Residual gauge symmetries in the front form

Sucheta Majumdar
Postdoc @ ENS de Lyon

Based on 2012.07880, 2101.00019 and 2212.10637

French Strings Meeting, LAPTh Annecy
May 23-25, 2023

Two lessons from Dirac

Lesson I: Forms of relativistic dynamics [Dirac 1959]
Three choices of "time" for Hamiltonian dynamics of relativistic systems

Instant form:

$$
t=x^{0}
$$

Spacelike foliations

Front form: :

$$
x^{+}=\left(x^{0}+x^{3}\right) / \sqrt{2}
$$

Null foliations

Point form:
$\tau=$ proper time

Hyperbolic foliations

Two lessons from Dirac

Lesson II: Constrained Hamiltonian systems [Bargmann 1959; Dirac 1959]

Hamiltonian formulation for gauge systems such as electromagnetism, Yang-Mills, gravity, ...

$$
\begin{aligned}
\mathcal{S}_{H}\left[\phi, \pi_{\phi}, \lambda_{i}\right]= & \int d t \int d^{3} x\left(\pi_{\phi} \dot{\phi}-\mathcal{H}-\lambda_{i} \mathcal{G}^{i}\right) \\
& \mathcal{G}^{i} \rightarrow \text { gauge cosntraints, } \lambda_{i} \rightarrow \text { Largrange multipliers }
\end{aligned}
$$

- algorithm for classifying gauge constraints (primary, first-class, ...)
- symmetries generated by first-class constraints that commute with the Hamiltonian
- precursor to canonical quantization for gauge theories

Two lessons from Dirac

Lesson II: Constrained Hamiltonian systems [Bargmann 1959; Dirac 1959]

Hamiltonian formulation for gauge systems such as electromagnetism, Yang-Mills, gravity, ...

$$
\begin{aligned}
\mathcal{S}_{H}\left[\phi, \pi_{\phi}, \lambda_{i}\right]= & \int d t \int d^{3} x\left(\pi_{\phi} \dot{\phi}-\mathcal{H}-\lambda_{i} \mathcal{G}^{i}\right) \\
& \mathcal{G}^{i} \rightarrow \text { gauge cosntraints, } \lambda_{i} \rightarrow \text { Largrange multipliers }
\end{aligned}
$$

- algorithm for classifying gauge constraints (primary, first-class, ...)
- symmetries generated by first-class constraints that commute with the Hamiltonian
- precursor to canonical quantization for gauge theories

The usual route: Instant form + Constrained Hamiltonian systems BRST quantization, Duality-invariant formulations, Asymptotic symmetries at spatial infinity, ...

Two lessons from Dirac

Lesson II: Constrained Hamiltonian systems [Bargmann 1959; Dirac 1959]

Hamiltonian formulation for gauge systems such as electromagnetism, Yang-Mills, gravity, ...

$$
\begin{aligned}
\mathcal{S}_{H}\left[\phi, \pi_{\phi}, \lambda_{i}\right]= & \int d t \int d^{3} x\left(\pi_{\phi} \dot{\phi}-\mathcal{H}-\lambda_{i} \mathcal{G}^{i}\right) \\
& \mathcal{G}^{i} \rightarrow \text { gauge cosntraints, } \lambda_{i} \rightarrow \text { Largrange multipliers }
\end{aligned}
$$

- algorithm for classifying gauge constraints (primary, first-class, ...)
- symmetries generated by first-class constraints that commute with the Hamiltonian
- precursor to canonical quantization for gauge theories

The usual route: Instant form + Constrained Hamiltonian systems BRST quantization, Duality-invariant formulations, Asymptotic symmetries at spatial infinity, ...

This talk: Front form + Constrained Hamiltonian systems

- Gauge constraint in the front form are often solvable
- Provides a unique framework for studying symmetries of null hypersurfaces

More precisely, the focus of this talk

Gauge theories in light-cone coordinates and light-cone gauge (front form)
(constr. Ham. systems)
Many successes of light-cone physics

- Light-cone formulation of QCD, Discrete light-cone quantization (DLCQ)
- Light-cone gauge quantization of strings
- Proof of UV finiteness of $\mathcal{N}=4$ SYM
- Links to on-shell methods: spinor helicity formalism, KLT relations, etc.

More precisely, the focus of this talk

Gauge theories in light-cone coordinates and light-cone gauge (front form)
(constr. Ham. systems)
Many successes of light-cone physics

- Light-cone formulation of QCD, Discrete light-cone quantization (DLCQ)
- Light-cone gauge quantization of strings
- Proof of UV finiteness of $\mathcal{N}=4$ SYM
- Links to on-shell methods: spinor helicity formalism, KLT relations, etc.

A brief outline

- Electromagnetism: Hamiltonian formulation in front form
- Residual or large gauge transformations
- Gravity in the light-cone gauge and BMS symmetry
- Comparison with instant form results

More precisely, the focus of this talk

Gauge theories in light-cone coordinates and light-cone gauge

Many successes of light-cone physics

- Light-cone formulation of QCD, Discrete light-cone quantization (DLCQ)
- Light-cone gauge quantization of strings
- Proof of UV finiteness of $\mathcal{N}=4$ SYM
- Links to on-shell methods: spinor helicity formalism, KLT relations, etc.

