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A White Paper Wish List:

• Obtain the terms in the type II string theory and M-
theory effective actions. 

• Write down the Virasoro-Shapiro amplitude for AdS5 
× S5 . 

• Definitively rule in/out scale-separated AdS vacua 
using large N conformal bootstrap. 

• Bootstrap the worldsheet description of weakly-
coupled  super-Yang-Mills theory



This talk has three themes:

String amplitudes at finite ′𝛼

Exact results for  = 4 super Yang-Mills correlators𝒩

Modular symmetries in conformal field theory



We all want to solve Planar =4 super Yang-Mills = Classical string theory in AdS𝒩 5 x 
S5

Even “just” the tree-level four-graviton amplitude at finite string length would be 
fine

This is dual to the stress-tensor four-point function in the planar theory.

By the OPE decomposition, this would contain a substantial part of the solution of 
planar =4 SYM.𝒩



But this is too hard on the string side so far. 

• Worldsheet: RR flux

• Spacetime: action unknown

o In flat space, unknown beyond . 

o In AdS, even more complicated.

Looking for a handle…

The large N conformal bootstrap can determine string effective actions:

Bootstrap CFT correlator

Interpret as AdS amplitude (+ flat space limit if desired)
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“I know. What’s 
new?”



Most work in this vein has been in a low-energy expansion. We want to do better.

Localization leads to exact results for SUSY quantities. 

Sometimes, these quantities are independent of the coupling (partition functions, 
SUSY indices)

But not always. 

e.g. 4d =2 SQCD extremal 2-pt functions. 𝒩

What about in =4 SYM𝒩 ? 



Consider = 4 super Yang-Mills, with gauge group G. 

It contains a complexified gauge coupling on which generic observables depend. 

Being exactly marginal,  parameterizes a “conformal manifold” preserving = 4 SUSY: 

A CFT at every point

Free SYM



All single-trace operators are ½-BPS or unprotected.

 

Unprotected correlators are too hard.

2-, 3-point functions of ½-BPS operators are independent of coupling. 

4-point functions depend on cross-ratios and receive unprotected contributions… 

Remarkably, there is a class of integrated 4-point functions which can be 
computed exactly from localization, even at finite N.

Combined with large N bootstrap methods, these teach us about string effective 
actions.

 

They are also amazing observables in their own right. 



= 4 SYM enjoys S-duality. 

For simply-laced G, this is a self-duality under  transformations of  (up to global 

identifications).

S-duality of = 4 SYM is beyond a reasonable doubt…

• Field theory (D-instantons, 1/N, bound states, partition functions, …) 

• Holography + string theory (D-instantons, graviton scattering, …)

But its abstract consequences for CFT observables have not been fully understood. 

[Montonen, Olive; Olive, Witten; Osborn; Argyres, Kapustin, Seiberg; Vafa, Witten; Sen; Gomis, Okuda; Dorey, Hollowood, Khoze, 
Mattis, Vandoren; Green, Gutperle; Banks, Green; Green, Miller, Vanhove; D’Hoker et al; Beem, Rastelli, Sen, van Rees; Chester, 
Green, Pufu, Wang, Wen; …]

e.g
.
(Non-local observables 
invariant under congruence 
subgroups.)



This is just one instantiation of  invariance: 

In conformal field theory, modularity is everywhere.

• Spacetime symmetry of 2d CFT

• Electric-magnetic duality symmetry of Maxwell theory

• Generalized modularity of counting functions in superconformal field theories

• …

Everybody knows that we should first process symmetries, then compute.

Why can’t we do this for modular invariance? 
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(We can.)



The rest of the talk is a story about these intertwined concepts, 

and how they are leading us toward exact (quantum) string theory 
observables.

Outline:

1)     String tree amplitudes…

2)  … from N=4 SYM correlators
• Unintegrated

• Integrated

3)   spectral theory
• Application to Integrated correlators & semiclassical string theory



Some relevant things that I won’t/can’t talk about:

• Modular structure of string worldsheet integrands

• AdS Unitarity Method/Loop amplitudes

• Integrability

• String Field Theory methods 

• Ensemble averages and gravity



String tree amplitudes and holography

Quartic supergraviton scattering amplitudes in (say) type IIB string theory in flat space 
take the form

There is a corresponding effective action:

In type IIB string theory, these are -invariant functions, order-by-order . (In type IIA, only 
dilaton) 

Higher orders are not fully known. 



