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Asymptotic symmetry group (ASG) of a theory is given by the coset

ASG — allowed gauge symmetries

trivial gauge symmetries

For QED and other gauge theories, its asymptotic symmetry is the gauge
symmetry with parameter non-vanishing at the asymptotic boundary.

For gravity in asymptotically flat spacetimes, it is the BMS symmetry (Bondi, van
der Burg, Metzner and Sachs), which includes supertranslations and possibly
superrotations.



Among BMS transformations, supertranslation is a diffeomorphism that acts
non-trivially on the Cauchy data.

Just as translations are parametrized by a number, supertranslations are
parametrized by a function on S2. That is, there is an infinite number of
supertranslation generators, one for each spherical harmonic Y4 (6, ¢).

More recently, it has been found that there are symmetry transformations on the
boundary Cauchy data that are not diffeomorphisms. [Godazgar, Godazgar, Pope 1812.01641]

Such transformations are called dual supertranslations.

Systematic method has been developed for deriving dual asymptotic symmetry
charges. [Godazgar, Godazgar, Perry 2007.01257, 2007.07144]



In perturbative gravity around Schwarzschild background, there are horizon
supertranslations on the future horizon H1 as well. [Hawking, Perry, Strominger 1601.00921,
1611.09175] [SC, Pradhan, Akhoury 1910.05882]

’H+

Generators break into two parts
QVIf) = Q" 11+ Q7 1]

QH+ [f] generates supertranslations on the Cauchy data on H™.



We compute standard and dual supertranslation charges on the Schwarzschild
horizon, possibly with singularities in the parameter functions.

Singular supertranslations comprise a first step towards the full BMS algebra.

Without singularities, all generators commute. In the presence of singularities, the
standard and dual supertranslation generators exhibit an anomalous algebra,

{Q""1251.Q" I} ~ 020:s

zZ=w

We demonstrate that this central term can be canceled by putting an SL(2,C)
Chern-Simons theory on the horizon.

This hints that consistency of the full BMS algebra may naturally introduce a
new structure on the horizon.






3D Gravity Revitalized

Gabriele Di Ubaldo, IPhT Saclay

Work to appear with Eric Perimutter.



Pure

Natural: build /

0AdS; = T*

The spectrum of pure 3D Gravity

Spectrum with no primaries below the BH threshold.

orav (7 ) By summing over all smooth saddles

Zsmooth (T) — Z Zsaddle(T) — Z ‘Xva6(77)|2

Smooth ’YESL(Q,Z)

Classical
Saddles

The resulting spectrum is inconsistent: pj(A) <0.

e Does a consistent, pure 7., (7) exist?

e Unitary e Modular invariant o Purec e Geometric

piB) > 0 SL(2,7) Ay~

[Maloney, Witten, Keller]



It does exist! Zg;;,e (7') _— Zsmooth (’7') + Z ‘XA,J(’YT)‘Q 12

New states:

Pure 3D gravity (with strings attached)

A =

~ESL(2,7) y_c— 1

\ e’/ 43

Zstring

o Strongly coupled, highly spinning strings g. ~ O(1). axsieid, wang
e Enigmatic stringy BH: Sub-leading to BTZ entropy except near extremality.

A mechanism for non-factorization

1 (Z(7)) = Zsmooth(T)

Consider coarse-graining over ) F) ~ —
C #

<Zstring> =0 V&I'(Z) -~ < str1ng> # 0
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Compactification of 11d Supergravity on S7

The mass spectrum on the round seven-sphere

Spin SO(@8) rep (Massy? Lowest energy

2 (n,0,0,0) (n+33-9  (n+6)2

Round S’ Squashed S’ © @00 ” (n+5)2
3@ (n-1,0,1,0) (n+6) (n+7)02

R (n,1,0,0) (n+1P-1  (n+4)2

1@ (n-1,0,1,1) (n+3f-1  (n+6)2

N =28 N=1 FO (2100 (eP-1 (82
b (n+1,0,,0) n? (n+3)2

] (n-1,1,1,0)  (n+2P (n+5)2

1 (n-2,1,0,1) (n+4y (n+702

S0(8) Usp(4)xSU(2), g @-2000 (n+6}): (n+9)2
<O(7) TIen( < <I17(0) ~ o (n+2,0,0,0)  (n-1P-1 (n+2)2
50(7) Usp(2)XSU(2)D 0 (n,0,2,0) (+1P-1  (n+4)2
0D (1-2,2,0,0)  (43P-1  (n+6)2

0O (1-2,0,0,2)  (m+SP-1  (n+8)2

0'®  (1-2,0,0,00  (e+7P-1 (s +10)2

o Entire Kaluza-Klein spectrum on the round S’ known since the 80's
and organized according to SO(8) representations.

o Open question since for the spectrum on the squashed S’ (less
constraints due to A/ = 1).



