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REALISTIC STRING VACUA

➤ four macroscopic spacetime dimensions (obviously) 

➤ broken / no supersymmetry 

➤ dark energy / positive cosmological constant 

➤ Standard Model matter (gauge groups, chiral fermions, …)
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Any realistic string theory vacuum should have (at least):
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KNOWN STRING VACUA
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String vacua that we understand well have:

➤ extended ( ) supersymmetry 

➤ negative or vanishing cosmological constant (AdS or Mink.)

𝒩 ≥ 2

SUSY breaking and positive vacuum energy (e.g. de Sitter) are related 
(no SUSY algebra with unitary representations in de Sitter)

side note: 

Unknown whether string theory has stable
de Sitter vacua!

non-SUSY vacua!



NON-SUPERSYMMETRIC STRING THEORY
➤ Bosonic string 

• Target space tachyon! 

➤ Type 0 string  
• Target space tachyon! 

➤  Heterotic string 
• String frame: positive cosmological constant 

• Einstein frame:  (run-away!) 

➤ Scherk-Schwarz supersymmetry breaking 
• anti-periodic fermion boundary conditions on circle 

• Potential for radius:  (run-away!)

O(16) × O(16)

V ∼ e−5ϕ/2

V ∼ −
1

Rα
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DINE-SEIBERG PROBLEM
➤ Fundamental problem of string compactifications:
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Moduli! 
(e.g. dilaton, comp. volume, …) 

[Dine, Seiberg ’85]

massless scalar fields 
at tree (classical) level

=

➤ Quantum effect: generate a potential for moduli!

Broken Supersymmetry:

weakly coupled regime, SUSY restored, 
effective tree-level description valid

assume:
:ϕ → ∞ lim

ϕ→∞
V = 0⇒



DINE-SEIBERG PROBLEM
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[Dine, Seiberg ’85]

lim
ϕ→∞

V = 0potential from first order quantum corrections:
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DINE-SEIBERG PROBLEM
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[Dine, Seiberg ’85]

lim
ϕ→∞

V = 0

V(ϕ)

ϕ
dS vacuum?! 

ϕ

V(ϕ)

or

at minimum of V: higher order 
corrections

strong coupling!first order 
corrections

≈

take higher order corrections into account:



DINE-SEIBERG PROBLEM
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[Dine, Seiberg ’85]

lim
ϕ→∞

V = 0

V(ϕ)

ϕ
dS vacuum?! 

Perturbative 
regime 

Strongly-coupled 
regime 

ϕ

V(ϕ)

or

Perturbative 
regime 

Strongly-coupled 
regime 

at minimum of V: higher order 
corrections

strong coupling!first order 
corrections

≈

take higher order corrections into account:



DINE-SEIBERG PROBLEM

“when corrections can be computed, they are not important, 
and when they are important, they cannot be computed” 

F. Denef, Les Houches Lecture, 2008

de Sitter vacua from quantum corrections only at strong coupling!

higher order corrections: 
generally only known for extended SUSY ( )!𝒩 ≥ 2



FLUX COMPACTIFICATION:
➤ Alternative strategy:

Stabilize moduli at the classical level!

Fluxes!

non-vanishing p-form field strengths  
along cycles of the internal geometry

Fm1…mp
≠ 0

➤ Fluxes generate a potential:

VF ∼ ∫ ggm1n1…gmpnpFm1…mp
Fn1…np

➤ Dependence on volume : V ∼ rd

VF ∼ r−d−2p ∫ F2 runaway towards 
decompactification!



FLUX COMPACTIFICATION AND DE SITTER NO-GO

➤ Balance against potential from internal curvature:
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VR ∼ r−2−d ∫ R

V = ∑
p

r−2p−d ∫ F2
p − r−2−d ∫ R

➤ Schematic form of the overall potential (fluxes + curvature):

➤ For  (and ) this potential satisfiesV > 0 p ≥ 1

|V′ |
V

≥
d + 2

ϕ
no de Sitter minima!

(AdS minima are easily possible, e.g. Freund-Rubin type )AdSD−d × Sd



DE SITTER NO-GO
➤ [Maldacena, Nuñez ’00]:
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From any two-derivative supergravity there 
is no smooth compactification to de Sitter!