A brief outline

- Electromagnetism: Hamiltonian formulation in front form
- Residual or large gauge transformations
- Gravity in the light-cone gauge and BMS symmetry
- Comparison with instant form results

Poincarè in the front form

Light-cone coordinates

$$
\begin{aligned}
& x^{+}=\frac{x^{0}+x^{3}}{\sqrt{2}}, \quad x^{-}=\frac{x^{0}-x^{3}}{\sqrt{2}}, \quad x^{i} \quad(i=1,2) \\
& x^{+} \quad \text { Light-cone time } \Rightarrow \quad P_{+}=i \partial_{+}=-P^{-} \quad \text { (Hamiltonian) }
\end{aligned}
$$

Generators of Poincaré algebra

- In the instant form: $\left(P_{\mu}, M_{\mu \nu}\right)$

$$
[P, P] \sim 0, \quad[P, M] \sim P, \quad[M, M] \sim M
$$

$$
\left(P^{0}, M^{01}, M^{02}, M^{03}\right) \rightarrow \text { four dynamical generators or "Hamiltonians" }
$$

Poincarè in the front form

Light-cone coordinates

$$
\begin{aligned}
& x^{+}=\frac{x^{0}+x^{3}}{\sqrt{2}}, \quad x^{-}=\frac{x^{0}-x^{3}}{\sqrt{2}}, \quad x^{i} \quad(i=1,2) \\
& x^{+} \quad \text { Light-cone time } \Rightarrow \quad P_{+}=i \partial_{+}=-P^{-} \quad \text { (Hamiltonian) }
\end{aligned}
$$

Generators of Poincaré algebra

- In the instant form: $\left(P_{\mu}, M_{\mu \nu}\right)$

$$
[P, P] \sim 0, \quad[P, M] \sim P, \quad[M, M] \sim M
$$

$$
\left(P^{0}, M^{01}, M^{02}, M^{03}\right) \rightarrow \text { four dynamical generators or "Hamiltonians" }
$$

- In the front form

Kinematical $\mathbb{K}=\left\{P^{i}, P^{+}, M^{i j}, M^{+-}\right\}, \quad(i=1,2)$
Dynamical $\mathbb{D}=\{P^{-}, M^{i-} \equiv \underbrace{J^{-}, \bar{J}^{-}}_{2 \text { boosts }}\} \rightarrow$ three "Hamiltonians" in the front form

$$
[\mathbb{K}, \mathbb{K}] \sim \mathbb{K}, \quad[\mathbb{K}, \mathbb{D}] \sim \mathbb{D}, \quad[\mathbb{D}, \mathbb{D}] \sim 0
$$

Electromagnetism in the front form

- Light-cone gauge

$$
A_{-}=-A^{+}=-\frac{A^{0}+A^{3}}{\sqrt{2}}=0
$$

- Maxwell equations: $\partial_{\mu} F^{\mu \nu}=0$
a) Constraint

$$
(\nu=+): \quad \partial_{-}^{2} \boldsymbol{A}^{-}+\partial_{i} \partial_{-} \boldsymbol{A}^{i}=0 \quad \Rightarrow \quad \boldsymbol{A}^{-}=-\frac{\partial_{i} \boldsymbol{A}^{i}}{\partial_{-}}+\alpha\left(x^{+}, x^{i}\right) x^{-}+\beta\left(x^{+}, x^{i}\right)
$$

b) Trivial equation

$$
(\nu=-): \quad \text { relates } \alpha \text { and } \beta \Rightarrow \text { only one arbitrary constant }
$$

A further choice: set the constants to zero
c) Dynamical equation

$$
(\nu=i):\left(2 \partial_{-} \partial_{+}-\partial_{i} \partial^{i}\right) A^{j}=\square_{l c} A^{j}=0 \Rightarrow \text { two propagating modes of the photon }
$$

The "inverse derivative" operator [Mandelstam '83, Leibbrandt '83]

$$
\partial_{-} f\left(x^{-}\right)=g\left(x^{-}\right) \Rightarrow f\left(x^{-}\right)=\frac{1}{\partial_{-}} g\left(x^{-}\right)=-\int \epsilon\left(x^{-}-y^{-}\right) g\left(y^{-}\right) d y^{-}+\text {"constant" }
$$

Electromagnetism in the front form

- Complexify the x^{i}

$$
\begin{array}{ll}
x=\frac{x^{1}+i x^{2}}{\sqrt{2}}, & \bar{x}=\frac{x^{1}-i x^{2}}{\sqrt{2}} \quad \partial_{i} \rightarrow(\partial, \bar{\partial}) \\
A^{i} \rightarrow(A, \bar{A}): & \pm 1 \text { helicity states of the photon }
\end{array}
$$

- Light-cone action for electromagnetism

$$
\begin{aligned}
\mathcal{S}=\frac{1}{2} \int d^{4} \times \bar{A} \square_{I C} A=\int d^{4} x \bar{A} & \left(\partial_{+} \partial_{-}-\partial \bar{\partial}\right) A \\
& \left.\rightarrow \quad\right|_{2} \text { formalism of electromagnetism }
\end{aligned}
$$

Electromagnetism in the front form

- Complexify the x^{i}

$$
\begin{array}{ll}
x=\frac{x^{1}+i x^{2}}{\sqrt{2}}, & \bar{x}=\frac{x^{1}-i x^{2}}{\sqrt{2}} \quad \partial_{i} \rightarrow(\partial, \bar{\partial}) \\
A^{i} \rightarrow(A, \bar{A}): & \pm 1 \text { helicity states of the photon }
\end{array}
$$

