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Two lessons from Dirac

Lesson I: Forms of relativistic dynamics [Dirac 1959]
Three choices of “time” for Hamiltonian dynamics of relativistic systems

Instant form: Front form: : Point form:
xt =%+ x3)/Vv2 T = proper time

AC! Acl
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Hamiltonian formulation for gauge systems such as electromagnetism, Yang-Mills, gravity, . ..
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@ symmetries generated by first-class constraints that commute with the Hamiltonian
@ precursor to canonical quantization for gauge theories




Two lessons from Dirac

Lesson II: Constrained Hamiltonian systems [Bargmann 1959; Dirac 1959]

Hamiltonian formulation for gauge systems such as electromagnetism, Yang-Mills, gravity, . ..
Sulévmo M) = [ ot [ dx (mod— 1= 20')

G’ — gauge cosntraints, \; — Largrange multipliers

@ algorithm for classifying gauge constraints (primary, first-class, ...)
@ symmetries generated by first-class constraints that commute with the Hamiltonian
@ precursor to canonical quantization for gauge theories

The usual route: Instant form + Constrained Hamiltonian systems

BRST quantization, Duality-invariant formulations, Asymptotic symmetries at spatial infinity, . ..




Two lessons from Dirac

Lesson II: Constrained Hamiltonian systems [Bargmann 1959; Dirac 1959]

Hamiltonian formulation for gauge systems such as electromagnetism, Yang-Mills, gravity, . ..
Sulévmo M) = [ ot [ dx (mod— 1= 20')

G’ — gauge cosntraints, \; — Largrange multipliers

@ algorithm for classifying gauge constraints (primary, first-class, ...)
@ symmetries generated by first-class constraints that commute with the Hamiltonian
@ precursor to canonical quantization for gauge theories

The usual route: Instant form + Constrained Hamiltonian systems

BRST quantization, Duality-invariant formulations, Asymptotic symmetries at spatial infinity, . ..

This talk: Front form + Constrained Hamiltonian systems

@ Gauge constraint in the front form are often solvable
@ Provides a unique framework for studying symmetries of null hypersurfaces




More precisely, the focus of this talk

Gauge theories in light-cone coordinates and light-cone gauge

(front form) (constr. Ham. systems)
Many successes of light-cone physics

@ Light-cone formulation of QCD, Discrete light-cone quantization (DLCQ)
@ Light-cone gauge quantization of strings

@ Proof of UV finiteness of N' = 4 SYM

@ Links to on-shell methods: spinor helicity formalism, KLT relations, etc.
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More precisely, the focus of this talk

Gauge theories in light-cone coordinates and light-cone gauge

(front form) (constr. Ham. systems)
Many successes of light-cone physics

@ Light-cone formulation of QCD, Discrete light-cone quantization (DLCQ)
@ Light-cone gauge quantization of strings

@ Proof of UV finiteness of N' = 4 SYM

@ Links to on-shell methods: spinor helicity formalism, KLT relations, etc.

A brief outline

@ Electromagnetism: Hamiltonian formulation in front form
@ Residual or large gauge transformations

@ Gravity in the light-cone gauge and BMS symmetry

@ Comparison with instant form results

Warning: Non-covariant and ugly!



Poincareé in the front form

Light-cone coordinates

0 4 43 0 _ 43
TN A (S )
V2 V2
xT  Light-cone time = Py =i0; = —P~ (Hamiltonian)

Generators of Poincaré algebra

@ In the instant form: (P, M)
[P,P]~0, [P.M~P, [M,M~M

(P%, MO MO2 MO3) — four dynamical generators or “Hamiltonians”




Poincareé in the front form

Light-cone coordinates

x0 4 x3 x0 —x
= , = , X (i=1,2
V2 V2 (=12
xT  Light-cone time = Py =i0; = —P~ (Hamiltonian)

Generators of Poincaré algebra
@ In the instant form: (P, My.)
[P,P]~0, [P,M]~P, [M,M~M
(P%, MO MO2 MO3) — four dynamical generators or “Hamiltonians”
@ In the front form
Kinematical K = {P/, Pt,Mi Mt=}, (i=1,2)
Dynamical D = {P—, M~ = J=,J~ } — three “Hamiltonians” in the front form
——
2 boosts

KK ~K, [K,D]~D, [D,D]~0




Electromagnetism in the front form

@ Light-cone gauge
0 3
A = _At = _u =0
V2

@ Maxwell equations: 9,, F*¥

a) Constraint
2 A— i — 8/'Ai + Uiy y— + i
0°A” +00-A=0 = A =3 + a(xT, XY xT + B8(xT, x")

