantitative changes in charged collisions

Casalderrey-Solana, Mateos, van der Schee & Triana '16

Linear entropy growth

Maldacena, Shenker & Stanford '15

Waeber & Yaffe '20

Sensitive to initial data

Conclusions

- Large D effective theory as simple model for holographic collisions
- Computationally cheap but dissipation of colliding blobs important
- Similar features at the qualitative level
- Many runs with same end state suggest no relation between entropy linear growth and chaos
- Linear entropy growth stages seems to be a signature of collision dynamics

Future Directions

- 1/D corrections?
- Addition of a scalar field to get theories with phase transitions: superfluids...
- Chaos at large D Cubrovic, Ramirez, MSG & Tomasevic
- Semiclassical gravity at large D: 1/D ~ ħ MSG & Tomasevic '23??

Merci!

$$ds^{2} = r^{2} \left(-Adt^{2} - \frac{2}{D}C_{i}dtdx^{i} + \frac{1}{D}G_{ij}dx^{i}dx^{j} \right) - 2dtdr$$