- Light-cone action for electromagnetism

$$
\begin{aligned}
\mathcal{S}=\frac{1}{2} \int d^{4} \times \bar{A} \square_{l C} A=\int d^{4} \times \bar{A} & \left(\partial_{+} \partial_{-}-\partial \bar{\partial}\right) A \\
& \rightarrow \quad I_{2} \text { formalism of electromagnetism }
\end{aligned}
$$

- Hamiltonian and Poisson brackets (recall: x^{+}is time)

$$
\pi=\frac{\delta \mathcal{L}}{\delta\left(\partial_{+} A\right)}=-\partial_{-} \bar{A}, \quad \bar{\pi}=\frac{\delta \mathcal{L}}{\delta\left(\partial_{+} \bar{A}\right)}=-\partial_{-} A
$$

$(\pi, \bar{\pi})$ not independent variables \Rightarrow Half the d.o.f than in the 3+1 formalism
\rightarrow a feature of all null-front Hamiltonian systems

- Poisson brackets

$$
[A(x), \bar{A}(y)]=\epsilon\left(x^{-}-y^{-}\right) \delta^{(2)}(x-y), \quad[A(x), A(y)]=[\bar{A}(x), \bar{A}(y)]=0
$$

Residual gauge transformations

Symmetries in light-cone formulation

- Canonical transformation in the phase space: $(A, \bar{A}) \xrightarrow{\delta_{X}}(\tilde{A}, \tilde{\bar{A}})$
- Strict invariance of action: $\delta_{X} S[A, \bar{A}]=0$
- Transformation $=$ Poisson bracket with a generator $G_{X}[A, \bar{A}]$,

$$
\delta_{X} A=\left[A, G_{X}\right]_{P B}
$$

Is there any residual gauge freedom, $A_{\mu}(x) \rightarrow A_{\mu}(x)+\partial_{\mu} \varepsilon(x)$, left?

- All $\varepsilon(x)$ that respects the light-cone gauge choice: $A_{-}=0$

$$
\partial_{-} \varepsilon(x)=0 \quad \Rightarrow \quad \varepsilon=\varepsilon\left(x^{+}, x, \bar{x}\right)
$$

- But invariance of the light-cone action demands

$$
\partial \bar{\partial} \varepsilon(x)=0 \quad \Rightarrow \quad \varepsilon(x)=f(x)+\bar{f}(\bar{x})
$$

\rightarrow Not the most general function of $\left(x^{+}, x, \bar{x}\right)$

Residual gauge transformations

Symmetries in light-cone formulation

- Canonical transformation in the phase space: $(A, \bar{A}) \xrightarrow{\delta_{X}}(\tilde{A}, \tilde{\bar{A}})$
- Strict invariance of action: $\delta_{X} S[A, \bar{A}]=0$
- Transformation $=$ Poisson bracket with a generator $G_{X}[A, \bar{A}]$,

$$
\delta_{X} A=\left[A, G_{X}\right]_{P B}
$$

Is there any residual gauge freedom, $A_{\mu}(x) \rightarrow A_{\mu}(x)+\partial_{\mu} \varepsilon(x)$, left?

- All $\varepsilon(x)$ that respects the light-cone gauge choice: $A_{-}=0$

$$
\partial_{-} \varepsilon(x)=0 \quad \Rightarrow \quad \varepsilon=\varepsilon\left(x^{+}, x, \bar{x}\right)
$$

- But invariance of the light-cone action demands

$$
\partial \bar{\partial} \varepsilon(x)=0 \quad \Rightarrow \quad \varepsilon(x)=f(x)+\bar{f}(\bar{x})
$$

\rightarrow Not the most general function of $\left(x^{+}, x, \bar{x}\right)$
How can we recover all the residual gauge transformations?

Resolution

- Put back the integration constants (zero modes)

$$
\begin{gathered}
A^{-}=-\frac{\partial^{\prime} A^{\prime}}{\partial_{-}}+\alpha\left(x^{+}, x, \bar{x}\right) x^{-}+\beta\left(x^{+}, x, \bar{x}\right) ; \\
\triangle \beta=\partial_{+} \alpha ; \quad \triangle=2 \partial \bar{\partial}
\end{gathered}
$$

- Involves relaxing the boundary conditions

$$
\begin{gathered}
A^{\prime}=\frac{A_{(0)}^{\prime}}{x^{-}}+\frac{A_{(1)}^{\prime}}{\left(x^{-}\right)^{2}}+\ldots ; \quad A^{\prime}=(A, \bar{A}) \\
\downarrow \\
A^{\prime}=\partial^{\prime} \Phi+\frac{A_{(0)}^{\prime}}{\left(x^{-}\right)}+\frac{A_{(1)}^{\prime}}{\left(x^{-}\right)^{2}}+\ldots
\end{gathered}
$$

Resolution

- Put back the integration constants (zero modes)

$$
\begin{gathered}
A^{-}=-\frac{\partial^{\prime} A^{\prime}}{\partial_{-}}+\alpha\left(x^{+}, x, \bar{x}\right) x^{-}+\beta\left(x^{+}, x, \bar{x}\right) ; \\
\Delta \beta=\partial_{+} \alpha ; \quad \triangle=2 \partial \bar{\partial}
\end{gathered}
$$