11d SUGRA on AdS,; x S” : the round and the squashed S’

o Use and generalize Exceptional Field Theory techniques to compute
the complete Kaluza-Klein spectrum on the squashed S” (only
Generalized parallelisable).

DL, Al [p,q,r] (1)

5 1
= — _ 2)2
AJ,S_1+35+3\/(3J+25) +5C3 (2)

B. Duboeuf (LPENSL) ExFT May 2023 3/6



11d SUGRA on AdS,; x S : the round and the squashed S’

o Exists a two scalar consistent truncations interpolating between the
round and the squashed S”.

o Domain wall solution between the two AdS points on the Supergravity
side, dual to an holographic renormalization flow on the CFT side.

o Round S’ corresponds to an ABJM theory and squashed to a
Superconformal N’ = 1 Chern-Simons theory.

o Allows us to compute spectrum and couplings along the flow — gives
access to two-point functions along the RG flow.

B. Duboeuf (LPENSL) ExFT May 2023 4 /6



Perspectives and related work

o Extend the technique to a broader range of vacua and consistent
truncations, with a more general framework.

o Compute cubic and higher order couplings in the Exceptional Field
Theory framework. Seek for universal patterns in holographic
three-point functions.

B. Duboeuf (LPENSL) ExFT May 2023 5/6



Thank you'!

B. Duboeuf (LPENSL) ExFT May 2023 6 /6
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R
Type A Little String Theories on the 2-background

We focus on Little String Theories (LSTs) that correspond to low energy U(N) gauge
theories on C? x T2 with matter in the adjoint representation:

e 7: complex gauge coupling

e S: mass deformation parameter Q

° /b\z gauge parameters U(N )

e p: affine extension parameter

B. Filoche LST Partition functions and Scalar Prop s May 23, 2023 1/5



Diagrammatic decomposition of the instanton partition function

The instanton partition function can be organised as a sum over external integer partitions

ZN,I(Ba S, P T) = Z QTZ ‘ai|,Pa1,...,aN

Q150N

Fixed external partition contribution has a natural diagrammatic decomposition in term of
Scalar propagators [BF, Hohenegger '22]
(bn—1,an-1) -
: (bj, o5)
O—)

. b, o)
~ with (bi, o
’Pahu.,aN o« (bn,an) (b3, a3) _» H 00 H 0Q”

Oea; DEaj

~

(Br, o) (5o, 02) scalar propagators

Systematic extension of the diagrammatic expansion found for log Zn 1 [Honenegger '19,20]

B. Filoche LST Partition functions and Scalar Propagators May 23, 2023 2/5



Recursive structure in the Nekrasov-Shatashvili limit

The instanton partition can be organised as a sum over instanton levels:
o
— r,IN —r42 -7, N
Zni=Y (GZTKO + e 2K +)
r=0

Diagrammatic expansion has been used to derive recursion relations on the maximal order
pole of the Laurent expansion in €y [BF, Hohenegger '22]

y 1 -
Ky = = <Kév’(1)) , Y, N>1

B. Filoche LST Partition functions and Scalar s May 23, 2023 3/5



N
Outlook

e Extension to others LSTs (type A with M U(N) nodes cyclic quiver and type D,FE)

e Establish a connection to elliptic W-algebra of quiver gauge theories [kimura, Pestun *18]
and more generally to g-deformed Toda theories through AGT-like correspondences
[Aganagic, Haouzi, Kozcaz, Shakirov 13] and understand if the diagrammatic decomposition has a
natural counterpart on the CFT side

e Use the diagrammatic expansion to explore the rewriting of the instanton partition

function in lower dimensions

B. Filoche LST Partition functions and Scalar Prop s May 23, 2023 4/5




Thank you for your attention!
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Non-SUSY heterotic theories:

Tachyonic: SO(32) EgxS0O(16) U(16)
1OD (ignoring the Eg theory) (E7 X SU(Z))Z S0(24) X SO(S)

Equivalent in 9D
Non-tachyonic: SO(16) X SO(16)

O Fundamental region of moduli space (radius and Wilson line)

107 maximal enhancements

Np # N —> non-zero cosmological constant A

8 free of tachyons *

They extremize A
at finite values!




