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A White Paper Wish List:

Snowmass White Paper: Bootstrapping String Theory

 Obtain the terms in the type Il string theory and M-
theory effective actions.
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* Definitively rule in/out scale-separated AdS vacua
using large N conformal bootstrap.
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progress and prospects in the application of bootstrap methods to string theory.

arxiv:

* Bootstrap the worldsheet description of weakly-
coupled super-Yang-Mills theory



This talk has three themes:

String amplitudes at finite o

Exact results for .4 = 4 super Yang-Mills correlators

Modular symmetries in conformal field theory



We all want to solve Planar .4=4 super Yang-Mills = Classical string theory in AdS. x
SS

Even “just” the tree-level four-graviton amplitude at finite string length would be
fine e s N ; 2]

{ THIS IS FiNe. |

This is dual to the stress-tensor four-point function in the planar theory.



But this is too hard on the string side so far.

 Worldsheet: RR flux
 Spacetime: action unknown

0 |n flat space, unknown beyond .

0 |n AdS, even more complicated.

Looking for a handle...
The large N conformal bootstrap can determine string effective actions:

1 ) Bootstrap CFT correlator

@ Interpret as AdS amplitude (+ flat space limit if desired)



But this is too hard on the string side so far.

 Worldsheet: RR flux
 Spacetime: action unknown

0 |n flat space, unknown beyond .

0 |n AdS, even more complicated.

Looking for a handle...
The large N conformal bootstrap can determine string effective actions:

1 ) Bootstrap CFT correlator

“ know. What's
W?"

@ Interpret as AdS amplitude (+ flat space limit if desirende)



Most work in this vein has been in a low-energy expansion. We want to do better.

leads to exact results for SUSY quantities.

Sometimes, these quantities are independent of the coupling (partition functions,
SUSY indices)

But not always.

e.g. 4d .4=2 SQCD extremal 2-pt functions.

What about in .1=4 SYM?



Consider = 4 super Yang-Mills, with gauge group G.

It contains a complexified gauge coupling on which generic observables depend.

Being exactly marginal, parameterizes a “conformal manifold” preserving = 4 SUSY:

Free SYM
Lz

A CFT at every point




All single-trace operators are ¥2-BPS or unprotected.

Unprotected correlators are too hard.
2-, 3-point functions of ¥2-BPS operators are independent of coupling.
4-point functions depend on cross-ratios and receive unprotected contributions...

Remarkably, there is a class of which can be
computed exactly from localization, even at finite N.

/ d,LL(Z, 2) <01 020304>

Combined with large N bootstrap methods, these teach us about string effective
actions.

They are also amazing observables in their own right,



= 4 SYM enjoys S-duality.

For simply-laced G, this is a self-duality under transformations of (up to global
identifications).

O(yr) =0(1r), ~v€ SL(2,7) e.g A, (0;0,0,0)

(Non-local observables
invariant under congruence

: : subgroups.)
S-duality of = 4 SYM is beyond a reasonable doubt... Lz

* Field theory (D-instantons, 1/N, bound states, partition functions, ...)

 Holography + string theory (D-instantons, graviton scattering, ...)

But its abstract consequences for CFT observables have not been fully understood.

[Montonen, Olive; Olive, Witten; Osborn; Argyres, Kapustin, Seiberg; Vafa, Witten; Sen; Gomis, Okuda; Dorey, Hollowood, Khoze,
Mattis, Vandoren; Green, Gutperle; Banks, Green; Green, Miller, Vanhove; D'Hoker et al; Beem, Rastelli, Sen, van Rees; Chester,
Green, Pufu, Wanqg, Wen: ...]



This is just one instantiation of invariance:

In conformal field theory, modularity is everywhere.

Spacetime symmetry of 2d CFT

Electric-magnetic duality symmetry of Maxwell theory

Generalized modularity of counting functions in superconformal field theories

Everybody knows that we should first process symmetries, then compute.
Why can’t we do this for modular invariance?



This is just one instantiation of invariance:

In conformal field theory, modularity is everywhere.

Spacetime symmetry of 2d CFT

Electric-magnetic duality symmetry of Maxwell theory

Everybody knows that we should first process symmetries, then cc;
Why can’t we do this for modular invariance?

3r

(We can.)