(v="4):

b) Trivial equation

(v=-): relatesaand 8 = only one arbitrary constant

A further choice: set the constants to zero

¢) Dynamical equation
(v=1i): (20_8, —9;8)A = O,A =0 = two propagating modes of the photon

The “inverse derivative” operator [Mandelstam '83, Leibbrandt '83]
1
O_f(x")=9(x") = f(x )= a—g(x’) = —/e(x’ —y 7 )g(y )dy + “constant”



Electromagnetism in the front form
@ Complexify the x’

oxT+ix? )_(_x1fix2
V2 T V2
A — (A A):  =+1 helicity states of the photon

8/ - (87 5)

@ Light-cone action for electromagnetism
S= %/d“xZ\D,CA: /d4x A(0;0- — D) A

—  lcp formalism of electromagnetism
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Electromagnetism in the front form

@ Complexify the x’

oxT+ix? )_(_x1fix2
V2 T V2
A — (A A):  =+1 helicity states of the photon

8/ - (87 5)

@ Light-cone action for electromagnetism
S= %/d“xZ\D,CA: /d4x A(0;0- — D) A

—  lcp formalism of electromagnetism
@ Hamiltonian and Poisson brackets (recall: x is time)

oL . oL
= = —0_A T = — = —0_A
T T 5(0:A) T

(m, ) not independent variables = Half the d.o.f than in the 3+1 formalism
— a feature of all null-front Hamiltonian systems

@ Poisson brackets

[ACX), A)] = e(x™ = y7) P (x —y), [AX),A)] = [A(X),A(y)] = 0.



Residual gauge transformations

Symmetries in light-cone formulation

N

o Canonical transformation in the phase space: (A, A) 25 (A,
@ Strict invariance of action: dx S[A, A] = 0
@ Transformation = Poisson bracket with a generator Gx[A, Al,

)

dxA=[A Gxlps

Is there any residual gauge freedom, A, (x) — A, (x) + 9ue(x), left?
@ All e(x) that respects the light-cone gauge choice: A_ =0
d_e(x)=0 = e=¢(x",x,X)
@ But invariance of the light-cone action demands

20e(x) =0 = e(x)=f(x)+FX)

— Not the most general function of (x+, x, X)




Residual gauge transformations

Symmetries in light-cone formulation

N

o Canonical transformation in the phase space: (A, A) 25 (A,
@ Strict invariance of action: dx S[A, A] = 0
@ Transformation = Poisson bracket with a generator Gx[A, Al,

)

dxA=[A Gxlps

Is there any residual gauge freedom, A, (x) — A, (x) + 9ue(x), left?
@ All e(x) that respects the light-cone gauge choice: A_ =0
d_e(x)=0 = e=¢(x",x,X)
@ But invariance of the light-cone action demands

20e(x) =0 = e(x)=f(x)+FX)

— Not the most general function of (x+, x, X)

How can we recover all the residual gauge transformations?




Resolution

@ Put back the integration constants (zero modes)

A
A = —68’— +ax", x,X)xT + B(xT, X, %);

AB=0d,a; N =20

@ Involves relaxing the boundary conditions
AI

Al -
A= 0 ) o Al=(AA
o + - + (A A)

!

1
A = dey Doy
(x=) ()

/ . .
A(1) 4 ¥ ®Q




Resolution

@ Put back the integration constants (zero modes)

l
A’:—{Z—A-s—u(x X, X)X T 4 B(xt, x, X);

AB=0d,a; N =20

@ Involves relaxing the boundary conditions

Al Al
T () (1) oAl (AR
Al = 7+(X7)2+m, Al = (A A)
Al Al
S P E O I ¥ )

(x=) ()

Modified light-cone action

S[A A &] = /dx+ {/ d*x A(0;0_ —8B)A— | dxdx ¢A¢}

oxr

Phase space extended to include the boundary d.o.f. & — a.k.a. /c4 formalism

[SM, arXiv:2212.10637] ®



Residual gauge symmetries
@ Canonical generator of residual gauge transformations

Gle] = / dx—dxdxd_Ade + [ dxdx Ade,
X oxr

@ Light-cone fields transform as

{A'(x), Glel }
{®(x), Gle] }

@ Complete set of all residual U(1) transformations

d'e(x) ,
e(x)

a) Proper GTs: Zero surface charge Ae =0,

b) Improper (or large) GTs : Non-vanishing surface charge Aec # 0



Residual gauge symmetries
@ Canonical generator of residual gauge transformations