Extrema of the cosmological constant:
Positive CC:

SO(16)* x SU(2)
SO(16) x SO(10) x SU(5)
SO(16) x SO(12) x SU3) x SU(2)

Saddle points

llllllllllllllllllllll

At the edge of SO(10)> x SU(8) <— (local maximum)|
tachyonic regions SO(16) x SO(18) -

| | SO(16) X SO(10) x SO(8)
=N\ (S0(12) x SU(2))? X SU(4)

Negative CC:

Ec X SU(12) (surrounded by tachyons)




® Some enhancement curves give
interpolations between all 10D
theories at infinite distance limits

dimensions (torus, orblfolds)
many more cosmological constant

extrema (some with Ny = Np)

® These compactifications can be used
to construct AdS; vacua!

- J S W//‘ Thank you very much!







The Hilbert space of de Sitter quantum gravity
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The Wheeler-DeWitt equation

In canonical quantum gravity, states are wavefunctionals of the metric and
matter configurations on a Cauchy slice,

Vg, x] »
and the classical constraints must be imposed as operator equations

H: =0, HY =0.
[Dirac, Wheeler-DeWitt]

The momentum constraint H; enforces spatial diffeomorphism invariance.

The Hamiltonian constraint is known as the Wheeler-DeWitt (WDW) equation

167TGN kl _ij 1 i5\2 1
= —— | girgj — —— (915 ——(R—-2A matter
H P (gzkgjﬂr ™ -1 (gizm*) T6nCin (R ) + Humatt
where 7% = —i§/8g;;. It is a second order functional equation whose solutions

are the physical states of quantum gravity.



Large volume expansion

We obtain the solutions of the WDW equation in the late time expansion of an
asymptotically dSq41 spacetime. In terms of €, +;; such that
9ij = Vv, det(yiy) =1,

this is an expansion around 2 — +o00. The Weyl factor appears here as a
canonical incarnation of time. [York]

I+




The Hilbert space as theory space

The WDW equation can be expanded and solved order by order around
Q — +00. The solutions take the form

Wig, x] =¥ Z[g,x] + 07",

where S is a universal phase and Z is an arbitrary functional constrained to
transform under diff-and-Weyl as a CFT, partition function:

Zlg,x] ~ Zcrrlg, X] -

These solutions are valid only in the late time expansion but to all order in G.
The resulting Hilbert space is “theory space”.

The Hartle-Hawking state, defined by a Euclidean path integral, is an example
of such a state (dS/CFT). Our result is that every state is of this form.



Inner product and gauge-fixing

The inner product can be defined as

[ DaDx e
(0,49) = [ s Wl Al

We use the Faddeev-Popov procedure with the gauge-fixing conditions
gii = d, 0igi; =0

for the diff-and-Weyl invariance. There is a residual gauge invariance of the
conformal group SO(1,d + 1) which is fixed similarly as in string theory.

Cosmological correlators can be defined as gauge-fixed observables. They are

covariant under the residual symmetries. This implies a version of holography
of information: for any state on S%, the knowledge of cosmological correlators
in an arbitrary small region is enough to fully determine the state.



Summary

We have obtained the late time solutions of the WDW equation in an
asymptotically dSq4+1 spacetime, to all order in Gy

They take the form ¥ = ¢*°Z where S is a universal phase and Z is a
functional obeying the same Ward identities as a CFT4 partition function.

The Hartle-Hawking state is not special as every state has the same
symmetries.

The inner product and expectation values are defined using a suitable
procedure to gauge-fix the diff-and-Weyl and residual conformal invariance.

Cosmological correlators are gauge-fixed observables. They are invariant
under scalings and translations in any state, which implies a cosmological
version of holography of information.

Thank you!






Moduli stabilisation and de Sitter vacua (?)

