Integrability and Form Factors

Alexander Tumanov

Based on [2009.11297, 2105.13367, 2112.10569] with Amit Sever and Matthias Wilhelm and three upcoming papers with Benjamin Basso and Lance Dixon

Can we compute scattering amplitudes non-perturbatively?

't Hooft coupling

Form Factors

$$
F_{\mathcal{O}}\left(k_{1}, \ldots, k_{n}\right)=\left\langle k_{1}, \ldots, k_{n}\right| \mathcal{O}(q)|0\rangle
$$

The simplest non-trivial amplitude is 6 pt and parametrised by 3 dual conformal cross-ratios The simplest non-trivial form factor is 3pt and parametrised by 2 dual conformal cross-ratios

Experimental significance: deep inelastic scattering and Higgs production

$$
\langle g, \ldots, g \mid H\rangle
$$

$$
\text { prondor }_{F}
$$

$$
1 / m_{t}^{3} \quad H \sim---
$$

$$
\langle g, \ldots, g| \operatorname{Tr}\left\{F^{2}\right\}|0\rangle
$$

Operator dependence

1/2-BPS multiplets:

$$
\begin{aligned}
& \mathcal{O}=\operatorname{Tr}\left\{\left(\Phi^{++}\right)^{2}\right\} \longleftrightarrow \operatorname{Tr}\{\mathscr{L}\} \\
& \mathcal{O}=\operatorname{Tr}\left\{\left(\Phi^{++}\right)^{2+\ell}\right\} \longleftrightarrow \operatorname{Tr}\left\{\mathscr{L}\left(\Phi^{++}\right)^{\ell}\right\} \\
& \quad \text { any } \ell
\end{aligned}
$$

[Basso, AT to appear]

$$
\ell=0
$$

[Sever, AT, Wilhelm '20-'21]

Unprotected operators

Konishi multiplet:

$$
\mathcal{O}=\delta^{I J} \operatorname{Tr}\left\{\Phi_{I} \Phi_{J}\right\}
$$

$\operatorname{Tr} F^{n}$ multiplets:

$$
\mathcal{O}=\operatorname{Tr}\left\{F^{2+\ell}\right\} \longleftrightarrow \operatorname{Tr}\left\{\mathscr{L} F^{\ell}\right\}
$$

Amplitude - Wilson Loop duality

Wilson Loop OPE

Form Factor OPE

What is a Form Factor Transition?

two units of R-charge

four units of R-charge

Tilted Bessel Kernels

$\mathbb{K}_{i j}=2 j(-1)^{i j+j} \int_{0}^{\infty} \frac{d t}{t} \frac{J_{i}(2 g t) J_{j}(2 g t)}{e^{t}-1}$
[Beisert, Eden, Staudacher '07]

$\mathbb{K}(\alpha)=2 \cos (\alpha)\binom{\cos (\alpha) \mathbb{K}_{\circ \circ} \sin (\alpha) \mathbb{K}_{\bullet \bullet}}{\sin (\alpha) \mathbb{K}_{\bullet \circ} \cos (\alpha) \mathbb{K}_{\bullet \bullet}}$
[Basso, Dixon, Papathansiou '20]
$\alpha=0$ - octagon kernel

Perturbative bootstrap

Dihedral symmetry

Perturbative bootstrap

to 5 loops [Dixon, McLeod, Wilhelm '21]
Three-point form factor of $\mathcal{O}=\operatorname{Tr}\left\{\Phi^{2}\right\}$
to 8 loops [Dixon, Gurdogan, McLeod, Wilhelm '23]

[Dixon, Gurdogan, Liu, McLeod, Wilhelm '22]

Three-point form factor of $\mathcal{O}=\operatorname{Tr}\left\{\Phi^{3}\right\}$ to 5 loops [Dixon, AT, Basso to appear]

Perturbative bootstrap results

The function space is described by 6 "letters" (a, b, c, d, e, f).
In the case of $\mathcal{O}=\operatorname{Tr}\left\{\Phi^{2}\right\}$, the function space is additionally restricted by some "unexpected" constraints:

a-not-next-to-d, d-not-next-to-e

In the case of $\mathcal{O}=\operatorname{Tr}\left\{\Phi^{3}\right\}$, we see a much smaller number of constraints:

d-not-next-to-e

How many parameters does the OPE need to fix?

\mathcal{O}	2	3	4	5
$\operatorname{Tr}\left\{\Phi^{2}\right\}$	48	249	1290	6654
	2	5	17	38
$\operatorname{Tr}\left\{\Phi^{3}\right\}$	94	854	7699	~ 23000
	4	26	217	~ 2100

Form factors at tree level

$$
\begin{aligned}
& \mathcal{O}=\operatorname{Tr}\left\{\left(\Phi^{++}\right)^{2+\ell}\right\} \\
& (a b c)=\frac{\delta^{0 \mid 2}\left(\langle a b\rangle \eta_{c}+\langle b c\rangle \eta_{a}+\langle c a\rangle \eta_{b}\right)}{\langle a b\rangle\langle b c\rangle\langle c a\rangle} \\
& \frac{\mathcal{F}_{\ell=1, n}^{\mathrm{MHV}(0)}}{\mathcal{F}_{\ell=0, n}^{\mathrm{MHV}(0)}}=\sum_{i=1}^{n}(\star i i+1) \\
& \frac{\mathcal{F}_{\ell=2, n}^{\mathrm{MHV}(0)}}{\mathcal{F}_{\ell=0, n}^{\mathrm{MHV}(0)}}=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n}(\star i i+1)(\star j j+1)
\end{aligned} \quad[a b c d e]=\frac{\delta^{0 \mid 4}\left(\left\langle[a b c d\rangle \eta_{e]}\right)\right.}{\langle a b c d\rangle\langle b c d e\rangle\langle c d e a\rangle\langle d e a b\rangle\langle e a b c\rangle}
$$

[Basso, AT to appear]
This is the $m=2$ amplituhedron!

This is similar to the $m=4$ amplituhedron
(more complicated due to the lack of total momentum conservation)

Conclusions

We developed the Form factor OPE method, that allows us to compute form factors of all protected operators as expansions around the their collinear limits.

Using the perturbative bootstrap technique, we computed the form factor of $\mathcal{O}=\operatorname{Tr}\left\{\Phi^{3}\right\}$ up to 5 loop orders in the perturbative expansion for general kinematics.

Future directions

Constructing the Form factor OPE for unprotected operators, like the Konishi, and getting first non-perturbative results for form factors of unprotected operators.

Applying the perturbative bootstrap techniques to form factors of other protected and unprotected operators and searching for antipodal dualities that these objects might satisfy.

Understanding the tree-level helicity structure of the $1 / 2-$ BPS form factors