String tree amplitudes and holography

Here are the ones that we know (cf. explicit worldsheet/S-duality/on-shell methods):

You’re probably familiar with non-holomorphic Eisenstein series, eigenfunctions of 
hyperbolic Laplacian:

Less familiar are the “generalized Eisensteins”

Higher-order terms,  and beyond, are unknown in general (modulo low-loop 
perturbative data)

Note the Maass cusp forms, 
also eigenfunctions (more 
later)

[Green, Gutperle; Green, Gutperle, Kwon; 
D’Hoker, Green, Vanhove; Green, Russo, 
Vanhove; Green, Miller, Vanhove; Wang, 
Yin; …]

[Kleinschmidt, Dorigoni, Schlotterer; 
Klinger-Logan; Klinger-Logan, Miller, 
Radchenko; Chester, Green, Pufu, Wang, 
Wen]



String tree amplitudes and holography

What about AdS? It’s easy to understand why the AdS string effective action is 
more complicated...

Finite-size 
correction

(Put two legs on 
S5)



String tree amplitudes and holography

What about AdS? It’s easy to understand why the AdS string effective action is 
more complicated...

At fixed order in ′, amplitudes are 𝛼 not homogeneous in momenta

At fixed order in momenta, coefficients have an infinite expansion in 



String tree amplitudes and holography

… but the AdS effective action is of clear interest: 

1) It encodes CFT correlators

2) It can be derived from CFT correlators

One can also take the flat space limit. 

This isolates the leading term in momenta, order-by-order in ′.𝛼

[Polchinski; 
Penedones]

[Komatsu, Paulos, 
van Rees, Zhao]

[Maldacena, 
Simmons-Duffin, 
Zhiboedov]



String tree amplitudes and holography

Implementing this program, 

can be recovered from certain computations of =4 SYM four-point functions. 𝒩

The holographic results also determine an infinite set of SUSY-protected terms at 
higher-orders.

We now turn to how this works. 

(N.B: Analogous results exist in M-theory.)



𝒩=4 SYM correlators

Define ½-BPS superconformal primaries

Holographically dual to scalar KK modes on S5 (modulo multi-trace admixture 
details)

At p>2, there is degeneracy (multi-traces), e.g. 

Consider four-point functions: schematically,

Specialize (for now) to simplest case of p=2  Four-point supergraviton amplitude 
in AdS5

Dual to ½-BPS 
gas of 
gravitons

    = SC Ward identity 
factor



𝒩=4 SYM correlators: Finite N

Some is known about <22pp> at finite N

• Perturbation theory 
o Two loops (generic p)
o Three loops (p=2)

• Numerical superconformal bootstrap
o Mainly p = 2 
o Some p = 2, 3 (mixed correlator system)

[D’Alessandro, Genovese]

[Drummond, Duhr, Eden, Heslop, Pennington, 
Smirnov; Eden, Heslop, Korchemsky, Sokatchev; 
Fleury, Pereira]

[Beem, Rastelli, van Rees; Bissi, 
Manenti, Vichi; Alday, Chester; 
Chester, Dempsey, Pufu]



𝒩=4 SYM correlators: Large N

At large N, the usual ‘t Hooft limit is well-studied:

• Perturbation theory in  (Feynman diagrams, symbology, etc),  (holography)

• Integrability

• Planar numerical conformal bootstrap

Less familiar is the “very strongly coupled” limit:

This preserves SL(2,ℤ) properties of SYM observables. 

In particular, <22pp> is SL(2,ℤ)-invariant.

[Caron-Huot, Coronado, 
Trinh, Zahraee]

[Azeyanagi, Hanada, Honda, Matsuo, 
Shiba]



Semiclassical AdS5 x S5 string amplitudes

In the ‘t Hooft limit, bulk string theory is weakly coupled. 

The tree-level four-graviton string amplitude is the “AdS5 x S5 -Virasoro-Shapiro” 
amplitude

Various partial results here

Recent bootstrap + Integrability approach: 

(Dispersive sum rules) + (Integrability data) + (svMZV assumption)  All 

Nice structural generalization of VS amplitude…

… with complicated details

(Instead expand in momenta?)