Anthony Guillen (ft. Ignatios Antoniadis & Osmin Lacombe)

LPTHE (ongoing work)
(What you probably all know J h
Calabi-Yau

i A— IAN
String theory — 10 dimensions=4+6 — X

"Sizes" and "shapes" = scalar fields in 4d (moduli)

Problem: a priori, no potential

— &/

A

We must give them a potential !

Standard (KKLT) approach: keep everything under control !
1 - stabilise complex structure moduli + dilaton with fluxes
2 - invoke something else to stabilise the Kahler moduli

D3 brane instanton, gluino condensation, logarithmic corrections, ...

- J




f Logarithmic corrections J h

Euler characteristic

One loop corrections — ’ esesR' — X/ () R
(perturbative) Mao =

— s+ [1909.10525] depend on dilaton + geometry
— K =-2log(V+&{+vlogV)
Goal: stabilise the Kahler moduli with these (+ other ingredients)...

...and get a de Sitter vacuum ?

G J
T - - m d | \
Stabilisation with fluxes ¢.s. modull
integers  prepotential
More standard way: W = /Q NG =n,X*+m,F*
Tadpole constraint: mT . —mP . < Nax

makes thing more interesting / complicated
o _J




What I did (SO far) J no + nald" + nold® + nslf® + my U + mold ' UP + mald U — moUd " UPUP = )\

no + nU* + nold? + ns® + mad2UP + mald U + maUU U — mold ' UPU? )
no +nl" + nold? + nsld® + m U2 UP + mold ' UP + maU* U — moll U UP = 0
no + mlU* + nold? + nslf® + mald*UP + moll U3 + mald*U? — moll* U3 = 0

~

(
(
(
(

Studied c.s. moduli stabilisation with fluxes in T6/Zy x Zs 7

can be solved analytically but the result is atrocious

Semi-exhaustive tests with billions of integers combinations

If Naux < Nmax, | @lways find g, > 5-1/* ~ 0.67 (not very perturbative)

The bigger Ng,., the smaller g, can be (similar result in [2207.13721])

\_ )
~
What I'll do next
Convince myself (and my advisor) of the above
Look at other orbifolds / manifolds ?
Short term: probably go climbing ! Thanks for your attention !

- J
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TCC

Trans-Planckian Censorship Conjecture (TCC)

[Bedroya, Vafa ’19]

® Idea: Properties of negative scalar potentials, coming from string theory

e Cosmological model, with scale factor a(t)

d Mg a1 i
S = [ d®z+/|g4] TR *igijausﬁa ¢ = V(p)

® Swampland program, study scalar potential: e.g. expanding de Sitter
universe V > 0

Horer (TUW, LAPTh) Negative scalar potentials May 2023 2/5



TCC

Trans-Planckian Censorship Conjecture (TCC)

[Bedroya, Vafa ’19]

® Modes with super-Planckian
energy, a(t;) ~ #m

® Expansion = redshift

® Reach typical energy scale of the

EFT, a(t) ~ %%
p

® Contribute to physics of EFT,
violating its validity

Therefore: 1>

VAVAVAV,

time

VW

-~
Wavelength of fluctuations

from [Agmon, Bedroya, Kang, Vafa 23]

Horer (TUW, LAPTh) Negative scalar potentials May 2023 3/5



Negative scalar potentials

Anti-Trans-Planckian Censorship Conjecture (ATCC)

® |/ <0, including AdS vacua. Contracting universe, redshift = blueshift

a(t)
a(t;)

Horer (TUW, LAPTh)

Negative scalar potentials

VIVl

2
Mpl

® Exponential bound, in Planckian
units

TCC: 0<V(p) <e A%
ATCC: 0> V(p) > —e @0A%
with ¢g = ——2——.
(d—1)(d—2)

May 2023 4/5



Consequences

Asymptotic condition on V'

V/
(5

> 2
>
p—00

(d—1)(d-2)

® New result: bound on V" /V, valid

for (A)TCC

SO ==

m*P=A(A-(d-1)

a°

L4 Ade24, V" =m?:

BF-bound < m?l% 5

Horer (TUW, LAPTh)

L R

BFbound - -----------=

< 9

Negative scalar potentials

May 2023

5/5



Thank you for your attention!