Generalized modularity of counting functions in superconformal field theories




The rest of the talk is a story about these intertwined concepts,

and how they are leading us toward exact (quantum) string theory
observables.

Outline:

1) String tree amplitudes...
2) ...from N=4 SYM correlators

* Unintegrated
 Integrated
3) spectral theory
 Application to Integrated correlators & semiclassical string theory



Some relevant things that | won’t/can’t talk about:

AdS
 Modular structure of string worldsheet integrands @@@
 AdS Unitarity Method/Loop amplitudes @@ @

* Integrability @@@
RSB

* String Field Theory methods

 Ensemble averages and gravitv

/
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Quartic supergraviton scattering amplitudes in (say) type IIB string theory in flat space
take the form

1 o0
Ay, = e +a” Z o/ FmAsng gt f o (7) oy = 5+ t% 4+ u?
m,n=0 o3 := stu
s+t+u=0
T:zzx—+ie_¢

There is a corresponding effective action:

[‘Mm =R+ foo (7’) o> R* -+ f10(7') o> D*R* + fo1 (7’) o' DPR* + ...

In type IIB string theory, these are -invariant functions, order-by-order. (In type IIA, only
dilaton)

Higher orders are not fully known.



Here are the ones that we know (cf. explicit worldsheet/S-duality/on-shell methods):

3(7)

’2’2

fra(T) < Es(T), [fpsps(T) o E5(7), fpogs(T) o< Fy.3

You're probably familiar with non-holomorphic Eisenstein series, eigenfunctions of
hyperbolic Laplacian:

(AT — 3(1 — S))Es (7') =0 Note the Maass cusp forms,
also eigenfunctions (more

later)
Less familiar are the “generalized Eisensteins” ( = <Z +ti>> Pn(1) =0

(A7 = s(s+ 1)) Fssy,6,(7) = —Es, (7) Eg, (7)

Higher-order terms, and beyond, are unknown in general (modulo low-loop

WPQ G(fﬁéf‘ utperle Kwon; [Kleinschmidt, Dorigoni, Schlotterer;
OKer reer}F@an ove;’Green, Russo, Klinger-Logan; Klinger-Logan, Miller,
Vanhove; Green, Miller, Vanhove; Wang, Radchenko; Chester, Green, Pufu, Wang,

Yin: ... 1 Wen]



What about AdS? It's easy to understand why the AdS string effective action is

more complicated...
287 €p7 LAdS

5 6 5 R4
® LMlO D Oé/ R = £AdS5 D) Ofl R @

(Put two legs on
S3)

1 1
An,y, & Py + o’ fra (1) + a’502fD4R4(T) + ... Aadss & P + @/SfR‘l(T) +a” (U2fD4R4<T)Jr

fro(0) +-.

2
LAdS

Finite-size
correction



What about AdS? It's easy to understand why the AdS string effective action is

more complicated...
287 €p7 LAdS

5 6 5 R4
® £M10 D Oé/ R = LAdS5 D) Oé/ R @

At fixed order in o', amplitudes are nat homogeneous in momenta

Apas, ~ Asugra + o Z /2m—|—3nzzo_m j o1 k (9’“)(7)

m,n=0 7=0 k=0

At fixed order in momenta, coefficients have aR infinite expansion in
AAdS5 ~ Asugra 4+ @/3 Z O_gna_g Za/2m—|—3n+3 f(])( )

m,n=0 7=0



... but the AdS effective action is of clear interest:

/\
v
1) It encodes CFT correlators ) 0
AN [Polchinski;
2) It can be derived from CFT correlators WA Penedones]
KX [Maldacena,
AN, Simmons-Duffin,
) /,’,'/ Zhiboedov]
[Komatsu, Paulos,
D van Rees, Zhao]
One can also take the flat space limit. 0/-/\
v
This isolates the leading term in momenta, order-by-order in «'.
1 13 15 1
AAng) ~ — + « fR4(T)+Oé O'QfD4R4(T)+ 5 RG(T) —+ ...
stu L5



Implementing this program,
fra(T) < Es(7), [pigs(T) x Es(7), [fpops(T) ox Fa.z 5(7)
can be recovered from certain computations of .4=4 SYM four-point functions. /

7N\

The holographic results also determine an infinite set of SUSY-protected terms at
higher-orders.

We now turn to how this works.

(N.B: Analogous results exist in M-theory.)



