#### REVIEW TALK: Realistic vacua in the string theory landscape

#### Severin Lüst Laboratoire Charles Coulomb

French Strings Meeting 2023 LAPTh, Annecy, May 24

#### **REALISTIC STRING VACUA**

Any realistic string theory vacuum should have (at least):

- Four macroscopic spacetime dimensions (obviously)
- broken / no supersymmetry
- dark energy / positive cosmological constant
- ► Standard Model matter (gauge groups, chiral fermions, ...)

#### **REALISTIC STRING VACUA**

Any realistic string theory vacuum should have (at least):

- ► four macroscopic spacetime dimensions (obviously)
- broken / no supersymmetry
- dark energy / positive cosmological constant
- Standard Model matter (gauge groups, chiral fermions, ...)

#### **KNOWN STRING VACUA**

String vacua that we understand well have:

- ► extended ( $\mathcal{N} \ge 2$ ) supersymmetry
- negative or vanishing cosmological constant (AdS or Mink.)

side note:

SUSY breaking and positive vacuum energy (e.g. de Sitter) are related (no SUSY algebra with unitary representations in de Sitter)

Unknown whether string theory has stable

non-SUSY vacua! de Sitter vacua!

#### **NON-SUPERSYMMETRIC STRING THEORY**

- ► Bosonic string
  - Target space tachyon!
- ► Type 0 string
  - Target space tachyon!
- ►  $O(16) \times O(16)$  Heterotic string
  - String frame: positive cosmological constant
  - Einstein frame:  $V \sim e^{-5\phi/2}$  (run-away!)
- Scherk-Schwarz supersymmetry breaking
  - anti-periodic fermion boundary conditions on circle

• Potential for radius: 
$$V \sim -\frac{1}{R^{\alpha}}$$
 (run-away!)



Fundamental problem of string compactifications:

Moduli! massless scalar fields (e.g. dilaton, comp. volume, ...)

Broken Supersymmetry:

Quantum effect: generate a potential for moduli!

assume:

 $\phi \to \infty$ : weakly coupled regime, SUSY restored, effective tree-level description valid

[Dine, Seiberg '85]

at tree (classical) level

$$\Rightarrow \qquad \lim_{\phi \to \infty} V =$$

[Dine, Seiberg '85]

potential from first order quantum corrections:

. . . . . . . . . . . . .

 $\lim_{\phi \to \infty} V = 0$ 

[Dine, Seiberg '85]

potential from first order quantum corrections:

 $\lim_{\phi \to \infty} V = 0$ 











#### 





de Sitter vacua from quantum corrections only at strong coupling!

higher order corrections: generally only known for extended SUSY ( $\mathcal{N} \ge 2$ )!

"when corrections can be computed, they are not important, and when they are important, they cannot be computed" F. Denef, Les Houches Lecture, 2008

#### FLUX COMPACTIFICATION:

► Alternative strategy:

Stabilize moduli at the classical level!



non-vanishing p-form field strengths  $F_{m_1...m_p} \neq 0$ along cycles of the internal geometry

► Fluxes generate a potential:

$$V_F \sim \int \sqrt{g} g^{m_1 n_1} \dots g^{m_p n_p} F_{m_1 \dots m_p} F_{n_1 \dots n_p}$$

► Dependence on volume  $V \sim r^d$ :

$$V_F \sim r^{-d-2p} \int F^2$$

*runaway* towards decompactification!

#### FLUX COMPACTIFICATION AND DE SITTER NO-GO

Balance against potential from internal curvature:

$$V_R \sim r^{-2-d} \int R$$

Schematic form of the overall potential (fluxes + curvature):

$$V = \sum_{p} r^{-2p-d} \int F_{p}^{2} - r^{-2-d} \int R$$

► For V > 0 (and  $p \ge 1$ ) this potential satisfies

$$\frac{|V'|}{V} \ge \frac{d+2}{\phi} \quad \longrightarrow \text{ no de Sitter minima!}$$

(AdS minima are easily possible, e.g. Freund-Rubin type  $AdS_{D-d} \times S^d$ )

#### DE SITTER NO-GO

► [Maldacena, Nuñez '00]:

From any two-derivative supergravity there is no smooth compactification to de Sitter!

de Sitter vacua from String Theory must involve:
 a) quantum effects

OY

b) stringy ingredients (higher-derivative terms, O-planes, ...)

Danger of Dine-Seiberg like control issues!