➤ de Sitter vacua from String Theory must involve:
a) quantum effects

b) stringy ingredients (higher-derivative terms, O-planes, …)
or

➤ Swampland de Sitter conjecture

|∇V |
V

≥ 𝒪(1)

Danger of Dine-Seiberg like control issues!

Likely true in asymptotic limits 
but not necessarily everywhere in field space

[Obied, Ooguri, Spodyneiko, Vafa ’18]



DE SITTER CONSTRUCTIONS
➤ new strategy:
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combine different effects (classical + corrections) 
to avoid Dine-Seiberg!

➤ two main competitors (both in IIB or F-theory):

• KKLT [Kachru, Kallosh, Linde, Trivedi ’03] 

• Large Volume Scenario (LVS)

➤ many other ideas (not in this talk)

• classical [Danielson et al. ’11], [Andriot ’19] for reviews 
• non-geometric e.g. [de Carlos, Guarino, Moreno ’09]

[Balasubramanian, Berglund, Conlon, Quevedo ’05]



DE SITTER FROM IIB 
KKLT (AND LVS)



IIB DE SITTER VACUA

1. Calabi-Yau orientifold with complex structure-moduli 
stabilized by three-form fluxes 

2. Stabilize Kähler moduli by  
a) non-perturbative quantum effects (KKLT) 
b)  corrections (LVS) 
→ (supersymmetric) AdS-vacuum 

3. Supersymmetry breaking by an anti-D3-brane at the bottom 
of a warped throat 
→ exp. suppressed uplift to dS due to strong warping

α′ 
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Three step procedure [KKLT ’03]



COMPACTIFICATION ON CALABI-YAU MANIFOLDS
➤ IIB on Calabi-Yau:
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M10 = M4 × CY3

➡ 4d N=2 supergravity 

➡ many massless scalar fields (moduli): 

•  Kähler moduli (volumes of 2 or 4-cycles) 

•  complex structure moduli (volumes of 3-cycles)

h1,1

h2,1

very well understood!
(moduli space geometry, quantum corrections, Mirror symmetry, BPS states, …)



SUPERSYMMETRY BREAKING FROM ORIENTIFOLDING

➤ divide  by a discrete involution (i.e.  action) 
combined with world sheet parity  (and )

CY3 ℤ2
Ωp (−1)F
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• effect A: break SUSY from  to ! 

• effect B: fixed points of  action:

𝒩 = 2 𝒩 = 1

ℤ2

orientifold planes (  and O3 O7)

ND3 −
1
4

NO3 +
1
2 ∫ H3 ∧ F3 = 0

O-planes carry charge!

Tadpole cancellation condition:

Need D3-branes and/or fluxes!
(for O3-planes; generally includes also O7 and D7)



FLUX COMPACTIFICATION

➤ Kinetic term for :G3 = F3 − τH3
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ℒkin ∼ ∫ G3 ∧ ⋆G3

depends on 
CY-metric gij

Classical potential 
for complex structure moduli!

∼ ∫ d6y ggilgjmgknGijkGlmn

➤ 3-form fluxes: , ⟨F3⟩ ≠ 0 ⟨H3⟩ ≠ 0

F3
H3

fix volume of 3-cycles 
(i.e. complex structure moduli!)



THE NO-SCALE POTENTIAL
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➤ classical superpotential from fluxes (GVW):

W = ∫ G3 ∧ Ω

K(ρ, ρ̄) = − 2 log(𝒱) = − 3 log [−i(ρ − ρ̄]

➤  supergravity potential:𝒩 = 1

V = eK (gab̄DaWD̄b̄W̄ − 3 |W |2 ) = eKgi𝚥DiWD̄𝚥W̄

➤ W depends on complex structure moduli but not on Kähler moduli!

∂ρW = 0 DρW ∼
1

ρ − ρ̄
W⇒

( )G3 = F3 − τH3

[Gukov, Vafa, Witten ’99]

no-scale 
structure:

all moduli complex structure 
moduli

: volume modulusρ



KÄHLER MODULI: THE NO-SCALE POTENTIAL (2)
➤ No-scale potential from fluxes:
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V = eKgi𝚥DiWD̄𝚥W̄
potential for Kähler moduli only from quantum or stringy corrections!

avoid control problems à la Dine-Seiberg by 
balancing corrections against classical terms?

