The 4d Chern-Simons Perspective of Integrability in Gauge Theories

Nafiz Ishtiaque

IHES

May 24, 2022

French Strings Meeting, LAPTh, Annecy

Based on arXiv:2110.15112, arxiv:2211.00049 and ongoing works with

K Costello, S Jeong, A Khan, S Komatsu, S. F. Moosavian, J Yagi, and Y. Zhou.

Main motivation

Reach an elementary understanding of why integrable spin chain structures show up in various supersymmetric QFTs.

Some examples:

- Bethe/Gauge correspondence (Certain gauge theory vacua \sim Bethe states of spin chains) [Nekrasov-Shatashvili '09, Nekrasov '18]
- Yangians from quantized monopole operators in 3d ${\cal N}=4.$ [Bullimore-Dimofte-Gaiotto '15, Braverman-Finkelberg-Nakajima '16]
- R-matrix from Janus interfaces. [Dedushenko-Nekrasov '21]
- $\label{eq:general-constraint} \begin{array}{l} \circ & \Omega \mbox{-deformed 4d $\mathcal{N}=2$ theories with/without surface defects} \\ \mbox{[Jeon-Lee-Nekrasov '21, '23, Nekrasov-Tsymbaliuk '21], [Seiberg-Witten '94, Nekrasov-Witten '10, Chen-Dorey-Hollowood-Lee '11].} \end{array}$
- $\circ~$ Gaudin model and chiral $\beta\gamma\text{-theory}$ with critical Affince Kac-Moody current algebra [Feigin-Frenkel-Reshetikhin '94].

o ...

2d Bethe/Gauge Correspondence for *compact* \mathfrak{gl}_n Spin Chain

Vacua of massive 2d $\mathcal{N} = (4, 4) A_n$ -quiver theory = Bethe eigenstates of \mathfrak{gl}_n Spin Chains. [Nekrasov-Shatashvili '09]

Aganagic-Okounkov '16, '17, Bullimore-Kim-Lukowski '17, Dedushenko-Nekrasov '21]

Bethe/Gauge Correspondence for compact $\mathfrak{gl}_{m|n}$ Spin Chain

Vacua of massive 2d $\mathcal{N} = (2, 2) A_{m|n}$ -quiver theory = Bethe eigenstates of $\mathfrak{gl}_{m|n}$ Spin Chains. [Nekrasov '18]

3d Monopoles and *noncompact* \mathfrak{gl}_n Spin Chain

Monopole operators in 3d $\mathcal{N} = 4 A_n$ quiver gauge theories generate a Yangian algebra $Y(\mathfrak{gl}_n)$.¹ [Bullimore-Dimofte-Gaiotto '15, Braverman-Finkelberg-Nakajima '16] The algebra acts on verma modules spanned by vortex configurations. [Bullimore-Dimofte-Gaiotto-Hilburn-Kim '18]

$$Y(\mathfrak{gl}_n) \curvearrowright \mathcal{H} := \bigoplus_{\mathfrak{m}} H^{ullet}_{T_{vortex}}(\mathcal{M}_{vortex}(\mathfrak{m}))$$

 $\mathcal H$ can be interpreted as the Hilbert space of a *noncompact* integrable \mathfrak{gl}_n spin chain.

١

¹A shifted truncated version to be exact.

Cartoon of the action of a monopole operator on a vortex:

Vortices in the 3d theory define states at transverse boundaries. Monopole operators act by changing the vortices.

Vortices = Bethe states.

These two bosonic (A_n) correspondences are talking about closely related spin chains.

The gauge theories however are not obviously related.

A generalization of the 3d monopole algebra to include the $Y(\mathfrak{gl}_{m|n})$ case is not obvious.

Look for a unifying explanation that also naturally includes the super case.

Our Approach

A central tool: 4d Chern-Simons (CS) theory

A 4d gauge theory that is topological in two directions and holomorphic in the remaining directions, has the action:

$$S_{4dCS} := rac{1}{\hbar} \int_{\mathbb{R}^2 imes \mathbb{C}} \mathrm{d}z \operatorname{tr} \left(A \mathrm{d}A + rac{2}{3} A^3
ight) \, .$$

The gauge field is complex:

$$A \in \Omega^1(\mathbb{R}^2 \times \mathbb{C}) \otimes \mathfrak{gl}_n$$
.

The gauge group is GL_n .

Two key results:

Yang-Baxter from line operators

Line operators in 4d CS theory satisfy Yang-Baxter equations.

[Costello-Witten-Yamazaki '17]

Brane construction of 4d GL_n Chern-Simons

4d GL_n CS is the the world-volume theory of a stack of n D5 branes in Ω -background. [Costello-Yagi '18]

The previous result generalizes.

Brane construction of 4d $GL_{m|n}$ Chern-Simons

A stack of *m* D5 branes and a *rotated* stack of *n* D5 branes reduce, in an Ω -background, to 4d CS with $GL_{m|n}$ gauge group.

Line Operators in 4d CS

D3 branes ending on the D5 branes create 3d BPS defects in 6d $\mathcal{N} = (1, 1)$ SYM $\xrightarrow{\Omega$ -deformation} line operators in the 4d CS theory.