Swampland de Sitter conjecture [Obied, Ooguri, Spodyneiko, Vafa '18]

$$\frac{|\nabla V|}{V} \ge \mathcal{O}(1)$$

Likely true in asymptotic limits but not necessarily everywhere in field space

#### **DE SITTER CONSTRUCTIONS**

new strategy:

combine different effects (classical + corrections) to avoid Dine-Seiberg!

► two main competitors (both in IIB or F-theory):

- *KKLT* [Kachru, Kallosh, Linde, Trivedi '03]
- Large Volume Scenario (LVS)
   [Balasubramanian, Berglund, Conlon, Quevedo '05]
- many other ideas (not in this talk)
  - *classical* [Danielson et al. '11], [Andriot '19] for reviews
  - *non-geometric* e.g. [de Carlos, Guarino, Moreno '09]

# DE SITTER FROM IIB KKLT (AND LVS)

#### **IIB DE SITTER VACUA**

Three step procedure [KKLT '03]

- 1. Calabi-Yau orientifold with complex structure-moduli stabilized by three-form fluxes
- 2. Stabilize Kähler moduli by
  - a) non-perturbative quantum effects (KKLT)
  - b)  $\alpha'$  corrections (LVS)
  - → (supersymmetric) AdS-vacuum
- 3. Supersymmetry breaking by an anti-D3-brane at the bottom of a warped throat
  - $\rightarrow$  exp. suppressed uplift to dS due to strong warping

#### **COMPACTIFICATION ON CALABI-YAU MANIFOLDS**

► IIB on Calabi-Yau:

$$M_{10} = M_4 \times CY_3$$



- ➡ 4d N=2 supergravity
- many massless scalar fields (moduli):
  - $h^{1,1}$  Kähler moduli (volumes of 2 or 4-cycles)
  - $h^{2,1}$  complex structure moduli (volumes of 3-cycles)

very well understood!

(moduli space geometry, quantum corrections, Mirror symmetry, BPS states, ...)

#### SUPERSYMMETRY BREAKING FROM ORIENTIFOLDING

- ► divide  $CY_3$  by a discrete involution (i.e.  $\mathbb{Z}_2$  action) combined with world sheet parity  $\Omega_p$  (and  $(-1)^F$ )
- effect A: break SUSY from  $\mathcal{N} = 2$  to  $\mathcal{N} = 1!$
- effect B: fixed points of  $\mathbb{Z}_2$  action:

orientifold planes (O3 and O7)

O-planes carry charge!

Tadpole cancellation condition:

$$N_{D3} - \frac{1}{4}N_{O3} + \frac{1}{2}\int H_3 \wedge F_3 = 0$$

(for O3-planes; generally includes also O7 and D7)

Need D3-branes and/or fluxes!

#### FLUX COMPACTIFICATION

► 3-form fluxes:  $\langle F_3 \rangle \neq 0$ ,  $\langle H_3 \rangle \neq 0$ 

fix volume of 3-cycles (i.e. complex structure moduli!)



► Kinetic term for  $G_3 = F_3 - \tau H_3$ :

$$\mathscr{L}_{kin} \sim \int G_3 \wedge \star \overline{G}_3 \sim \int d^6 y \sqrt{g} g^{il} g^{jm} g^{kn} G_{ijk} \overline{G}_{lmn}$$

depends onClassical potentialCY-metric  $g_{ij}$ for complex structure moduli!

#### THE NO-SCALE POTENTIAL

classical superpotential from fluxes (GVW): [Gukov, Vafa, Witten '99]

$$W = \int G_3 \wedge \Omega \qquad (G_3 = F_3 - \tau H_3)$$

► W depends on complex structure moduli but not on Kähler moduli!

$$\partial_{\rho}W = 0 \Rightarrow D_{\rho}W \sim \frac{1}{\rho - \bar{\rho}}W \qquad \rho: \text{ volume modulus}$$

$$\begin{array}{l} \text{no-scale} \\ \text{structure:} \\ \mathcal{N} = 1 \text{ supergravity potential:} \\ V = e^{K}\left(g^{a\bar{b}}D_{a}W\bar{D}_{\bar{b}}\bar{W} - 3|W|^{2}\right) = e^{K}g^{i\bar{j}}D_{i}W\bar{D}_{\bar{j}}\bar{W} \\ \text{all moduli} \\ \end{array}$$

### KÄHLER MODULI: THE NO-SCALE POTENTIAL (2)

► No-scale potential from fluxes:

$$V = e^{K} g^{i\bar{j}} D_{i} W \bar{D}_{\bar{j}} \bar{W} -$$

depends only on *complex structure* moduli!

potential for Kähler moduli only from quantum or stringy corrections!