➤ KKLT: non-perturbative corrections to superpotential

➤ LVS: perturbative corrections to Kähler potential

W = ∫ G3 ∧ Ω + ∑
k

𝒜k(zi, G3) e−2πkαTα
Kähler moduli 

K(ρ, ρ̄) = − 2 log [𝒱 + g−3/2
s ξ] ξ ∼ χ(CY3)

depends only on 
complex structure 

moduli!



KKLT: KÄHLER MODULI STABILIZATION

➤ Example: one Kähler modulus ρ = iσ
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W = W0 + Aeiaρ

➤ F-term condition: DρW = 0

W0 = − Ae−aσ (1 +
2
3

aσ)
➤ AdS minimum: 

VAdS = − 3eKW2 = −
a2A2e−2aσ

6σ

Balance classical  
against non-pert.  
→ avoid Dine-Seiberg

W0
e−aσ

4

and the low-energy theory is pure N = 1 supersymmet-
ric SU(Nc) gauge theory. This theory undergoes gluino
condensation, which results in a nonperturbative super-
potential

Wgauge = Λ3
Nc

= Ae
2πiρ
Nc (10)

where ΛNc is the dynamical scale of the gauge theory,
and the coefficient A is determined by the energy scale
below which the the SQCD theory is valid (There are also
threshold corrections in general, these contribute sub-
leading effects.) We see that this leads to an exponential
superpotential for ρ similar to the one above (but with a
fractional multiple of ρ in the exponent, since the gaug-
ino condensate looks like a fractional instanton effect in
W ).

So effects 1) and 2) have rather similar consequences
for our analysis; we will simply assume that there is
an exponential superpotential for ρ at large volume. In
our companion paper [14], we investigate some interest-
ing possibilities for cosmology if there are multiple non-
Abelian gauge factors. Using the fourfolds in [27], it is
easy to construct examples (with h1,1(X) = 2) which
could yield gauge groups of total rank up to ∼ 30. The
results of [39] suggest that much larger ranks should be
possible.

One important comment is in order before we proceed.
Besides corrections to the superpotential of the kind dis-
cussed above, there are also corrections to the Kähler
potential (see e.g. [40] for a calculation of some lead-
ing corrections). In our analysis we will ensure that the
volume modulus is stabilized at values which are para-
metrically large compared to the string scale. This makes
our neglect of Kähler corrections self consistent.

C. Supersymmetric AdS Vacua

Here, we show that the corrections to the superpoten-
tial considered above can stabilize the volume modulus,
leading to a susy preserving AdS minimum. We perform
an analysis of the vacuum structure just keeping the tree-
level Kähler potential

K = −3 ln[−i(ρ− ρ)] (11)

and a superpotential

W = W0 + Aeiaρ . (12)

W0 is a tree level contribution which arises from the
fluxes. The exponential term arises from either of the
two sources above, and the coefficient a can be deter-
mined accordingly. In keeping with the fact that the
complex structure moduli and the dilaton have received a
mass (5), we have set them equal to their VEVs and con-
sider only the low-energy theory of the volume modulus.
To avoid the need to worry about additional open-string
moduli, we assume the tadpole condition (1) has been

solved by turning on only flux, i.e. with no additional
D3 branes.

At a supersymmetric vacuum DρW = 0. We simplify
things by setting the axion in the ρ modulus to zero, and
letting ρ = iσ. In addition we take A, a and W0 to be all
real and W0 negative. The minimum then lies at

DW = 0 → W0 = −Ae−a σcr (1 +
2

3
aσcr) (13)

The potential, V = eK
(

GρρDρWDρW − 3|W |2
)

, at
the minimum is negative and equal to

VAdS = (−3eKW 2)AdS = −
a2A2e−2 a σcr

6 σcr
(14)

We see that we have stabilized the volume modulus while
preserving supersymmetry. It is important to note that
the AdS minimum is quite generic. Any corrections to
the Kähler potential will still result in a susy minimum
which solves (13).

A few comments are in order before we proceed. A
controlled calculation requires that σ $ 1, this ensures
that the supergravity approximation is valid and the α′

corrections to the Kähler potential are under control. It
also requires that aσ > 1 so that the contribution to
the superpotential from a single (fractional) instanton is
reliable. Generically, if the fluxes break supersymmetry,
W0 ∼ O(1), and these conditions will not be met. How-
ever it is reasonable to expect that by tuning fluxes one
can arrange so that W0 % 1. In these circumstances we
see from (13) that aσ > 1. Taking a < 1, one can then
ensure that σ $ 1, as required.