- Involves relaxing the boundary conditions

$$
\begin{gathered}
A^{\prime}=\frac{A_{(0)}^{\prime}}{x^{-}}+\frac{A_{(1)}^{\prime}}{\left(x^{-}\right)^{2}}+\ldots ; \quad A^{\prime}=(A, \bar{A}) \\
\downarrow \\
A^{\prime}=\partial^{\prime} \Phi+\frac{A_{(0)}^{\prime}}{\left(x^{-}\right)}+\frac{A_{(1)}^{\prime}}{\left(x^{-}\right)^{2}}+\ldots
\end{gathered}
$$

Modified light-cone action

$$
\mathcal{S}[A, \bar{A}, \Phi]=\int d x^{+}\left\{\int_{\Sigma} d^{3} x \bar{A}\left(\partial_{+} \partial_{-}-\partial \bar{\partial}\right) A-\int_{\partial \Sigma} d x d \bar{x} \dot{\Phi} \triangle \Phi\right\}
$$

Phase space extended to include the boundary d.o.f. $\Phi \rightarrow$ a.k.a. $/ c_{4}$ formalism

Residual gauge symmetries

- Canonical generator of residual gauge transformations

$$
G[\varepsilon]=\int_{\Sigma} d x^{-} d x d \bar{x} \partial_{-} A_{l} \partial^{\prime} \varepsilon+\int_{\partial \Sigma} d x d \bar{x} \triangle \Phi \varepsilon
$$

- Light-cone fields transform as

$$
\begin{aligned}
\left\{A^{\prime}(x), G[\varepsilon]\right\} & =\partial^{\prime} \varepsilon(x), \\
\{\Phi(x), G[\varepsilon]\} & =\varepsilon(x)
\end{aligned}
$$

- Complete set of all residual $U(1)$ transformations
a) Proper GTs: Zero surface charge $\Delta \varepsilon=0$,
b) Improper (or large) GTs : Non-vanishing surface charge $\Delta \varepsilon \neq 0$

Residual gauge symmetries

- Canonical generator of residual gauge transformations

$$
G[\varepsilon]=\int_{\Sigma} d x^{-} d x d \bar{x} \partial_{-} A_{l} \partial^{\prime} \varepsilon+\int_{\partial \Sigma} d x d \bar{x} \triangle \Phi \varepsilon
$$

- Light-cone fields transform as

$$
\begin{aligned}
\left\{A^{\prime}(x), G[\varepsilon]\right\} & =\partial^{\prime} \varepsilon(x), \\
\{\Phi(x), G[\varepsilon]\} & =\varepsilon(x)
\end{aligned}
$$

- Complete set of all residual $U(1)$ transformations
a) Proper GTs: Zero surface charge $\Delta \varepsilon=0$,
b) Improper (or large) GTs : Non-vanishing surface charge $\Delta \varepsilon \neq 0$

Electromagnetism in the front form: Observations

- Putting α, β to zero amounts to residual gauge fixing
- Zero modes are a crucial part of the initial data set
- Going from $/ c_{2}$ formalism to $/ c_{4}$ involves improper (or large) gauge transformations

Residual gauge symmetries \longleftrightarrow Asymptotic symmetries

How are these symmetries related to asymptotic $U(1)$ symmetry in EM?

Consider:
Asymptotic analysis at spatial infinity

Asymptotic analysis of EM [Henneaux-Troessaert '18]

- Hamiltonian action

$$
\mathcal{S}\left[A_{i}, \pi^{i}, A_{0}\right]=\int d t\left\{\int d^{3} x \pi^{i} \dot{A}_{i}-\int d^{3} x\left(\frac{1}{2} \pi^{i} \pi_{i}+\frac{1}{4} F^{i j} F_{i j}+A_{0} \mathcal{G}\right)+B_{\infty}\right\}
$$

Gauss constraint, $\mathcal{G}=\partial_{i} \pi^{i} \approx 0$

- Fall-off conditions:

$$
A_{i}=\frac{1}{r} \bar{A}_{i}+\mathcal{O}\left(r^{-2}\right), \quad \pi^{i}=\frac{1}{r^{2}} \bar{\pi}^{i}+\mathcal{O}\left(r^{3}\right)
$$

(Gauge-twisted) parity conditions

$$
\begin{array}{ll}
\bar{A}_{r}=\left(\bar{A}_{r}\right)^{\text {odd }}, & \bar{A}_{B}=\left(\bar{A}_{B}\right)^{\text {even }}+\partial_{B} \Phi, \quad \Phi=\text { even } \\
\bar{\pi}^{r}=\left(\bar{\pi}^{r}\right)^{\text {even }}, & \bar{\pi}^{A}=\left(\bar{\pi}^{A}\right)^{\text {odd }}
\end{array}
$$

Must introduce boundary d.o.f. Ψ through B_{∞} to restore invariance under Lorentz boosts

Asymptotic analysis of EM [Henneaux-Troessaert '18]

- Hamiltonian action

$$
\mathcal{S}\left[A_{i}, \pi^{i}, A_{0}\right]=\int d t\left\{\int d^{3} x \pi^{i} \dot{A}_{i}-\int d^{3} x\left(\frac{1}{2} \pi^{i} \pi_{i}+\frac{1}{4} F^{i j} F_{i j}+A_{0} \mathcal{G}\right)+B_{\infty}\right\}
$$