Define ¥2-BPS superconformal primaries

O, ~ tr(¢pr ... ¢f)) € [0p0] irrep of su(4)x (A,, Jp) = (p,0)

Holographically dual to scalar KK modes on S> (modulo multi-trace admixture
details)

At p>2, there is degeneracy (m@ult.l_-trgciz), €.g. V7 Dual to %-BPS
p =027, pe2Zy gas of
gravitons

Consider four-point func&gp}i sc matmale/)

ree par 7—[<N> (u, v;7) 7 = SC Ward identity

factor

Specialize (for now) to simplest case of p=2 [] Four-point supergraviton amplitude
in AdS,



A4=4 SYM correlators: Finite N ”

Some is known about <22pp> at finite N

* Perturbation theory

0 Two loops (generic p) [D'Alessandro, Genovese]

0 Three loops (p=2) [Drummond, Duhr, Eden, Heslop, Pennington,
Smirnov; Eden, Heslop, Korchemsky, Sokatchev;
Fleury, Pereira]

« Numerical superconformal bootstiap. Rastelli, van Rees; Bissi,
Manenti, Vichi; Alday, Chester;

0 Mainly p =2 Chester, Dempsey, Pufu]
0 Some p = 2, 3 (mixed correlator system)

SU(2)

3 O: Without Integrated Constraints

2.8
L|----- 4-Toop Padé

2.6}

----- 4-Loop

Ag

2.4

2.9l

2.0k

9\2(M [4m



At large N, the usual is well-stulliedpo, A := g3V fixed
 Perturbation theory in (Feynman diagrams, symbology, etc), (holography)
* Integrability

* Planar numerical conformal bootstrap-Huot, Coronado, 0 = Pretected - 3™ A2 JT[A, J]
Trinh, Zahraee] '

(A,J) long
Less familiar is the “very strongly coupled” lilNits oo, gy fixed
This preserves SL(2,Z) properties of SYM observables. gﬁﬁﬁg?”agi' Hanada, Honda, Matsuo,

In particular, <22pp>is SL(2,Z)-invariant.

Hy(u,v;7) = Hp(u,v;97), ~v € SL(2,Z)



In the ‘t Hooft limit, bulk string theory is weakly coupled.

The tree-level four-graviton string amplitude is the “AdS. x S5 -Virasoro-Shapiro”

amplitude -
3 2m—+3
AAdSE) ~ Asugra + Oﬁ, Z 09 Ug ZO/ m+3n+j (j)

m,n=0
™~ 7(37)7/( )’tree
Various partial results here [Alday, Hansen, Silva]
Recent bootstrap + Integrability approach:
1
Chn

(Dispersive sum rules) + (Integrability data) + (svMZV assumotion) [] All

oo 0—1 2
j— 2 —

E E D,1(51U+2 ( —;( i )

Oln( 1l ==

Nice structural generalization of VS amplituae._.
_ _ . Dy (6) = b (5) — g (6) (3 + 220, + 3ydy) + 6y.0( — (210 + 3y0y + 25 (2 + 0)0.20.
. with complicated details 600,240, — 920u (40, ) — 1630240, — H(ay)? — (20,2 — Ledy — 2y,
—12(ydy)? — Ly0, — LT + (620,90, + 2(20,)* + 4 w + 2(ydy)? + 13y9, — L) 20,
+ (320,90, + (20.)* + 3320, + F(y0y)* + Byo, + 32 50.) . (5.16)
(Instead expand in momenta?)



We henceforth focus on the very strongly coupled limit, where SL(2,Z) is manifest.
The <2222> correlator has been computed to several orders in 1/N. In Mellin space, ¢ 4t 1 4 =4

N? -1
C =
4

_ 1 8 1 15¢(3)
M2(57t77_) tree ~ C (S — 2)(t - 2)(“ o 2) i c’/4 2V 273

Es(7)

1 315¢(5) 1 315¢(3)? 1
Supergravit T oy 64/2700 Eg(7)(02 =3) + PR (7) (OB 47T 4) L

y

= Finite-size
The supergravity term has been bootstrapped from CEPrigtidnkDs + holographic consistency
conditions

Indeed, <p, p, P, P,> supergravity correlators follow from a single “master” formula:!"@ste!ll zhoul

sugra - sugra MHi n 1 nf rm | mn
H o papa (U V) = Dpipopsps Hooso (U, 0) dden 10d conformal sy

[Caron-Huot, Trinh]

Corrections to supergravity have been reproduced from CFT by different, more involved
means....