Gle] = / dx—dxdxd_Ade + [ dxdx Ade,
X oxr

@ Light-cone fields transform as

{A'(x), Glel }
{®(x), Gle] }

@ Complete set of all residual U(1) transformations

d'e(x) ,
e(x)

a) Proper GTs: Zero surface charge Ae =0,

b) Improper (or large) GTs : Non-vanishing surface charge Aec # 0
Electromagnetism in the front form: Observations
@ Putting «, 3 to zero amounts to residual gauge fixing
@ Zero modes are a crucial part of the initial data set

@ Going from Ic, formalism to /c4 involves improper (or large) gauge transformations

[SM, arXiv:2212.10637]
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Residual gauge symmetries «+— Asymptotic symmetries

How are these symmetries related to asymptotic U(1) symmetry in EM?

Consider:

Asymptotic analysis at spatial infinity



Asymptotic analysis of EM [Henneaux-Troessaert 18]

@ Hamiltonian action

S[A;, 7', Ag] = /dt{/d3X7r’A /d3 (7r7r,+ —FiF, -+A0g)+Boo}

Gauss constraint, G = 9,7’ ~
@ Fall-off conditions:
A = 172,+0(r—2), = rl?i+(’)(r3)
(Gauge-twisted) parity conditions

Ar = (A)°% = (Ag)®®" 4+ 9gd, & =even
= _ (fr)even ?A _ (EA)odd

>
@©

™

Must introduce boundary d.o.f. W through B to restore invariance under Lorentz boosts



Asymptotic analysis of EM [Henneaux-Troessaert 18]

@ Hamiltonian action

S[A;, 7', Ag] = /dt{/d3X7r’A /d3 (7r7r,+ —FiF, -+A0g)+Boo}

Gauss constraint, G = 9,7’ ~
@ Fall-off conditions:
A = 1?2, +0(r 2, 7 = rl?i +0(r%)
(Gauge-twisted) parity conditions
Ar = (A)°% Ag = (Ag)®" +9gd, & =even
7 o= (7)een, A = (7)ol
Must introduce boundary d.o.f. W through B to restore invariance under Lorentz boosts

@ Canonical generator for large gauge symmetries
Ge u[A W, 7] = /dSXeg + %dzx(éﬁr — VA TA)

a) Gauge symmetry: surface charge = 0 — Proper
b)True symmetry: surface charge # 0 — Improper
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Does (2+2) equal (3+1)?

(3+1): Asymptotic symmetries at spatial infinity
@ Symmetry = invariance of symplectic form or Hamiltonian action

@ Boundary value problem on a Cauchy hypersurface

@ Spin 1: Must include a surface dof W to obtain full U(1) gauge symmetries
Setting W to zero amounts to improper gauge fixing

(2+2): Residual gauge symmetries in light-cone formulation

@ Symmetry = invariance of light-cone action
@ Characteristic initial value problem on a null hypersurface

@ Spin 1: Must include the zero mode @ to obtain all residual gauge symmetries
Setting ¢ to zero amounts to residual gauge fixing



Gravity in the (2+2) formulation



(2+2) or “double-null” formulation of gravity

“On the characteristic initial value problem in gravitational theory” [R. K. Sachs '62]

“Covariant 2+2 formulation of the initial-value problem in general relativity”
[d’Inverno and Smallwood ’79]
[Gambini-Restuccia, Nagarajan-Goldberg, C. Torre, M. Kaku, S. Hayward...]




(2+2) or “double-null” formulation of gravity

“On the characteristic initial value problem in gravitational theory” [R. K. Sachs '62]

“Covariant 2+2 formulation of the initial-value problem in general relativity”
[d’Inverno and Smallwood ’79]
[Gambini-Restuccia, Nagarajan-Goldberg, C. Torre, M. Kaku, S. Hayward...]

@ Spacelike foliation of codim 2 (instead of 1)
@ Gravitational d.o.f. identified with the “conformal two-metric”

Our focus

A particular example of 2+2 formulation of gravity: Ic, gravity [Scherk-Schwarz’ 75]




Light-cone gravity a la Scherk-Schwartz

@ Light-cone gauge: Set the “minus” components to zero
g-—— =9 =0, (i=1,2) 10-3=7

Parametrization
g+—- = —e?, gj = ew’Yij

@,3,v; are real and det v; = 1

Light-cone metric
dS2. = guuoxtdx” = —2e%dxTdxT + gy (dxt)? + gy dxTdx + eV v;dxidx

given in terms of 7 functions {¢, v, vj, 9++, 9+i}

@ “2+2” split of the Einstein field equations R,,,, = 0 [Sachs, d’Inverno-Smallwood, ...]