[Alday, Hansen, Silva]



Semiclassical AdS5 x S5 string amplitudes

We henceforth focus on the very strongly coupled limit, where SL(2,ℤ) is manifest. 

The <2222> correlator has been computed to several orders in 1/N. In Mellin space,

The supergravity term has been bootstrapped from CFT: Ward IDs + holographic consistency 
conditions

Indeed, <p1 p2 p3 p4> supergravity correlators follow from a single “master” formula:

Corrections to supergravity have been reproduced from CFT by different, more involved 
means….

Supergravit
y

Orange = Finite-size 
corrections

“Hidden 10d conformal sym”

[Caron-Huot, Trinh]

[Rastelli, Zhou]



Semiclassical AdS5 x S5 string amplitudes

Consider the first correction ():

• Constructed in late 90’s via instantons + string duality

• Required by on-shell superamplitude identities (Laplace eq with )

• What about S-matrix bootstrap approach: 

In the space of consistent S-matrices, Where is 
String Theory?[Guerrieri, 

Penedones, 
Vieira]

[Wang, Yin]

[Gutperle, Green]

with  
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Consider the first correction ():

• Constructed in late 90’s via instantons + string duality

• Required by on-shell superamplitude identities (Laplace eq with )

• What about S-matrix bootstrap approach: 

Maximized at cusp,  

Minimized at corner, 
with near-extremal 
value!

In the space of consistent S-matrices, Where is 
String Theory?[Guerrieri, 

Penedones, 
Vieira]

[Wang, Yin]

[Gutperle, Green]

with  



Semiclassical AdS5 x S5 string amplitudes from CFT

Let us now delve into how the corrections were computed from the CFT. 

As a segue, recall the earlier result of [Chester-Dempsey-Pufu] 

Q: How did they track position along ? 

A: By using certain exact quantities – integrated correlators – obtained from 
localization. 

Remarkably, <22pp> correlators may be found exactly, for all  and  (!)… 

IF we integrate against a specific spacetime measure. 



𝒩=4 SYM Integrated Correlators

Here is the basic relation:

 

[Binder, Chester, 
Pufu, Wang; Chester, 
Pufu]

Specific measure

Mass-deformed free energy on S4 with  
source

Brings down two ’sBrings down two ’s



𝒩=4 SYM Integrated Correlators

Here is the basic relation:

This is tremendously powerful. 

In the planar limit, e.g.,

Other derivatives are possible:

 

[Binder, Chester, 
Pufu, Wang; Chester, 
Pufu]

Specific measure

Mass-deformed free energy on S4 with  
source

Brings down two ’sBrings down two ’s



𝒩=4 SYM Integrated Correlators: Large N

With this in hand, the p=2 case was systematically studied in the very strongly coupled 
limit. 

Combining various constraints + flat space limit yielded the previous unintegrated 
formula.

At higher-orders, can only get SUSY *part* of the correction: not enough localization 
constraints…

But, here’s a new thing: 

 Generalized Eisensteins appear to all orders in the AdS5 and  string effective actions.

~ No 
protection 
beyond 

(Idea: integrate general amplitude and match.)

[Chester, Green, 
Pufu, Wang, 
Wen]



𝒩=4 SYM Integrated Correlators: Finite N

What about finite N?

A solution may be inferred from SUSY localization, for all  and !

This was pioneered by [Dorigoni, Green, Wen], who conjectured/computed this for p=2:

N>2 recursively defined by “Laplace difference equation”:

This recursion was later proven by [Dorigoni, Green, Wen, Xie] directly from the matrix 
model,

with N=2 as an initial condition.

Rational function 
involving Jacobi 
polynomials, e.g. 



𝒩=4 SYM Integrated Correlators: Finite N

The DGW result is manifestly SL(2,ℤ)-invariant.

There is another SL(2,ℤ)-invariant presentation of this object, which arose from 
some parallel developments in the broader CFT literature.



𝒩=4 SYM Integrated Correlators: Finite N

The DGW result is manifestly SL(2,ℤ)-invariant.

There is another SL(2,ℤ)-invariant presentation of this object, which arose from 
some parallel developments in the broader CFT literature.

How do we better understand modularity in CFT?

Use SL(2,ℤ) spectral theory = Harmonic analysis on the fundamental domain 

Applying to the integrated correlators leads to great simplifications, and makes 
physical features transparent. 