Negative scalar potentials May 2023 5/5






Bootstrapping bulk locality Nat Levine (ENS)
[Part I: 2305.07078 with Miguel Paulos]

Ade+1
local QFT

CFT4

\Ij' Boundary Operator
... Expansion

~
~



Bootstrapping bulk locality Nat Levine (ENS)
[Part I: 2305.07078 with Miguel Paulos]

Ade+1
local QFT

CFT4

12
CA — HA AA12



L ocality (U|0103) ~ > e GR(z)

& &

cf. [Kabat Lifschytz 16]



Results

Locality

Complete set ‘Dual’ to free solution
of sum rules 012 (A1 + Ay +2m) = 5,1,

Eliminate tA —— OO constraints Flat space [imit:

on CFT Form factor




Future directions

 Partll Functionals dual to ‘extremal’ interacting solutions

 Part lll Bulk gauge/gravitational symmetries

 Extra constraints for BCFT

* Extra ‘strong locality’ constraints for S-matrix ?
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In N=4 SYM with gauge group SU(N), we study an infinite class of integrated correlators




In N=4 SYM with gauge group SU(N), we study an infinite class of integrated correlators
Oy = yry; Tr(P'd7)

g;SN)(T) — /du dv p(u, v) (020,0,0,) where { o [02}5




In N=4 SYM with gauge group SU(N), we study an infinite class of integrated correlators
Oy = yry; Tr(P'd7)

g;SN)(T) — /du dv p(u, v) (020,0,0,) where { o [02}5

0 AT

— 4+
2 Q%M




In N=4 SYM with gauge group SU(N), we study an infinite class of integrated correlators
O2 =yry,; TI‘((DI(DJ)

QZSN)(T) = /du dv p(u, v) (020,0,0,) where { O — [02}5

0 AT

+1
2 Q%M

SL(2,Z) invariance

G (r) = 6 ()




In N=4 SYM with gauge group SU(N), we study an infinite class of integrated correlators

Oy = yry; Tr(P'd7)

g}gN) (7') = /du dv ,u(u, v) <02020p0p> where { .
O, = [02} ’

0 C4m
: SL(2,Z) invariance supersymmetric localisation
N _ N lation to N=2* sph tition functi
g]g )(7-) — g]g )(77.) — relation to sphere partition function
GS(r) ~ OPRDZ, log Zx(T,m)|




In N=4 SYM with gauge group SU(N), we study an infinite class of integrated correlators
O2 =yry,; TI‘((DI(DJ)

QZSN)(T) = /du dv p(u, v) (020,0,0,) where { O — [02}5

0 AT

+1
2 Q%M

SL(2,Z) invariance supersymmetric localisation

G (r) = 6 ()

— relation to N=2* sphere partition function

GM(7) ~ OPOL, log Zn(r,m)|

=0




In N=4 SYM with gauge group SU(N), we study an infinite class of integrated correlators
O2 =yry,; TF(CDI(DJ)

QZSN)(T) = /du dv p(u, v) (020,0,0,) where { O — [02}’%

0 AT

— 4+
27 Q%M

SL(2,Z) invariance supersymmetric localisation

G (r) = G (y7)

— relation to N=2* sphere partition function

GM(7) ~ OPOL, log Zn(r,m)|

=0

SL(2,Z) spectral (N) AN 1 / T 2 (V) .
= + — ds — s(1—s)(2s—1 s) EX(r
representation Qp (T) <gp > 471 JRe S:% 81I1(7T S) ( )( ) 9p ( ) ( )



In N=4 SYM with gauge group SU(N), we study an infinite class of integrated correlators

O2 =yry,; TF((I)I(DJ)
gng) (7') = /du dv ,u(u, v) <02020p0p> where { 5
O, = [02} ’
0 AT
’ SL(2,Z) invariance supersymmetric localisation
N _ AN lation to N=2%* sph tition functi
g]g )(7-) — g]g )(77.) — relation to sphere partition function

GMN(7) ~ BPOE?, log Zn(r,m)|

SL(2,Z) spectral (N) () — T o(1— (25 —1 ?/(7\])\3\ E*(r
representation Qp () = sin(7rs) ( ) )\gﬁ (/)) +(7)

spectraToverlap



In N=4 SYM with gauge group SU(N), we study an infinite class of integrated correlators
O2 =yry,; TI‘((DI(DJ)

QZSN)(T) = /du dv p(u, v) (020,0,0,) where { O — [02}5

0 AT

+1
2 Q%M

SL(2,Z) invariance supersymmetric localisation

G (r) = G (y7)

— relation to N=2* sphere partition function

G (7) ~ PSR, log Zx(r,m)

m=0

SL(2,Z) spectral (N) (N) 1 / T (N) .