As an illustrative example we consider W0 = −10−4,
A = 1, a = 0.1. This results in a minimum at σcr ∼ 113.

100 150 200 250 300 350 400

-2

-1.5

-1

-0.5

0.5
V

σ

FIG. 1: Potential (multiplied by 1015) for the case of expo-
nential superpotential with W0 = −10−4, A = 1, a = 0.1.
There is an AdS minimum.

Another possibility to get a minimum at large vol-
ume is to consider a situation where the fluxes preserve
susy, and the superpotential involves multiple exponen-
tial terms, i.e. “racetrack potentials” for the stabilization
of ρ [41]. Such a superpotential could arise from multiple
stacks of seven branes wrapping four cycles which cannot

[Kachru, Kallosh, Linde, Trivedi ’03]

W0 = ⟨Wflux⟩ = ⟨∫ G3 ∧ Ω⟩



ANTI-BRANE UPLIFT

➤ so far: AdS vacuum (  supersymmetric for KKLT)𝒩 = 1
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σ

V(σ)

➤ next: raise vacuum energy (and break SUSY)

VD3 ∼
1
σ3

TD3

add an anti-D3-brane:
(D3-brane with negative charge)

contribution to potential:

volume modulus



ANTI-BRANE UPLIFT

➤ so far: AdS vacuum (  supersymmetric for KKLT)𝒩 = 1

21

σ

V(σ)

➤ next: raise vacuum energy (and break SUSY)

VD3 ∼
1
σ3

TD3

add an anti-D3-brane:

➤ Problem: potential for  too shallow,  too heavy!σ D3

σ

V(σ)

add D3

runaway?!

(D3-brane with negative charge)

contribution to potential:

volume modulus



BACKREACTION OF FLUXES
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➤ Three-form fluxes in IIB

∫
(AI,BI)

F3 = (MI, MI) ∈ ℤ ∫
(AI,BI)

H3 = (KI, KI) ∈ ℤ

, : symplectic basis of 3-cycles on the CY 
( )

AI BI

I = 0,…, h2,1

[Graña, Polchinski ’00, ’01]
[Giddings, Kachru, Polchinski ’02]

➤ back-reaction: warped background:

ds2
10 = e2Ads2

4 + e−2Ads2
6

A: warp factor
Calabi-Yau 

(orbifold) metric

F5 = (1 + ⋆ )vol4 ∧ de4A



ANTI-BRANE UPLIFT AND WARPED THROATS
➤ Solution: use back-reaction of fluxes to create region with 

large redshift in Calabi-Yau

23

M
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redshift  ∼ eAe4A ∼ exp (−
8πK
gsM )

(local) geometry described 
by Klebanov-Strassler throat:

M
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ANTI-BRANE UPLIFT AND WARPED THROATS
➤ Solution: use back-reaction of fluxes to create region with 

large redshift in Calabi-Yau

23

redshift  ∼ eAVD3 ∼
1
σ3

e4ATD3e4A ∼ exp (−
8πK
gsM )

 potential in warped throat:D3(local) geometry described 
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ANTI-BRANE UPLIFT AND WARPED THROATS
➤ Solution: use back-reaction of fluxes to create region with 

large redshift in Calabi-Yau

23

σ

V(σ)

σ

V(σ)

redshift  ∼ eAVD3 ∼
1
σ3

e4ATD3e4A ∼ exp (−
8πK
gsM )

 potential in warped throat:D3(local) geometry described 
by Klebanov-Strassler throat:

add D3

in warped throat
meta-stable de Sitter!

➤ Effect on volume modulus potential: -braneD3

M

K



DISCUSSION 
RECENT DEVELOPMENTS AND ISSUES



CONCRETE REALISATIONS IN THE LANDSCAPE
➤ Flux Landscape:

25

Huge combinatorial number of possible 
Calabi-Yau and flux choices

> 10500

➤ Promises high statistical probability to find meta-stable 
KKLT / LVS  de Sitter vacuum

➤ Only few concrete realisations (difficult for models with many 
moduli)

➤ Impressive recent efforts for KKLT AdS vacua

KKLT/LVS are rather scenarios than concrete models

[Ashok, Douglas ’03], [Denef, Douglas ’04]

[Demirtas, Kim, McAllister, Moritz, Rios-Tascon ’21]



TADPOLE BOUNDS
➤ Fluxes are constraint by tadpole cancellation condition:
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1
2 ∫ H3 ∧ F3 + Qloc = 0

➤ Tadpole conjecture:

  grows faster than  with the number of moduli 
1
2 ∫ H3 ∧ F3 Qloc

➤ If, true: Landscape much smaller than anticipated!

more difficult to obtain required fine-tuning

➤ Confirmed in asymptotic limits in moduli space 
➤ also in deep interior?