 Spectral Theory

A square-integrable, -invariant function admits a unique decomposition into an -
invariant complete eigenbasis of the hyperbolic Laplacian.

[See e.g. Terras]
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 Spectral Theory

A square-integrable, -invariant function admits a unique decomposition into an -
invariant complete eigenbasis of the hyperbolic Laplacian.

1. Constant: “Modular 
average”

2. Continuous: 
Eisenstein series

3. Discrete: Maass cusp forms

• Fourier decomposition:

• Functional equations:

• Overlap is a Mellin integral of zero mode:

[Rankin, 
Selberg]

Completed Riemann zeta



 Spectral Theory

A square-integrable, -invariant function admits a unique decomposition into an -
invariant complete eigenbasis of the hyperbolic Laplacian.

1. Constant: “Modular 
average”

2. Continuous: Eisenstein 
series

3. Discrete: Maass cusp 
forms

Maass cusp forms are the most interesting eigenfunctions.

• Functionally similar to Eisenstein series…

• … but they vanish at the cusp… 

• … and are infinite in number, but none known analytically

o Small n: numerics (~103 digits)

o Large n: universality

[Hejhal; Then; Booker, 
Strombergsson, Venkatesh;  
Sarnak; …]





Why are the cusp forms so elusive?

They are chaotic. (“Arithmetic chaos”, not 
RMT.)

Leads to sporadic behavior and large n 
universality.

 Spectral Theory



Spectral parameter 

[Hejhal, Rackner; Then]
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Spectral parameter 

[Hejhal, Rackner; Then]

Random Wave Conjecture

Gaussian Moments 
Conjecture 

Quantum Unique 
Ergodicity

Ramanujan Conjecture
…

[Sarnak et al; 
…]

Why are the cusp forms so elusive?

They are chaotic. (“Arithmetic chaos”, not 
RMT.)

Leads to sporadic behavior and large n 
universality.

Understanding this chaos in CFT: still in 
progress! 

 Spectral Theory Spectral parameter



Spectral Decomposition in CFT

The power of modularity is its ability to relate “UV” data to “IR” data. 

In 2d CFT,  relates low-E and high-E spectral densities (Cardy formula) 

Normally, modularity of Z() is obscured while character expansion is manifest. 

The spectral decomposition reverses this. 

Beware: Z( ) is not square-integrable. Apply with care!𝜏

Interesting connections to random matrix statistics and wormholes in AdS3 
gravity.

Many further CFT applications await

[Benjamin, Chang; Haehl, 
Marteau, Reeves, Rozali; 
Benjamin, Collier, Kruthoff, 
Verlinde, Zhang; Di 
Ubaldo, EP]

Virasoro 
CFT

U(1)c Narain 
CFT

[Luo, Wang]

[Benjamin, Collier, 
Fitzpatrick, Maloney, 
EP]



Spectral Decomposition of = 4 SYM

The spectral decomposition fits like a glove in = 4 SYM.

In any CFT at finite coupling, well-defined observables are finite, modulo possible 
divergences at boundaries of moduli space. 

In  = 4 SYM, the cusp just maps to the free theory, where observables converge to 
their free values. 

Therefore,  = 4 SYM observables admit a spectral decomposition. 

Free = 4 SYM

[Collier, 
EP]



Spectral Decomposition of = 4 SYM

This is a complete basis. The overlaps are the observable.

 

Resist the temptation to revert to -space!

DO  NOT REVERT TO -SPACE



The Analytic Structure of = 4 SYM

In = 4 SYM, Fourier number = Instanton number:

An obvious constraint: consistent perturbation theory. 

(N.B. insensitive to cusp forms.)

To develop large y (small g2) expansion, deform to left. Demand no logs, only integer 
powers of 

These functions are reflection symmetric (s  1-s) and real (for real s). 

Perturbative, ~ : 
Values on integers encode weak 
coupling data

Non-perturbative, ~ : 
Instanton-anti-instanton 
corrections

k = total instanton 
number

[Collier, 
EP]



Back to integrated correlators. 

Now pass to the SL(2,ℤ) spectral basis. What happens?

SL(2,ℤ) Spectral Decomposition of Integrated Correlators 



SL(2,ℤ) Spectral Decomposition of Integrated Correlators 

The integrated correlators become polynomials!