+ ds — s(1—1s5)(2s—1 ? E;

representation Qp ( ) <g > 471 JRe s= 1 81n(7T3) ( )( ) 9 ( )) ( )
spectral overlap

. N(N —1 N? -1
— exact function of N and p: | ¢{")(s) = NNV -1 [1 —3F2(— g,S, 1 —s;1, T;l)} sF5(2— N,s,1—5;3,2;1)




N2_1
[1—35(—2,3,1—5;1,7;1)} sFy(2— Nys,1—5:3,2;1)




NN -1)
~ 25(1 —s)

N2_1
[1—35(—2,3,1—3;1,7;1)} (2= N,s,1— 5:3,2:1)

Can study various large N, large p limits — ‘gravity regime’ p,N =00 with p~ N2



NN -1) p N? -1
géN)(S):m |:1—3F2(—§7871_S;1, 71) 3F2(2—N78?1—S;3,2;1)
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On top of this, take ‘t Hooft limit — new triple-scaling limit:
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with deformed background created by a ‘gas of gravitons’ ‘ p) = [(92]122 ‘0)

On top of this, take ‘t Hooft limit — new triple-scaling limit:

N — oo with A=¢*N and a = N?/p finite
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e in this limit, find genus expansion: ga N2
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_ log(a+1)

« at genus 0, at strong coupling we have G (\) 1

3
+ O ()\_ 2 ) (Semiclassical String Theory)
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Heterotic backgrounds with non-trivial H-flux

e Supersymmetric heterotic compactifications with H-flux require a non-Kahler

internal space X with SU(3) structure [Hull 1986, Strominger 1986]

e Topology constrained by the Bianchi identity dH = %, (rR"ART —trFAF)

Classical flux solution

e X is a principal torus fibration over a K3 surface

[Dasgupta et al 1999, Goldstein—Prokushkin 2004]

2
e Bianchi identity is pulled back from K3 ™= )f
—» single equation in H*(K3,7) 7 K3
[Fu—Yau 2008]

e N = 2 spacetime supersymmetry

Heterotic flux backgrounds and (0,2) linear models Yann Proto, LPTHE



Linear worldsheet models for heterotic compactifications

Gauged Linear Sigma Models (GLSMs)

[Witten 1993]
e 2d abelian gauge theory with (2,2) worldsheet susy

e Flow in the IR gives a NLSM on a K&hler manifold

RG flow
GLSM — NLSM
U(1)" gauge group — (C*)" action on a toric variety
vector multiplet v® — inherited 2-cycle n®
Fayet—lliopoulos parameters — complexified Kahler moduli
superpotential couplings — complex structure moduli

e Generalization to non-Kahler spaces through Torsional Linear Sigma Models

— K3 base and gauge bundle described by a GLSM with (0,2) susy
— Gauged anomaly cancelled by a non-gauge invariant coupling of the torus
— Condition for gauge invariance reproduces the Bianchi identity!

[Adams—Ernebjerg—Lapan 2008]

Heterotic flux backgrounds and (0,2) linear models Yann Proto, LPTHE



Worldsheet constructions of A/ = 1 backgrounds

e Orbifolds of N/ = 2 backgrounds can be implemented at the level of the TLSM

— quotient by a cyclic group I' to obtain A/ = 1 spacetime supersymmetry
— worldsheet analogue of [Becker—Tseng—Yau 2008]
— explicit geometries solving all constraints (complete intersections in toric varieties)

[Israél-YP 2023]

e Orbifold geometry constrained by the orbifold group T"

r Quotient space

Z2 smooth SU(2) x Z2 background
(flux version of FHSV)

Zs, %, L singular space
with isolated C3/T" singular points

— GLSM framework to address the resolution of conical singularities

Thank you!
Heterotic flux backgrounds and (0,2) linear models Yann Proto, LPTHE
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Supergroups?