Semiclassical AdS; x S° string amplitudes

Consider the first correction ():

_— 1 8 1 15¢(3)
Mo (s, t;7) treeNC(S—Q)(t—Z)(u—2)+c7/42 TW?)Eg(T)Jr...

 Constructed in late 90’s via instantons + stringuduatityreen]
« Required by on-shell superamplitude identities (Laplace eq withyang, Yin]

Primal for various N’s

« What about S-matrix bootstrap approach:

o In the space of consistent S-matrices, |Vhere /s
[Guerrieri, , 5[-/7/7% 7—/76’@[)/7

Penedones, /Y oo (k) — B Tt
Vieira] Es(t) =92+ ——y /2 cos(2mkx) Ki(2kmy) | e 018 E0.02
2 o)
e
T Forbidden by dual
w | t h I— arc argumyent

FIG. 3. String Theory covers all or almost all the allowed
quantum gravity theory space.




Semiclassical AdS; x S° string amplitudes

Consider the first correction ():
1 8 1 15¢(3)

N — Es
tree ¢ (s—2)(t—2)(u—2) i ¢/t 9\/913 3(7) +

 Constructed in late 90’s via instantons + stringuduatityreen]
« Required by on-shell superamplitude identities (Laplace eq withyang, Yin]

Mvg(s, t;7)

Primal for various N’s

« What about S-matrix bootstrap approach:

In the space of consistent S-matrices, |Vhere /s

[Guerrieri, String The 7
Penedones, 3 /9 2 1 /0 % /Y & oo (k) —
Vieira] Es(r) =324+ — 4~V cos(2mkx K1 (2km > . DA3EO02
2 Y 3 Yy Y
(G) (3) 2~
_________d _____________________________
- L g
with Maximized at cusp, ?

M.inimized at Corner’ FIG. 3. String Theory covers all or almost all the allowed

Wi th nea r_ext rema I quantum gravity theory space.

value!




— 1 3 1 15¢(3)
Ma(s, t;7)| =~ - PRI T) + 7y TWSEg(T)

1 315¢(5) 1 315¢(3)2 1
i c9/4 64\/ﬁE% (7)(o2 —3) + 5/2 1673 FS;%,%(T) (UB — 102 — 4) + ...

Let us now delve into how the corrections were computed from the CFT.

As a seqgue, recall the earlier result of [Chester-Dempsey-Pufu]
Q: How did they track position along ?

A: By using certain exact quantities - /ntegrated correlators - obtained from
localization.

Remarkably, <22pp> correlators may be found exactly, for all and (!)...

IF we integrate against a specific spacetime measure.



4=4 SYM Integrated Correlators

Mass-deformed free energy on S4with
squrce

byl
*
.

[ ity M 03 ) = #0208, 108 Zss (i),

Here is the basic relation:

:Tp:()
,/< /,‘ V~~~~
Vs V4 ~~~~
Specific measure Brings down two s ~~--Brings down two 's

[Binder, Chester,
Pufu, Wang; Chester,
Pufu]



Mass-deformed free energy on S*with

Here is the basic relation: Sourte

[ ity M 03 ) = #0208, 108 Zss (i),

:Tp:()

Brings down two 's Brings down two ’s

2 o0 s 3 29
Q(N)(T) = 7T/ dr/ d@r Sl H]()N)(U,TQ;T), u=1+7r%>—2rcos6
0 0

p u2

This is tremendously powerful.
In the planar limit, e.gge=0(\) = [ dow % VAN (VAN
e planar imit, g0 = ["as i ((00) ()

7

) . . / (N) . _ w4 .
Other derivatives are poss@[lé/f (u,0) Hy ™ (u, v37) = 0y, Jog Zsa (T, 7 m)|,,, [Binder, Chester,

Pufu, Wang; Chester,
Pufu]



With this in hand, the p=2 case was systematically studied in the very strongly coupled
limit.

Combining various constraints + flat space limit yielded the previous unintegrated
(Idedoimbed@ate general amplitude and match.)

~ No
protection
beyond

At higher-orders, can only get SUSY *part* of the correction: not enough localization
constraints...