[Bena, Blåbäck, Graña, SL ’20]

[SL, Wiesner ’22]

[Graña, Grimm, van de Heisteeg, Herraez, Plauschinn ’22]

[Marchesano, Prieto, Wiesner ’21]
[Plauschinn ’21] [SL ’21]



CONTROL ISSUES

➤ KKLT: “Fit” warped throat into Calabi-Yau
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Careful estimates of the size of relevant corrections:

Control over supergravity approximation only if  Qloc ≫ 1
“Singular bulk problem”

(possible resolution: [Carta, Moritz ’20]) 

[Gao, Hebecker, Junghans ’20]
[Carta, Moritz, Westphal ’18]

➤ LVS:

Simultaneous control over all correction requires large  Qloc

[Gao, Hebecker, Schreyer, Venken ’22]
[Junghans ’22 (2x)]

➤ KKLT with fluxes along the lines of [Demirtas, Kim, McAllister, Moritz ’20]:

Controlled mass-hierarchy only if ?Qloc ≫ 1
[Blumenhagen, Gligovic, Kaddachi ’22]



MODULAR CONSTRUCTION
➤ Bottom-up (EFT) construction that combines different top-

down (string theory) ingredients
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(fluxes, quantum effects, warped throats, anti-branes, …)

➤ Individual ingredients well understood but interaction 
between ingredients often neglected

➤ incomplete list of possible issues: 
• warped throats and Kähler moduli stabilisation 

• anti-brane uplift and complex structure moduli stabilisation 

• backreaction of fluxes

➤ related: no genuine  formulation, instead treatment as 
approximative 

𝒩 = 1
𝒩 = 2

[Gao, Hebecker, Junghans ’20][Carta, Moritz, Westphal ’18]

[Bena, Dudas, Graña, SL ’18]

[Randall, SL ’22]

[Blumenhagen, Kläwer, Schlechter  ’18]



SCALE SEPARATION
➤ When can we trust a lower-dimensional EFT description?
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necessary condition: |Λ | ≪ mKK
cosmological 

constant
Kaluza-Klein 

scala
size of the extra-

dimension

“Scale separation”

→ violated for many AdS vacua with extended SUSY (e.g. )!AdS × S

➤ Swampland AdS conjecture: 
AdS vacua: tower of states with mass

mtower ∼ |Λ |α

same for dS?! → dark dimension scenario

➤ KKLT / LVS: appear to satisfy scale separation
but: maybe presence of similar tower from warped throat?

=

[Gautason, Schillo, Van Riet, Williams ’15]

[D. Lüst, Palti, Vafa ’19]

[Montero, Vafa, Valenzuela ’19]

[Blumenhagen, Gligovic, Kaddachi ’22]



HOLOGRAPHY

➤ KKLT: Before de Sitter-uplift: SUSY AdS vacuum
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holographically dual CFT?!

➤ CFT dual to flux vacuum (+ non pert. effects) as system of 
D5/NS5-branes 

count degrees of freedom: cCFT ≲ Qloc

➤ AdS/CFT holography: |ΛAdS | ∼
1

c2
CFT

≳
1

Q2
loc

bounded 
from below!

no weakly coupled, scale-separated AdS vacua from KKLT?!

[SL, Vafa, Wiesner, Xu ’22]
central charge

localised D3-charge in 
tadpole cancellation condition

[Kounnas, Lüst, Petropoulos, Tsimpis ’07]
[Minasian, Tsimpis ’99]



DE SITTER VACUA UNDER THE LAMPPOST?
➤ weakly coupled, geometric, supersymmetric vacua 
→ only a small fraction of the Landscape

31

We study supersymmetric Calabi-Yau vacua 
not because we should but because we can…

➤ but: no phenomenological reason to focus on these vacua!

Swampland

terra incognita

our vacuum?

explored Landscape

Swampland



THANK YOU!