[Collier, EP; Paul, EP, 
Raj]



SL(2,ℤ) Spectral Decomposition of Integrated Correlators 

The integrated correlators become polynomials!

•     Cusp overlap vanishes1

[Collier, EP; Paul, EP, 
Raj]



SL(2,ℤ) Spectral Decomposition of Integrated Correlators 

The integrated correlators become polynomials!

•     Cusp overlap vanishes

           Non-perturbative overlap vanishes

1

2

[Collier, EP; Paul, EP, 
Raj]



SL(2,ℤ) Spectral Decomposition of Integrated Correlators 

The integrated correlators become polynomials!

•     Cusp overlap vanishes

           Non-perturbative overlap vanishes

           Perturbative overlap is closed-form polynomial

The SU(2) integrated correlator is literally the simplest possible non-trivial overlap for a  SYM 
observable. 

1

2

3

[Collier, EP; Paul, EP, 
Raj]



SL(2,ℤ) Spectral Decomposition of Integrated Correlators 

This polynomial structure extends to all 22pp integrated correlators:

Behold the power of polynomiality:

The perturbative expansion from the zero mode is

       The integrated correlator is completely fixed by the first                         orders in 
perturbation theory.

       “Instanton redundancy”: very strong form of resurgence

Even polynomial of 
degree 

[Collier, EP; Paul, EP, 
Raj]



SL(2,ℤ) Spectral Decomposition of Integrated Correlators 

A nice choice for : 

Exact solution for all  and … just hypergeometric functions in spectral basis (cf. Hynek 
Paul’s talk)

[Paul, EP, Raj](“maximal trace”)



SL(2,ℤ) Spectral Decomposition of Integrated Correlators 

A nice choice for : 

Exact solution for all  and … just hypergeometric functions in spectral basis (cf. Hynek 
Paul’s talk)

Integrated correlators = Simple harmonic oscillators evolving over 

Shifted correlator

[Paul, EP, Raj]

Coupling

(Evocative of Toda 
chain for SQCD 
extremal 
correlators)

(“maximal trace”)



Ensemble averages in = 4 SYM

What about 
the constant 
term?

In a general CFT with a conformal manifold , we may define an average over exactly 
marginal couplings. 

A natural choice of measure is the Zamolodchikov measure.

In = 4 SYM, thanks to maximal SUSY, the Zamolodchikov metric is the hyperbolic metric. 

For maximal trace integrated correlators, 

Ensemble 
average

Modular 
average



This application of SL(2,ℤ) spectral theory suggests a 

rethinking of coupling-dependence in  = 4 SYM.𝒩



Integrated Correlators: Extensions

Much more has been done…

• Integrated correlators on defects (two-point functions)

• Integrated gluon correlators  Worldvolume gauge vertices

… and can be done (!?):

• Integrated four-point functions in  SQCD

• Integrated four-point functions in d=2,3 SCFTs (cf. Val Reys’ talk)

• Beyond vacuum correlators

[Drukker, Kong, Sakkas; Cavaglia, Gromov, Julius, Preti; Pufu, Rodriguez, Wang]

[Behan, Chester, 
Ferrero]

[Chester; Fiol, Kong]
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Exact Large Charge & Semiclassical String Theory

Let us study large charge, p >> 1. Why?

 

1) Large quantum number expansions are useful and interesting…

• 𝒩=4 SYM octagon 

• Large charge EFT in CFTd

• Extremal two-point functions <pp> in =2 SQCD (“‘t Hooft-like limit”)𝒩

2) We can probe string theory in backreacted geometries

[Coronado; Belitsky, 
Korchemsky; Kostov, 
Petkova, Serban; …]

[Bourget, Rodriguez-
Gomez, Russo; 
Beccaria; Maeda, 
Hellerman; Grassi, 
Komargodski, Tizzano; 
…]

[Hellerman, …]



Exact Large Charge & Semiclassical String Theory

How? Integrated <22pp> at large p with

Explore solution in the “Gravity Regime”: 

Becomes an integrated + supersymmetric heavy-heavy-light-light correlator 
(HHLL)

 Predictions for string theory (finite ′) in backreacted geometry𝛼

e.g. instanton effects  ~
Large charge screening factor of AdS5 x S5 semiclassical 
string theory

[Paul, EP, Raj]

[Brown, Wen, Xie]

22



Closing thoughts

Are we any closer to the full AdS5 x S5 tree-level string amplitude? 