► KKLT: non-perturbative corrections to superpotential  $W = \int G_3 \wedge \Omega + \sum_{\mathbf{k}} \mathscr{A}_{\mathbf{k}}(z^i, G_3) \ e^{-2\pi k^{\alpha} T_{\alpha}} \quad \text{Kähler moduli}$ 



avoid control problems à la Dine-Seiberg by balancing corrections against classical terms?

#### KKLT: KÄHLER MODULI STABILIZATION [Kachru, Kallosh, Linde, Trivedi '03]

 $W = W_0 + Ae^{ia\rho}$ 

► Example: one Kähler modulus  $\rho = i\sigma$ 

$$W_0 = \left\langle W_{\text{flux}} \right\rangle = \left\langle \int G_3 \wedge \Omega \right\rangle$$

> F-term condition: 
$$D_{\rho}W = 0$$
  
 $W_0 = -Ae^{-a\sigma}\left(1 + \frac{2}{3}a\sigma\right)$ 

Balance classical  $W_0$ against non-pert.  $e^{-a\sigma}$  $\rightarrow$  avoid Dine-Seiberg

AdS minimum:

$$V_{AdS} = -3e^{K}W^2 = -\frac{a^2A^2e^{-2a\sigma}}{6\sigma}$$

#### **ANTI-BRANE UPLIFT**

► so far: AdS vacuum ( $\mathcal{N} = 1$  supersymmetric for KKLT)



#### **ANTI-BRANE UPLIFT**

► so far: AdS vacuum ( $\mathcal{N} = 1$  supersymmetric for KKLT)



next: raise vacuum energy (and break SUSY)

add an anti-D3-brane:

(D3-brane with negative charge)

contribution to potential:

 $V_{\overline{D3}} \sim \frac{1}{\sigma^3} T_{D3}$ 

#### **ANTI-BRANE UPLIFT**

► so far: AdS vacuum ( $\mathcal{N} = 1$  supersymmetric for KKLT)



next: raise vacuum energy (and break SUSY)

add an anti-D3-brane: (D3-brane with negative charge)  $\sim contribution to potential:$  $<math>V_{\overline{D3}} \sim \frac{1}{\sigma^3} T_{D3}$ 

> Problem: potential for  $\sigma$  too shallow,  $\overline{D3}$  too heavy!

► Three-form fluxes in IIB

$$\int_{(A_I,B^I)} F_3 = (M^I, M_I) \in \mathbb{Z} \qquad \int_{(A_I,B^I)} H_3 = (K^I, K_I) \in \mathbb{Z}$$

$$A_I, B^I: \text{ symplectic basis of 3-cycles on the CY}$$

$$(I = 0, \dots, h^{2,1})$$

back-reaction: warped background:

A: warp factor  $ds_{10}^{2} = e^{2A}ds_{4}^{2} + e^{-2A}ds_{6}^{2}$   $F_{5} = (1 + \star)vol_{4} \wedge de^{4A}$ Calabi-Yau (orbifold) metric

Solution: use back-reaction of fluxes to create region with large redshift in Calabi-Yau



Solution: use back-reaction of fluxes to create region with large redshift in Calabi-Yau

(local) geometry described by *Klebanov-Strassler* throat:

$$e^{4A} \sim \exp\left(-\frac{8\pi K}{g_s M}\right)$$



Solution: use back-reaction of fluxes to create region with large redshift in Calabi-Yau

(local) geometry described by *Klebanov-Strassler* throat:

$$e^{4A} \sim \exp\left(-\frac{8\pi K}{g_s M}\right)$$

$$\overline{D3}$$
 potential in warped throat:  
 $V_{\overline{D3}} \sim \frac{1}{\sigma^3} e^{4A} T_{D3}$ 



Solution: use back-reaction of fluxes to create region with large redshift in Calabi-Yau



# **DISCUSSION** RECENT DEVELOPMENTS AND ISSUES

#### **CONCRETE REALISATIONS IN THE LANDSCAPE**

► Flux Landscape:

Huge combinatorial number of possible Calabi-Yau and flux choices

 $> 10^{500}$ 



- Promises high statistical probability to find meta-stable KKLT / LVS de Sitter vacuum [Ashok, Douglas '03], [Denef, Douglas '04]
- Only few concrete realisations (difficult for models with many moduli) KKLT/LVS are rather scenarios than concrete models
- Impressive recent efforts for KKLT AdS vacua [Demirtas, Kim, McAllister, Moritz, Rios-Tascon '21]

#### TADPOLE BOUNDS

► Fluxes are constraint by tadpole cancellation condition:

$$\frac{1}{2}\int H_3 \wedge F_3 + Q_{loc} = 0$$

► Tadpole conjecture: [Bena, Blåbäck, Graña, SL '20]

 $\frac{1}{2}\int H_3 \wedge F_3$  grows faster than  $Q_{\text{loc}}$  with the number of moduli

► If, true: Landscape much smaller than anticipated!

*more difficult to obtain required fine-tuning* 

 [Graña, Grimm, van de Heisteeg, Herraez, Plauschinn '22]
 Confirmed in asymptotic limits in moduli space
 also in deep interior? [SL, Wiesner '22]
 [Marchesano, Prieto, Wiesner '21] [Plauschinn '21] [SL '21]

 $\succ$  LVS:

Careful estimates of the size of relevant corrections:

► KKLT: "Fit" warped throat into Calabi-Yau
[Carta, Moritz, Westphal '18]
[Gao, Hebecker, Junghans '20]
"Singular bulk problem"
Control over supergravity approximation only if  $Q_{\text{loc}} \gg 1$ 

(possible resolution: [Carta, Moritz '20])

[Junghans '22 (2x)] [Gao, Hebecker, Schreyer, Venken '22]

Simultaneous control over all correction requires large  $Q_{loc}$ 

► KKLT with fluxes along the lines of [Demirtas, Kim, McAllister, Moritz '20]: Controlled mass-hierarchy only if  $Q_{\text{loc}} \gg 1$ ?

[Blumenhagen, Gligovic, Kaddachi '22] 27

Bottom-up (EFT) construction that combines different topdown (string theory) ingredients

(fluxes, quantum effects, warped throats, anti-branes, ...)

- Individual ingredients well understood but interaction between ingredients often neglected
- incomplete list of possible issues:
  - warped throats and Kähler moduli stabilisation [Carta, Moritz, Westphal '18] [Gao, Hebecker, Junghans '20]
  - anti-brane uplift and complex structure moduli stabilisation [Bena, Dudas, Graña, SL '18] [Blumenhagen, Kläwer, Schlechter '18]
  - backreaction of fluxes [Randall, SL '22]

► related: no genuine  $\mathcal{N} = 1$  formulation, instead treatment as approximative  $\mathcal{N} = 2$ 

#### **SCALE SEPARATION**

► When can we trust a lower-dimensional EFT description?



 $\rightarrow$  violated for many AdS vacua with extended SUSY (e.g.  $AdS \times S$ )!

Swampland AdS conjecture: [D. Lüst, Palti, Vafa '19] AdS vacua: tower of states with mass  $m_{tower} \sim |\Lambda|^{\alpha}$ 

 $\rightarrow$  same for dS?!  $\rightarrow$  dark dimension scenario

[Montero, Vafa, Valenzuela '19]

KKLT / LVS: appear to satisfy scale separation but: maybe presence of similar tower from warped throat? [Blumenhagen, Gligovic, Kaddachi '22] 29

#### HOLOGRAPHY

► KKLT: Before de Sitter-uplift: SUSY AdS vacuum

*holographically dual CFT?!* 

[Minasian, Tsimpis '99] [Kounnas, Lüst, Petropoulos, Tsimpis '07]

CFT dual to flux vacuum (+ non pert. effects) as system of D5/NS5-branes

[SL, Vafa, Wiesner, Xu '22] count degrees of freedom:

central charge

 $c_{CFT} \lesssim Q_{loc}$  localised D3-charge in tadpole cancellation condition

► AdS/CFT holography:  $|\Lambda_{AdS}| \sim \frac{1}{c_{CFT}^2} \gtrsim \frac{1}{Q_{loc}^2}$  bounded from below!

*no weakly coupled, scale-separated AdS vacua from KKLT?!* 

#### **DE SITTER VACUA UNDER THE LAMPPOST?**

- weakly coupled, geometric, supersymmetric vacua
   only a small fraction of the Landscape
- ► but: no phenomenological reason to focus on these vacua!



We study supersymmetric Calabi-Yau vacua not because we should but because we can...

### THANK YOU!