Gauss constraint, $\mathcal{G}=\partial_{i} \pi^{i} \approx 0$

- Fall-off conditions:

$$
A_{i}=\frac{1}{r} \bar{A}_{i}+\mathcal{O}\left(r^{-2}\right), \quad \pi^{i}=\frac{1}{r^{2}} \bar{\pi}^{i}+\mathcal{O}\left(r^{3}\right)
$$

(Gauge-twisted) parity conditions

$$
\begin{array}{ll}
\bar{A}_{r}=\left(\bar{A}_{r}\right)^{\text {odd }}, & \bar{A}_{B}=\left(\bar{A}_{B}\right)^{\text {even }}+\partial_{B} \Phi, \quad \Phi=\text { even } \\
\bar{\pi}^{r}=\left(\bar{\pi}^{r}\right)^{\text {even }}, & \bar{\pi}^{A}=\left(\bar{\pi}^{A}\right)^{\text {odd }}
\end{array}
$$

Must introduce boundary d.o.f. Ψ through B_{∞} to restore invariance under Lorentz boosts

- Canonical generator for large gauge symmetries

$$
G_{\epsilon, \mu}\left[A_{i}, \Psi, \pi^{i}\right]=\int d^{3} x \epsilon \mathcal{G}+\oint d^{2} x\left(\bar{\epsilon} \bar{\pi}^{r}-\sqrt{\bar{\gamma}} \bar{\mu} \bar{A}_{r}\right)
$$

a) Gauge symmetry: surface charge $=0 \rightarrow$ Proper
b)True symmetry: surface charge $\neq 0 \rightarrow$ Improper

Does $(2+2)$ equal $(3+1)$?

(3+1): Asymptotic symmetries at spatial infinity

- Symmetry \equiv invariance of symplectic form or Hamiltonian action
- Boundary value problem on a Cauchy hypersurface
- Spin 1: Must include a surface dof $\bar{\Psi}$ to obtain full $U(1)$ gauge symmetries Setting $\bar{\Psi}$ to zero amounts to improper gauge fixing
(2+2): Residual gauge symmetries in light-cone formulation
- Symmetry \equiv invariance of light-cone action
- Characteristic initial value problem on a null hypersurface
- Spin 1: Must include the zero mode Φ to obtain all residual gauge symmetries Setting Φ to zero amounts to residual gauge fixing

Gravity in the $(2+2)$ formulation

$(2+2)$ or "double-null" formulation of gravity

"On the characteristic initial value problem in gravitational theory" [R. K. Sachs '62]
"Covariant 2+2 formulation of the initial-value problem in general relativity" [d'Inverno and Smallwood '79]
[Gambini-Restuccia, Nagarajan-Goldberg, C. Torre, M. Kaku, S. Hayward...]

$(2+2)$ or "double-null" formulation of gravity

"On the characteristic initial value problem in gravitational theory" [R. K. Sachs '62]
"Covariant 2+2 formulation of the initial-value problem in general relativity"
[d'Inverno and Smallwood '79]
[Gambini-Restuccia, Nagarajan-Goldberg, C. Torre, M. Kaku, S. Hayward...]

- Spacelike foliation of codim 2 (instead of 1)
- Gravitational d.o.f. identified with the "conformal two-metric"

Our focus

A particular example of $2+2$ formulation of gravity: $l c_{2}$ gravity [Scherk-Schwarz' 75]

Light-cone gravity à la Scherk-Schwartz

- Light-cone gauge: Set the "minus" components to zero

$$
g_{--}=g_{-i}=0, \quad(i=1,2)
$$

$$
10-3=7
$$

Parametrization

$$
g_{+-}=-e^{\phi}, \quad g_{i j}=e^{\psi} \gamma_{i j}
$$

$\phi, \psi, \gamma_{i j}$ are real and $\operatorname{det} \gamma_{i j}=1$

Light-cone metric

$$
\begin{gathered}
d S_{L C}^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=-2 e^{\phi} d x^{+} d x^{+}+g_{++}\left(d x^{+}\right)^{2}+g_{+i} d x^{+} d x^{i}+e^{\psi} \gamma_{i j} d x^{i} d x^{j} \\
\text { given in terms of } 7 \text { functions }\left\{\phi, \psi, \gamma_{i j}, g_{++}, g_{+i}\right\}
\end{gathered}
$$

- " $2+2$ " split of the Einstein field equations $R_{\mu \nu}=0$ [Sachs, d'Inverno-Smallwood, ...]