1 4
But, here’s a nex@iaflosdi,, o 2

1
+C7/2 (64 %%(T)—i_ Z CYTFT;%’%<T>+6TFT7%%( )"i_’YrF ;g(T))—I—

[Chester, Green,
[] Generalized Eisensteins appear to all orders in the AdS, and string effective acﬁ@ﬁ?y\/ ane:



What about finite N?

A solution may be inferred from SUSY localization, for all and !

This was pioneered by [Dorigoni, Green, Wen], who conjectured/computed this for p=2:
Rational function

1 o0 T 2 involving Jacobi
géN)(ﬂ = B Z / d¢ By (§) exp <—7T§ M) polynomials, e.qg.
(m,n)ez? ”0 Y By(e) = 3B~ 10€ + 3¢2)

(1+¢)°

N>2 recursively defined by “Laplace difference equation”:
— (Ar +2) G5V (7) = N2 |G () =26 (1)+ 68"V ()| - [ 68TV () -GN ()

This recursion was later proven by [Dorigoni, Green, Wen, Xie] directly from the matrix
model,

with N=2 as an initial condition.



The DGW result is manifestly SL(2,Z)-invariant.

There is another SL(2,Z)-invariant presentation of this object, which arose from
some parallel developments in the broader CFT literature.



The DGW result is manifestly SL(2,Z)-invariant.

There is another SL(2,Z)-invariant presentation of this object, which arose from
some parallel developments in the broader CFT literature.

How do we better understand modularity in CFT?

Use SL(2,7Z) spectral theory = Harmonic analysis on the fundamental domain

Applying to the integrated correlators leads to great simplifications, and makes
physical features transparent.



A square-integrable, -invariant function admits a unique decomposition into an -
invariant complete eigenbasis of the hyperbolic Laplacian.

L*(F) = Leonst(F) © Leont (F) @ Lijse (F)

const cont

[See e.q. Terras]



A square-integrable, -invariant function admits a unique decomposition into an -
invariant complete eigenbasis of the hyperbolic Laplacian.

L*(F) = Leonst(F) © Leont (F) @ Lijse (F)

const cont

1. Constant. “Modular 2. Continuous: Eisenstein 3. Discrete: Maass cusp forms
average” series |
ATf =0 ATEs(T) — 5(1 o S)E8<T) AT¢TL(T) — (Z + t%) ¢n(7_>

1
S:§+it, telR

Smooth Chaotic



(f.9) = /F djfymm

A square-integrable, -invariant function admits a unique decomposition into an -
invariant complete eigenbasis of the hyperbolic Laplacian.

1 >
O(r) =0+ — ds {0, BJEL(T) + ) (0, ¢n)én(T)
A1 JRes—1
2 n=1
1. Constant. “Modular 2. Continuous: Eisenstein 3. Discrete: Maass cusp forms
average” series |
A f=0 A Es(1) = s(1 — s)Es(7) Argn(T) = (Z + ti) On(T)

1
S:§+it, telR

Smooth Chaotic



(f.9) = /F djﬁ%m

A square-integrable, -invariant function admits a unique decomposition into an -
invariant complete eigenbasis of the hyperbolic Laplacian.

_ 1 >
O(r) =0+ — ds {0, BJEL(T) + ) (0, ¢n)én(T)
A1 JRes—1
2 n=1
1. Constant. “Modular 2. Continuous: Eisenstein 3. Discrete: Maass cusp forms
average” i series
| A\ — (#1)o(y)
47—“ \
LA / (#3)0(y)
b\

0.2 0.4 0.6 0.8 1.0



(f.9) = /F deyf<T>ﬁ

A square-integrable, -invariant function admits a unique decomposition into an -
invariant complete eigenbasis of the hyperbolic Laplacian.

_ 1 >
O(r) =0+ — ds {0, BJEL(T) + ) (0, ¢n)én(T)
A1 JRes—1
2 n=1
1. Constant: “Modular 2. Continuous: Eisenstein 3. Discrete: Maass cusp forms
average” series
_ dxd
0 := vol(]-")_1/ “o(r)
F Y



(f.9) = /F djfymm

A square-integrable, -invariant function admits a unique decomposition into an -
invariant complete eigenbasis of the hyperbolic Laplacian.