We have everything we need: 10d string n-point functions + exact AdS5 x S5 string 
background. 

Suggestion: planar 4-point functions are more likely to be solved in closed-form than 3-
point functions. 

(Side note: we do know the “AdS-Virasoro-Shapiro” amplitude in AdS3 pure-NS case.)

More generally in = 4 SYM, it seems wise to try to harness S-duality as efficiently as 
possible. 

Perhaps SL(2,ℤ) spectral theory and superconformal bootstrap can be fruitfully combined.

[Maldacena, Ooguri; 
Dei, Eberhardt; 
Bufalini, Iguri, 
Kovensky]

[Chen, Elvang, 
Herderschee]

[Schlotterer, 
Stieberger]



Closing thoughts

Are we any closer to the full AdS5 x S5 tree-level string amplitude? 

We have everything we need: 10d string n-point functions + exact AdS5 x S5 string 
background. 

Suggestion: planar 4-point functions are more likely to be solved in closed-form than 3-
point functions. 

(Side note: we do know the “AdS-Virasoro-Shapiro” amplitude in AdS3 pure-NS case.)

More generally in = 4 SYM, it seems wise to try to harness S-duality as efficiently as 
possible. 

Perhaps SL(2,ℤ) spectral theory and superconformal bootstrap can be fruitfully combined.

[Maldacena, Ooguri; 
Dei, Eberhardt; 
Bufalini, Iguri, 
Kovensky]

[Chen, Elvang, 
Herderschee]

[Schlotterer, 
Stieberger]

Thank You!





Why Ensemble Averages?

Answer #1: 

CFT data

The set of bootstrap solutions within some CFT 
universality class is a (generalized) kind of of 
ensemble.

What are statistics of CFT data within these 
islands? 

What is a typical theory?

CFTs with exactly marginal couplings have a more literal notion of ensemble. 

• What are the statistics of CFT ensembles defined by conformal manifolds ?

• How do these statistics relate to other properties of  (e.g. compactness)?

• …



Why Ensemble Averages?

Answer #2: Recent developments in low-dimensional AdS/CFT establish a duality 
between random matrix ensembles and simple theories of d=2 gravity (JT/RMT duality). 

Even in d>2, semiclassical Einstein gravity may, in a statistical/universality sense, be a 
theory of averages.

How this is compatible with 25 years of successful checks of AdS/CFT at large N, 
without averaging, has been a subject of much recent work. 

In  = 4 SYM at large N, there is a rigorous version of these statements.𝒩

[Saad, 
Shenker, 
Stanford]

[Schlenker, Witten; 
Chandra, Collier, 
Hartman, Maloney; 
Collier, EP]



Ensemble Averages at Large N

Consider the ‘t Hooft double-scaling limit,

Genus expansion:

In the spectral decomposition,

Result: everything from spectral integral is suppressed at large N and large !

By standard AdS/CFT duality, the LHS is equivalent to the AdS5 x S5 supergravity value.

Develop genus expansion

(Nonzero modes and, 
therefore, cusp forms are 
exponentially suppressed 
in N.)

Write in terms of N and  



Supergravity as an  Average

An equivalence between large N ensemble averaging and strong coupling in planar = 4 SYM:

• The traditional holographic correspondence still holds. 

• The ensemble average is emergent at strong coupling and large N.

• Applies to observables with a genus expansion – double-trace dimensions, KK correlators, …

          e.g. Integrated correlator: 

• Extends to all genera:

This is the finite term remaining after string theory regularization of UV divergences of g-loop 
supergravity. 

[Binder, Chester, Pufu, Wang]

[Paul, EP, 
Raj]



The power of modularity is its ability to relate “UV” data to “IR” data. 

In 2d CFT, -invariance relates low- and high-energy spectral densities. 

In gauge theory,  maps strong coupling to “dual” weakly coupled 
description.

Solitons become elementary particles, black holes become vacua, …

Grand canonical partition functions for families of 2d CFTs can have 
modular symmetries acting on the potential conjugate to the number 
of d.o.f. 

These symmetries relate CFTs with small and large central charge. 
What is the “fundamental domain” of the space of conformal field 
theories?
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