Dynamical equations: $R_{i j}=0$
Constraint equations: $R_{--}=R_{-i}=0$
Subsidiary equations: $R_{++}=R_{+i}=0$
Trivial equations: $R_{+-}=0$

Gravity in the light-cone gauge

Light-cone metric

$$
d S_{L C}^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=-2 e^{\phi} d x^{+} d x^{+}+g_{++}\left(d x^{+}\right)^{2}+g_{+i} d x^{+} d x^{i}+e^{\psi} \gamma_{i j} d x^{i} d x^{j}
$$ given in terms of 7 functions $\left\{\phi, \psi, \gamma_{i j}, g_{++}, g_{+i}\right\}$

- Fourth gauge choice

$$
\phi=\frac{\psi}{2}
$$

- Constraint equation $R_{--}=0$ allows us to integrate ${ }^{\dagger}$ out ψ

$$
\psi=\frac{1}{4} \frac{1}{\partial_{-}^{2}}\left(\partial_{-} \gamma^{i j} \partial_{-} \gamma^{i j}\right)
$$

- Solve rest of the constraints to express the Einstein-Hilbert action as $\mathcal{S}\left[\gamma_{i j}\right]$
- Gravitational d.o.f. identified with the "conformal two-metric" $\gamma_{i j}$

[^0]
Light-cone action for gravity

- Expand Einstein-Hilbert action perturbatively

$$
\gamma_{i j}=\left(e^{\kappa H}\right)_{i j}, \quad H=\left(\begin{array}{ll}
h_{11} & h_{12} \\
h_{12} & h_{22}
\end{array}\right) ; \quad h_{22}=-h_{11}
$$

Complexify

$$
h=\frac{1}{\sqrt{2}}\left(h_{11}+i h_{12}\right), \quad \bar{h}=\frac{1}{\sqrt{2}}\left(h_{11}-i h_{12}\right)
$$

- Light-cone Lagrangian

$$
\mathcal{L}=\frac{1}{2} \bar{h} \square h+2 \kappa \bar{h} \partial_{-}^{2}\left(\frac{\bar{\partial}}{\partial_{-}} h \frac{\bar{\partial}}{\partial_{-}} h-h \frac{\bar{\partial}^{2}}{\partial_{-}^{2}} h\right)+c . c .+ \text { higher order terms }
$$

h and \bar{h} represent gravitons of helicity +2 and -2 respectively

- Poisson brackets

$$
[h(x), \bar{h}(y)]=\epsilon\left(x^{-}-y^{-}\right) \delta^{(2)}(x-y), \quad[h(x), h(y)]=[\bar{h}(x), \bar{h}(y)]=0
$$

BMS symmetry from residual gauge invariance

Is there any residual reparameterization freedom $x^{\mu} \rightarrow x^{\mu}+\xi^{\mu}$ left?

- Light-cone action for gravity

$$
\mathcal{S}[h, \bar{h}]=\int d^{4} x\left\{\frac{1}{2} \bar{h} \square h+2 \kappa \bar{h} \partial_{-}^{2}\left(\frac{\bar{\partial}}{\partial_{-}} h \frac{\bar{\partial}}{\partial_{-}} h-h \frac{\bar{\partial}^{2}}{\partial_{-}^{2}} h\right)+c . c .+\cdots\right\}
$$

- Residual reparameterizations

$$
\begin{aligned}
\xi^{+} & =f=\frac{1}{2} x^{+} \partial_{i} Y^{i}+T\left(x^{k}\right) \\
\xi^{i} & =-\partial_{k} f \frac{1}{\partial_{-}}\left(g_{-+} g^{i k}\right)+Y^{i}\left(x^{k}\right) \\
\xi^{-} & =-\partial_{i} Y^{i} x^{-}+\left(\partial_{+} \xi_{i}\right) x^{i}
\end{aligned}
$$

BMS symmetry from residual gauge invariance

Is there any residual reparameterization freedom $x^{\mu} \rightarrow x^{\mu}+\xi^{\mu}$ left?

- Light-cone action for gravity

$$
\mathcal{S}[h, \bar{h}]=\int d^{4} x\left\{\frac{1}{2} \bar{h} \square h+2 \kappa \bar{h} \partial_{-}^{2}\left(\frac{\bar{\partial}}{\partial_{-}} h \frac{\bar{\partial}}{\partial_{-}} h-h \frac{\bar{\partial}^{2}}{\partial_{-}^{2}} h\right)+c . c .+\cdots\right\}
$$

- Residual reparameterizations

$$
\begin{aligned}
\xi^{+} & =f=\frac{1}{2} x^{+} \partial_{i} Y^{i}+T\left(x^{k}\right) \\
\xi^{i} & =-\partial_{k} f \frac{1}{\partial_{-}}\left(g_{-+} g^{i k}\right)+Y^{i}\left(x^{k}\right) \\
\xi^{-} & =-\partial_{i} Y^{i} x^{-}+\left(\partial_{+} \xi_{i}\right) x^{i}
\end{aligned}
$$

- The light-cone gravity action invariant

$$
\delta_{\xi} \mathcal{S}[h, \bar{h}]=0
$$

iff $\partial^{2} Y=0 \Rightarrow$ only Lorentz rotations (no superrotations)
Only one arbitrary constant: $T\left(x^{i}\right)$

Light-cone representation of the BMS algebra

- Light-cone Poincaré algebra

$$
\begin{aligned}
\mathbb{K}: & \left\{P, \bar{P}, P^{+}, J^{12}, J^{+}, \bar{J}^{+}, J^{+-}\right\} \\
\mathbb{D}: & \left\{P^{-} \equiv H, J^{-}, \bar{J}^{-}\right\} \\
{[\mathbb{K}, \mathbb{K}]=\mathbb{K}, } & {[\mathbb{K}, \mathbb{D}]=\mathbb{D}, \quad[\mathbb{D}, \mathbb{D}]=0 . }
\end{aligned}
$$