Dynamical equations: R = 0
Constraint equations: R—_ =R_; =0
Subsidiary equations: R+ = R,; =0
Trivial equations: R =0



Gravity in the light-cone gauge

Light-cone metric
dSZ, = gudxtadx¥ = —2e®dxtaxt + gi(dxt)? + g dxtax + ev yax dx

given in terms of 7 functions {¢, v, vjj, 9++, 9+i}

@ Fourth gauge choice

_Y
0= 2
@ Constraint equation R__ = 0 allows us to integrate T out ¢
P = 1L(3 ,yffa ,yi/')
492

@ Solve rest of the constraints to express the Einstein-Hilbert action as S[v;]

@ Gravitational d.o.f. identified with the “conformal two-metric” ;

T All integration constants set to zero assuming asymptotically flat boundary conditions



Light-cone action for gravity

@ Expand Einstein-Hilbert action perturbatively

hi1 o hi2

. — (gRH)Y. — . - _
vi = (€")j, H_(h12 h22), hoy = —hyy

Complexify

1 , - 1 .
h = ﬁ(hn-i-lhm), h = ﬁ(hn—/hm)

@ Light-cone Lagrangian

T2

1. o, (B, 5 .
L=—-hOh+ 2sho_- 8—h8—h—hﬁh + c.c. + higher order terms

h and h represent gravitons of helicity +2 and -2 respectively

@ Poisson brackets

[h(x), A(y)] = e(x= —y7) 6B (x —y), [h(x),h(y)] = [A(x),h(y)] = 0.

[Scherk-Schwarz’ 75, Bengtsson-Cederwall-Lindgren '83]



BMS symmetry from residual gauge invariance

Is there any residual reparameterization freedom x# — x# 4 ¢ left?

@ Light-cone action for gravity

_ _ _ 5 5 a2
Sih ) = /d“x{%hmh + 2k ho_2 (aihaih—h%h) +ec. +}

@ Residual reparameterizations

£+

f= %x+a,y"+ T(x%)

1 . ,
78kf87(g—+g,k) + Y/(xK)

=Y x™ + (948X



BMS symmetry from residual gauge invariance
Is there any residual reparameterization freedom x# — x# 4 ¢ left?

@ Light-cone action for gravity

. o 1 o, (8 .5 5
S[h, Al = /dx 3hoh+2xho ? (Zhomh—hogh) too + -

@ Residual reparameterizations

& = f= %x+a,v"+ T(x*)

. 1 . .

€ = —of—(g-+g") +Y'(x")
£ = oYX 4 (0:4)X

@ The light-cone gravity action invariant
6¢S[h,h] =0
iff 52Y = 0 = only Lorentz rotations (no superrotations)
Only one arbitrary constant: T(x')

[Ananth, Brink and SM; arXiv:2012.07880 and 2101.00019]
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Light-cone representation of the BMS algebra

@ Light-cone Poincaré algebra
K: {P,P,Pt, J2 Jt Jt Jr—}
D: {P =H,J,J}

[K,K] = K, [K,D] =D, [DD]=0.

@ Light-cone BMS algebra

K — K,
D — D(T),

[K,K] = K, [K DT)] =DT), [DT),DT)]=0.
Dynamical part enhanced to infinite-dim supertranslations labeled by a single parameter

@ Poincaré part of the BMS _
PT=9PT=0
= D(T)reducestoD: {H,J~,J-} — the three “Hamiltonians” of Dirac
[Ananth, Brink and SM; arXiv:2012.07880 and 2101.00019]

20
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Does (2+2) equal (3+1)?

(3+1): Asymptotic symmetries at spatial infinity
@ Symmetry = invariance of symplectic form or Hamiltonian action
@ Boundary value problem on a Cauchy hypersurface

@ Spin 1: Must include a surface dof W to obtain full U(1) gauge symmetries
Setting W to zero amounts to improper gauge fixing

@ Spin 2: Supertranslations obtained without any extra surface degrees of freedom
[Henneaux-Troessaert *18]

(2+2): Residual gauge symmetries in light-cone formulation

@ Symmetry = invariance of light-cone action
@ Characteristic initial value problem on a null hypersurface

@ Spin 1: Must include the zero mode « to obtain all residual gauge symmetries
Setting a to zero amounts to residual gauge fixing

@ Spin 2: Supertranslations obtained without reintroducing the zero modes
[Ananth, Brink and SM]

21



Some concluding remarks...