Representations labeling line operators are determined by locations of the D3 branes in the $\mathbb C$ direction.

 Ω -deformation essentially means looking at a subsector protected by a supercharge Q_{\hbar} that squares to a space-time rotation:

$$Q_{\hbar}^2=\hbar J_{\mathsf{U}(1)}$$
 .

Atop the the D3-D5 configuration just mentioned, there's a tower of F1 string configurations that are supersymmetric, and provides the states in the spin chain Hilbert space.

Brane construction for a spin chain with L sites.

We Have The Spin Chain, What's Next?

Course of action

Map the supersymmetric F1-D3-D5 configurations to other supersymmetric configurations by applying string dualities and see what interpretations these new configurations have in terms of various D-brane world-volume theories.

2d Bethe/Gauge Correspondence for Superspin Chains

Application of an S and a T duality transforms the spin chain setup into a D2-D4-NS5 setup:

The world-volume theory of the D2 branes is a 2d $\mathcal{N}=(2,2)$ quiver gauge theory. [Hanany-Hori]

Quiver $Q_L(2,3,\cdots,1,2,1,\cdots,1,3)$ from the above brane diagram.

2d Bethe/Gauge Correspondence for Superspin Chains

Bethe/Gauge corr. for noncompact $GL_{m|n}$ spin chains

Supersymmetric F1s $\xrightarrow{T \circ S}$ Supersymmetric D2s = Vacua of the 2d theory (the D2 world-volume theory).

- Vacua of the massive 2d theory correspond to (flavor) equivariant cohomology of the Higgs branch.
- Full spectrum of line operators in the 4d CS is generated by all possible supersymmetric F1 configurations.
- Dually, the full spectrum corresponds to the vacua of all gauge theories found by varying ranks.

 $GL_{m|n}$ spin chain spectrum =

$$\bigoplus_{I} H^{\bullet}_{T_{F}}(\mathcal{M}_{\mathsf{Higgs}}(Q(\mathsf{ranks})))$$

ranks

3d Monopoles

Apply S-duality to the F1-D3-D5 spin chain configuration turning it into a D1-D3-NS5 configuration. (For simplicity) look at the D3 $_+$ branes:

This leads to 3d $\mathcal{N}=4$ quiver gauge theories. [Hanany-Witten '96]

3d Monopoles

Monopole Operators and Yangians

Supersymmetric F1s \xrightarrow{S} Supersymmetric D1s = Vortices. Monopole operators create and destroy vortices. \Downarrow Monopole operators generate an integrable spin chain spectrum, i.e., a representation of the Yangian.

Vacuum Branches and Spin Chains

Any Ω -deformed Hanany-Witten type D3-NS5 configuration = S dual to a line operator in 4d CS. The Line operator is given by:

$$S_{
m 4dCS}+rac{1}{\hbar}\int_{\mathbb{R}} p^i\wedge dq_i\,,$$

where

$$(p^i,q_i):\mathbb{R} o\mathcal{M}_{\mathsf{Higgs}}(\mathcal{T})$$

are the local momentaum/position coordinates on the Higgs branch of a 3d $\mathcal{N}=4$ theory.

Geometric Characterization of Integrable Spins

Phase spaces of line operators in 4d CS \sim Phase space of spins in integrable spin chains \sim Cherkis bow varieties (a generalization of quiver varieties)

A Couple of Exemplary Vacuum Branches

T-operator in \mathfrak{gl}_n spin chain

Figure 1: $\mathcal{M}_{\text{Higgs}} = T^* \text{Fl}_n$, where Fl_n is the complete Flag variety with framing *n*. Recall the classical result that geometric quantization of these flag varieties provide the usual representations of \mathfrak{gl}_n – what we want for T-operators/Wilson lines.

Q-operator in \mathfrak{gl}_n spin chain

Figure 2: $\mathcal{M}_{\text{Higgs}} = T^* \mathbb{C}^{n-1}$. Its quantization therefore produces n-1 decoupled oscillators, what we want for *Q*-operators/'t Hooft lines [Bazhanov et al. '11, Costello-Gaiotto-Yagi '21].

Summary of Results and Outlooks

- 2d Bethe/gauge correspondence for non-compact A-type superspin chains.
- Proposal for new quiver varieties to study geometric representation theory of Yangians of A-type Lie superalgebras.
- Relating Bethe/gauge correspondence to quantization of monopole operators (supercase ongoing).
- A geometric classification of representations in integrable spin chains in terms of Cherkis bow varieites (supercase ongoing).
- Chiral defects in 4d CS leads to spin chain Gaudin correspondence (ongoing).
- $\circ~$ Computing elliptic R-matrices for $\mathfrak{gl}_{m|n}\text{-spin}$ chains from Janus interfaces in 3d $\mathcal{N}=2$ theories (ongoing).
- Making various stacks of D-branes infinitely heavy leads to holographic setup and we can look for look for integrable degrees of freedom in twisted gravitational theories.

Thank You!