- Light-cone BMS algebra

$$
\begin{aligned}
\mathbb{K} & \rightarrow \mathbb{K}, \\
\mathbb{D} & \rightarrow \mathbb{D}(T), \\
{[\mathbb{K}, \mathbb{K}]=\mathbb{K}, \quad[\mathbb{K}, \mathbb{D}(T)] } & =\mathbb{D}(T), \quad[\mathbb{D}(T), \mathbb{D}(T)]=0 .
\end{aligned}
$$

Dynamical part enhanced to infinite-dim supertranslations labeled by a single parameter

- Poincaré part of the BMS

$$
\partial^{2} T=\bar{\partial}^{2} T=0
$$

$\Rightarrow \mathbb{D}(T)$ reduces to $\mathbb{D}:\left\{H, J^{-}, \bar{J}^{-}\right\} \quad \rightarrow \quad$ the three "Hamiltonians" of Dirac [Ananth, Brink and SM; arXiv:2012.07880 and 2101.00019]

Does $(2+2)$ equal $(3+1)$?

(3+1): Asymptotic symmetries at spatial infinity

- Symmetry \equiv invariance of symplectic form or Hamiltonian action
- Boundary value problem on a Cauchy hypersurface
- Spin 1: Must include a surface dof $\bar{\Psi}$ to obtain full $U(1)$ gauge symmetries Setting $\bar{\Psi}$ to zero amounts to improper gauge fixing
- Spin 2: Supertranslations obtained without any extra surface degrees of freedom

(2+2): Residual gauge symmetries in light-cone formulation

- Symmetry \equiv invariance of light-cone action
- Characteristic initial value problem on a null hypersurface
- Spin 1: Must include the zero mode α to obtain all residual gauge symmetries

Setting α to zero amounts to residual gauge fixing

- Spin 2: Supertranslations obtained without reintroducing the zero modes

Some concluding remarks...

Connections with amplitudes

- Action in terms of helicity states - closer to on-shell physics
- Various applications- MHV Lagrangians, KLT relations, Double copy methods
[Gorsky-Rosly, Ananth-Theisen, Ananth-Kovacs-Parikh, ...]

Some concluding remarks...

Connections with amplitudes

- Action in terms of helicity states - closer to on-shell physics
- Various applications- MHV Lagrangians, KLT relations, Double copy methods [Gorsky-Rosly, Ananth-Theisen, Ananth-Kovacs-Parikh, ...]

Self-dual, Anti self-dual and all that

- Closely related to Chalmers-Seigel action, double copy construction for SD sectors
[Campiglia-Nagy '21]
- Double copy for BMS symmetries [work in progress]
- Newmann-Penrose formalism [work in progress], Weyl double copy, ...

Some concluding remarks...

Connections with amplitudes

- Action in terms of helicity states - closer to on-shell physics
- Various applications- MHV Lagrangians, KLT relations, Double copy methods [Gorsky-Rosly, Ananth-Theisen, Ananth-Kovacs-Parikh, ...]

Self-dual, Anti self-dual and all that

- Closely related to Chalmers-Seigel action, double copy construction for SD sectors
[Campiglia-Nagy '21]
- Double copy for BMS symmetries [work in progress]
- Newmann-Penrose formalism [work in progress], Weyl double copy, ...

Formal (2+2) Hamiltonian analysis

- Initial (boundary) value problem
- Role of gauge constraints, zero modes, etc. [work in progress]
- Dictionary between residual gauge symmetries in $(2+2)$ with asymptotic symmetries

Stay tuned...

Initial value problem in the front-from

- How does it compare with the initial value problem in the instant form?
- What is the equivalent of Cauchy hypersurfaces in the front form?
- Can we quantize the theory on a single front?

[Nagarajan-Goldberg '85]

Stay tuned...

Initial value problem in the front-from

- How does it compare with the initial value problem in the instant form?
- What is the equivalent of Cauchy hypersurfaces in the front form?
- Can we quantize the theory on a single front?

[Nagarajan-Goldberg '85]

Work in progress with

Glenn Barnich, Bruxelles

Simone Speziale, Marseille

Wen-Di Tan, Bruxelles

Thank you!

APPENDIX

Light-cone Hamiltonian for gravity

- Closed form expression

$$
\begin{aligned}
S\left[\gamma_{i j}\right]= & \frac{1}{2 \kappa^{2}} \int d^{4} x e^{\psi}\left(2 \partial_{+} \partial_{-} \phi+\partial_{+} \partial_{-} \psi-\frac{1}{2} \partial_{+} \gamma^{i j} \partial_{-} \gamma_{i j}\right)-\frac{1}{2} e^{\phi-2 \psi} \gamma^{i j} \frac{1}{\partial_{-}} R_{i} \frac{1}{\partial_{-}} R_{j} \\
& -e^{\phi} \gamma^{i j}\left(\partial_{i} \partial_{j} \phi+\frac{1}{2} \partial_{i} \phi \partial_{j} \phi-\partial_{i} \phi \partial_{j} \psi-\frac{1}{4} \partial_{i} \gamma^{k l} \partial_{j} \gamma_{k l}+\frac{1}{2} \partial_{i} \gamma^{k l} \partial_{k} \gamma_{j l}\right)
\end{aligned}
$$

where

$$
R_{i} \equiv e^{\psi}\left(\frac{1}{2} \partial_{-} \gamma^{j k} \partial_{i} \gamma_{j k}-\partial_{-} \partial_{i} \phi-\partial_{-} \partial_{i} \psi+\partial_{i} \phi \partial_{-} \psi\right)+\partial_{k}\left(e^{\psi} \gamma^{j k} \partial_{-} \gamma_{i j}\right)
$$