Anticommuting variables as internal space

Supergroup gauge theories (see [Kimura23] for a review)
Unitary supergroups [DHJV18, Kimura-Pestun19]
Orthosymplectic supergroups [Kimura-YS] (to appear)

1/8



Partition Function

d n a n)
Zk0|k1 :ﬁ H ¢a 500(2 0+Xn) (d)o O) H ¢ Slp (¢l )

2TL
K a=1

ko &
T 7T 00 £ 8% + eal[£¢5 + ¢ + €]
: Hl tnl [+¢9 + ¢1][+¢9 + ¢}, + €12]
£ ko m
< T Tt = o2 TT T E60 = o)
a=1la=1 a=la=1
[+9 + e1][+¢9 + €]
(H [t Hl A0S + e )
¢ Xn
X (H[iq);]) x ([0])X% .
a=1
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Quiver Realization

The orthosymplectic supergroup gauge theory can be realized as
O = @
OSp(2ng + xnlm) SO(2ng + Xn)
because the partition function coincides with double SO-Sp

half-bifundamental formula in [Hollands-Keller-Song11] but with an
unphysical coupling.
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Seiberg-Witten Geometry

q [lot: (2 = (a3)%)

Il (2 = (ad)?) +2/x

SU(4) SU(2n0) SU(2n,) SU(47)
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Seiberg-Witten Geometry

q [lor: (2 = (a3)%)

Yy T XTI, 0@ — (aL)2) + 2/x

0 : 1
SU(2) SU2np + 1) SU@2nm +1) SU(2)
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Brane Construction

NS5 NS5
no D4™
........................ n D4~
04" 04 o4+

“negative branes” [Okuda-TakayanagiO6]
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Gauging
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Quiver Gauge Theory

OSp(4[2) SpO(2]4) OSp(4/2)

OSp(4/2) SpO(2]4)

OSp(2|1)

OSp(2[1)
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Scattering Amplitudes as Bilinear Forms

By definition, scattering amplitudes are bilinear forms:
M = (in|out)

where in and out represent the incoming and outgoing particles,
respectively.



Shapovalov Form

The Lie algebra G has k; as simple roots. The following relations
hold:

[Eiv FJ] = 5UHki7 [Hki> EJ] = ki - kjE;j, [Hkn FJ] = —ki - kiF;
for i,j =2,...,n. Shapovalov Form (,)
(Eiij> :5IJ7<EI)X> :07

ije{l,...,n},X € G, X ¢ Span({Ex,..., En-1})

(E, X],Y) = (X,[F,Y]), ije{l,..nt,.X,YeEG



BCJ Numerators

The BCJ numerators N(X) are defined as:
N(X) = (X, Un)

where X € G and U, is given by:
n/27T2 *

Un=(=1)""% > N(Er)(r)
’TESn—Q
4pt NLSM

S12 + S23 [ 513 1+ S23

5123

Uy = [Ela E2] E3] + [[E17 E3] E2]

N ([[Ex, E2], E3]) = ([[E1, E2] , B3], Ua)
N ([[E1, B3], E2]) = ([[Ex, B3], E2] , Ua)
N ([Ex, [E2, E3]]) = ([[Ex, E2], B3], Ua)



Color Ordered Amplitude

The color ordered amplitude is then given by:
A(lon) = (¢*(9), Un)
and for example, A(1234) = ([E1, E2], E3)* Us. 4pt NLSM ampliude

A(1234) = (([[E1, E2], E3])*, Us)



Color Kinematic Duality

Color kinematic duality relates color and kinematic information in
scattering amplitudes. It is given by:

C(Ts) = fy 208, = Tr([[ta, to], telta) = ([[Ea, Eb], Ec], Fa)

where [ represents the 4pt s-Channel Feynman diagram.



3 Recursive Relation and Biadjoint Scalar Amplitudes
» Recursive relation:

Fit* () = 60" (a\V)
» Biadjoint scalar amplitudes:

(¢ (a), " (B)) = m(o| B)
(o) = m (o] B)L(B)
» For example:
(S14 + S24 + s34)m(234/|234)
+ (s14 + s24)m(234]243)
+ s14m(234]423)
= m(23|23)
(514 + Soq + 534)m(243|234)
+ (514 + Sp4)m(243|243)
+ s12am(243|423)
=0



Inverse Relation: Momentum Kernel and Biadjoint Scalar

S[0(2), ..o, () k1, 7(2), ..., T(n)] = Kt

where k; is a product over all possible pairs of external legs, and
O(o(t),0(q)) is a step function defined as:

1 if (o(t) —o(q))(m~1(t) —771(q)) <O
0 otherwise

0(o(t),0(q)) = {
S [234| 234] = (534 + Spq + 514) (523 + 513) S12

5[234]243] = (s24 + 514) (523 + 513) 512



Inverse Relation: Momentum Kernel and Biadjoint Scalar

m (1234]1234)

1 1 1 1 1
= + + +
512345123512 512345123523 512345234523 512345234534 51234512534
1 1
m ( 234] 324) =

512345123523 512345234523



Inverse Relation: Momentum Kernel and Biadjoint Scalar

(" (), € (B)) = m(o|B)
Slo|7] = (¢(1o),£(17))

Slolr]=m™" (o] )
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http://arxiv.org/abs/2304.14173

Quasi-hydrodynamics

Symmetries are a guiding principle in constructing low-energy EFTs

P> Exact symmetries lead to conserved quantities

Typically also involve some small explicit breaking ~ A < T

» Approximately conserved quantities

A+V-j=0=-Tn+---

Im(w) Im(w)
Re(w) e Re(w)
|-~ effective theory
without the
non-conserved
enlarged quantity
effective theory
A=A
o |-re o ? o
e e, PR * o 4 » o © ©

Construct finite temperature quasi-hydrodynamic EFTs including dissipative effects



Schwinger-Keldysh EFT for U(1) quasi-hydrodynamics

" Uty tis én)
Po

>
>

Systematic construction of hydrodynamic Sger from SK contour [Crossley,Glorioso, Liu]

<

ty
|
«<
Ut(ty, ti; o)

» Doubling of the fields: physical ¢,

1 (¢1 + #2), stochastic ¢,

$1— ¢
(i) Identify low-energy dofs

» Conserved U(1): gauge invariance = B, = A, + 9, ¢
» Broken U(1): external scalar source ® —> 9 = b + ¢

(ii) Write down effective Lagrangian Lgrr in derivative expansion

(iii) Impose unitarity constraints & dynamical KMS condition


https://arxiv.org/abs/1511.03646

Schwinger-Keldysh EFT for U(1) quasi-hydrodynamics

EFT Lagrangian for U(1) charge relaxation
Lerr = (X0 + X2) Ba0Bro + (00 + 02) BaidoBri + T92009,
+ ¢{(Ba0=r0 + Za0Bro) + M Za0=r0 + M5=ai=,i + O(2%, 0%)
where =, = 0, — A,
P> xo: charge susceptibility, og: electric conductivity

> i charge relaxation rate

> Also novel transport coefficients [Armas,Jain,Lier; Delacrétaz, Goutéraux,VZ]

Derive constitutive relations, current (non-)conservation, pseudo-diffusive mode, ...


https://arxiv.org/abs/2112.14373
http://arxiv.org/abs/2111.13459

Holography for SK U(1) quasi-hydrodynamics

Softly break bulk U(1) gauge symmetry = Proca theory
5 1 MN m’ M M
Spulk = [ d”xvV—g _ZFMNF - 7(CM = Vud)(C" - VY0)

» Schwarzschild-AdS background

ds® = 2drdv — r? (1 — ¢ /r*) dv® + r?6;dx’ dx/

HoloSK contour: [Glorioso,Crossley, Liu]

Im(r)

/<\
I\ o
001

Complexify radial coordinate r and analytically continue around the horizon

» (Partially) solve the bulk eoms in derivative expansion d ~ m, ...


https://arxiv.org/abs/1812.08785

Holography for SK U(1) quasi-hydrodynamics

. and derive the full SK action for U(1) quasi-hydrodynamics!
» Finite values for novel transport coefficients

» Ward identity with charge relaxation

«
2 2 o
mery, mmT o .
Oudt =TS0 .. M = 1+ 3
2 2 e ™
005, e o
o
,‘/.
mAT?
» Dispersion relation
. . 1
w=—il —iDgk® +---, Dy = 2—+(’)(m4)
h

with no O(m?k?) correction: artifact or generic feature?



Outlook

Future directions:
» SK action for pinned holographic superfluids
» Pinning at higher orders and beyond linear response

» Include dynamical topological defects

» Applications to:

P Criticality, higher-form symmetries, QCD, spin relaxation, Wigner crystals/Charge
density waves, strange metals,...

Thank You!