Connections with amplitudes
@ Action in terms of helicity states - closer to on-shell physics
@ Various applications- MHV Lagrangians , KLT relations , Double copy methods
[Gorsky-Rosly, Ananth-Theisen, Ananth-Kovacs-Parikh, ...]
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Self-dual, Anti self-dual and all that
@ Closely related to Chalmers-Seigel action, double copy construction for SD sectors
[Campiglia-Nagy '21]
@ Double copy for BMS symmetries [work in progress]
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Some concluding remarks...

Connections with amplitudes
@ Action in terms of helicity states - closer to on-shell physics
@ Various applications- MHV Lagrangians , KLT relations , Double copy methods
[Gorsky-Rosly, Ananth-Theisen, Ananth-Kovacs-Parikh, ...]J

Self-dual, Anti self-dual and all that
@ Closely related to Chalmers-Seigel action, double copy construction for SD sectors
[Campiglia-Nagy '21]
@ Double copy for BMS symmetries [work in progress]
@ Newmann-Penrose formalism [work in progress], Weyl double copy, ...

Formal (2+2) Hamiltonian analysis
@ |Initial (boundary) value problem
@ Role of gauge constraints, zero modes, etc. [work in progress]
@ Dictionary between residual gauge symmetries in (2+2) with asymptotic symmetries

22
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Stay tuned...

Initial value problem in the front-from

@ How does it compare with the initial value
problem in the instant form?

@ What is the equivalent of Cauchy hypersurfaces
in the front form?

@ Can we quantize the theory on a single front?

[Nagarajan-Goldberg '85]
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Stay tuned...

Initial value problem in the front-from

@ How does it compare with the initial value
problem in the instant form?

@ What is the equivalent of Cauchy hypersurfaces
in the front form?

@ Can we quantize the theory on a single front?

Work in progress with

A7 /170 1]

=} ~1
Glenn Barnich, Simone Speziale,
Bruxelles Marseille

Thank you!

[Nagarajan-Goldberg '85]

et

Wen-Di Tan,
Bruxelles
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Light-cone Hamiltonian for gravity

@ Closed form expression

1 1 1 sy i1 1
Shil = 5 /d4x ¥ <2a+a,¢ YO0 -~ 8+7”6,'y,'j> — 56" R
1
&2/ (990 + 501606 — 960 — 000+ 50 01y )
where

, (1 ; )
R = e (587 VO — 9_0ip — D_ 0y + 3/¢5—¢) + (e” Y o))

@ Conjugate momenta

(, ™) not independent variables = Half the d.o.f than in the ADM formalism

@ Light-cone Hamiltonian for gravity

_ 5z 2 d d 2
H = 0hoh + 2k0Zh|(h_5h — —h_—h|+cc + O(x%)
o2 o- o-
@ Poisson brackets

[h(), AT = e(x™ =y ) 6@ (x —y), [h(x),h(y)] = [A(x),h(y)] = 0.

25



BMS symmetry from residual gauge invariance

Is there any residual reparameterization freedom x# — x# 4 ¢ left?
@ First gauge condition holds
g-—=0 = 9_¢t=0 = ¢F=Fx"x)
Second gauge condition g_; = 0 gives
0-& gj + 9" g =0
Fourth gauge condition fixes x* dependence of f(xT, x/)

@ Residual reparameterizations
1

¢t = f = 5x+a,Y"+ T(x¥)

. 1 . .

g = —8kfa—(g_+g’k) + Y'(x)
€ = —oY'x +(0:6)X

@ The light-cone gravity action invariant
6¢S[h,h] =0
iff 52Y = 0 = only Lorentz rotations (no superrotations)

Only one arbitrary constant: T(x')
[Ananth, Brink and SM]
26
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BMS algebra in light-cone gravity

@ BMS transformation law (on the initial surface x* = 0),

= = _ - 99
Syyrh = Y()Oh+Y(X)oh + (@Y —dV)h+ T 2= h

b2 o 8 1 (8%,
—2nTo_ (hoph— —h=h) —2nT — ( S-ho2h
" (63 - a_> "l <a§ -
B

> - o
—2nT o (hO2h) + 45T (af

Eaih) + O(x?)
@ Symmetry algebra
[5(3’1,71, T1), 6(Ya, Yz, 7'2)} h = 6(Yiz, Y12, Ti2) h,

with parameters

Y12 = Y25Y1 — Y15Y2
712 = 72 871 - 71 372
- — 1 _ —
T, = [Y28T1 + Yo0Ty + E T2(8Y1 + 8Y1)] — (1 (—)2)

— BMS algebra from residual gauge invariance without reintroducing the zero modes
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