- Conjugate momenta

$$
\pi=\frac{\delta \mathcal{L}}{\delta\left(\partial_{+} h\right)}=-\partial_{-} \bar{h}, \quad \bar{\pi}=\frac{\delta \mathcal{L}}{\delta\left(\partial_{+} \bar{h}\right)}=-\partial_{-} h
$$

($\pi, \bar{\pi}$) not independent variables \Rightarrow Half the d.o.f than in the ADM formalism

- Light-cone Hamiltonian for gravity

$$
\mathcal{H}=\partial \bar{h} \bar{\partial} h+2 \kappa \partial_{-}^{2} \bar{h}\left(h \frac{\bar{\partial}^{2}}{\partial_{-}^{2}} h-\frac{\bar{\partial}}{\partial_{-}} h \frac{\bar{\partial}}{\partial_{-}} h\right)+c . c .+\mathcal{O}\left(\kappa^{2}\right)
$$

- Poisson brackets

$$
[h(x), \bar{h}(y)]=\epsilon\left(x^{-}-y^{-}\right) \delta^{(2)}(x-y), \quad[h(x), h(y)]=[\bar{h}(x), \bar{h}(y)]=0
$$

BMS symmetry from residual gauge invariance

Is there any residual reparameterization freedom $x^{\mu} \rightarrow x^{\mu}+\xi^{\mu}$ left?

- First gauge condition holds

$$
g_{--}=0 \quad \Rightarrow \quad \partial_{-} \xi^{+}=0 \quad \Rightarrow \quad \xi^{+}=f\left(x^{+}, x^{j}\right)
$$

Second gauge condition $g_{-i}=0$ gives

$$
\partial_{-} \xi^{j} g_{i j}+\partial_{i} \xi^{+} g_{+-}=0
$$

Fourth gauge condition fixes x^{+}dependence of $f\left(x^{+}, x^{j}\right)$

- Residual reparameterizations

$$
\begin{aligned}
\xi^{+} & =f=\frac{1}{2} x^{+} \partial_{i} Y^{i}+T\left(x^{k}\right) \\
\xi^{i} & =-\partial_{k} f \frac{1}{\partial_{-}}\left(g_{-+} g^{i k}\right)+Y^{i}\left(x^{k}\right) \\
\xi^{-} & =-\partial_{i} Y^{i} x^{-}+\left(\partial_{+} \xi_{i}\right) x^{i}
\end{aligned}
$$

- The light-cone gravity action invariant

$$
\delta_{\xi} \mathcal{S}[h, \bar{h}]=0
$$

iff $\partial^{2} Y=0 \Rightarrow$ only Lorentz rotations (no superrotations)
Only one arbitrary constant: $T\left(x^{i}\right)$

BMS algebra in light-cone gravity

- BMS transformation law (on the initial surface $x^{+}=0$),

$$
\begin{aligned}
\delta_{Y, \bar{Y}, T} h= & Y(x) \bar{\partial} h+\bar{Y}(\bar{x}) \partial h+(\partial \bar{Y}-\bar{\partial} Y) h+T \frac{\partial \bar{\partial}}{\partial_{-}} h \\
& -2 \kappa T \partial_{-}\left(h \frac{\bar{\partial}^{2}}{\partial_{-}^{2}} h-\frac{\bar{\partial}}{\partial_{-}} h \frac{\bar{\partial}}{\partial_{-}} h\right)-2 \kappa T \frac{1}{\partial_{-}}\left(\frac{\partial^{2}}{\partial_{-}^{2}} \bar{h} \partial_{-}^{2} h\right) \\
& -2 \kappa T \frac{\partial^{2}}{\partial_{-}^{3}}\left(\bar{h} \partial_{-}^{2} h\right)+4 \kappa T \frac{\partial}{\partial_{-}^{2}}\left(\frac{\partial}{\partial_{-}} \bar{h} \partial_{-}^{2} h\right)+\mathcal{O}\left(\kappa^{2}\right)
\end{aligned}
$$

- Symmetry algebra

$$
\left[\delta\left(Y_{1}, \bar{Y}_{1}, T_{1}\right), \delta\left(Y_{2}, \bar{Y}_{2}, T_{2}\right)\right] h=\delta\left(Y_{12}, \bar{Y}_{12}, T_{12}\right) h
$$

with parameters

$$
\begin{aligned}
Y_{12} & \equiv Y_{2} \bar{\partial} Y_{1}-Y_{1} \bar{\partial} Y_{2} \\
\bar{Y}_{12} & \equiv \bar{Y}_{2} \partial \bar{Y}_{1}-\bar{Y}_{1} \partial \bar{Y}_{2} \\
T_{12} & \equiv\left[Y_{2} \bar{\partial} T_{1}+\bar{Y}_{2} \partial T_{1}+\frac{1}{2} T_{2}\left(\bar{\partial} Y_{1}+\partial \bar{Y}_{1}\right)\right]-(1 \leftrightarrow 2)
\end{aligned}
$$

\rightarrow BMS algebra from residual gauge invariance without reintroducing the zero modes

[^0]: ${ }^{\dagger}$ All integration constants set to zero assuming asymptotically flat boundary conditions