O(r) =0+ — 45 {0, BB (1) + 3 (0, 62)6n(7)

4 Res:%

1. Constant. “Modular 2. Continuous: 3. Discrete: Maass cusp forms
average” Eisenstein series

* Fourier decomposition: E; (1) := A(s)Es(T)
0-23—1<k)

— A(S>ys + A(l _ S)yl_s + Z4COS<27T]€$)I€ST\/§KS_%(27T]CQ>
k=1 ?

* Functional equations: E; (1) := E]_,(7)
Completed Riemann zeta

. o A(s) := 7 °T'(s)((2s)
« Overlap is a Mellin integral of zero mode:

[Rankin, (O, Ey) —/ dyy 5 tOo(y) := A(s){0, E,}
Selberg] 0



(f.9) = /F deyf<T>ﬁ

A square-integrable, -invariant function admits a unique decomposition into an -
invariant complete eigenbasis of the hyperbolic Laplacian.

O(r) =0+ — 45 {0, BB (1) + 3 (0, 62)6n(7)

4 Res:%

1. Constant. “Modular 2. Continuous: Eisenstein 3. Discrete: Maass cusp
average” series forms

Maass cusp forms are the most interesting eigenfunctions.

| - | o bulr) = ay") cos(2mka) VyKa, (27ky)
* Functionally similar to Eisenstein series... ( =1
... but they vanish at the cusp... On(T) ~ e 2™ (y — 00)
* ... and are infinite in number, but none known analytically
0 Small n: numerics (~103 digits) [Hejhal; Then; Booker,

. . Strombergsson, Venkatesh;
0 Large n: universality Sarnak; ...]



(Y — Modular forms — Maass — Level 1 — Weight 0 — Character 1.1 Citation - Feedback - Hide Menu
@:EB Maass form on I'y(1) with R = 13.7797513519

Introduction . . Properties @
The even Maass form on SL(2, Z) with the smallest eigenvalue.
Overview Random

Universe knowledge  Maass form invariants

L-functions Level: 1
Rational Al Weight: 0
Character: 1.1
Modular forms
Symmetry: even
Classical Maass Fricke sign: +1
Hilbert Bianchi Spectral parameter:  13.7797513519 Level 1
S o Weight 0
Varieties Maass form coefficients J
............................................. Character 1.1
Elliptic curves over @ Symmetry even
Elliptic curves over Q(a) a; = +1.000000000 a9 = +1.549304478 a3 = +0.246899772 a4 = +1.400344365 a5 = +0.737060385 Fricke sign +1
Genus 2 curves over Q ag = +0.382522923 a7 = —0.261420076 ag = +0.620255318 ag = —0.939040503 aig = +1.141930962 Related objects
Higher genus families ar; = —0.953564653  ayp = +0.345744705 a3 = +0.278827029 ayy = —0.405019294 a5 = +0.181980041 L-function
Abelian varieties over F, ag = —0.439380024 aj; = +1.307341715 a3 = —1.454859655 aj9 = +0.092558583 a9y = +1.032138358 Downloads
Fields ag; = —0.064544557 ago = —1.477361986 o3 = +1.138068521 a9y = +0.153140897 ag5 = —0.456741988
Coefficients to text
Number fields asg = +0.431987965 a9y = —0.478748659 s = —0.366078130 a9 = +0.752113845 a3y = +0.281942493 All stored data to text
p-adic fields ag; = +0.024851954 ase = —1.300988756 as3 = —0.235434896 a3y = +2.025470373  as; = —0.192682382 Underlying data

asg = —1.314980076 az7 = +0.199265656 a3z = +0.143401426 a3y = +0.068842330 a4y = +0.457165624
ay; = —0.304032997 aq = —0.099999172 a43 = +0.783239364 a4 = —1.335318888 ay; = —0.692129535 Source and acknowledgments
ags = +1.763214656 ag7 = +0.360568411 ays = —0.108482828 ag9 = —0.931659544 as) = —0.707632408 Completeness of the data

az; = +0.322782372 asp = +0.390453860 as3 = +1.398065718 azy = —0.741727442 az; = —0.702834729 Reliability of the data

azg = —0.162147187 as7 = +0.022852693 ass = +1.165253349 as9 = —1.587730962 agy = +0.254834726

Representations Learn more

Dirichlet characters

Artin representations

Groups



Why are the cusp forms so elusive?

They are chaotic. (“Arithmetic chaos”, not
RMT.)

Leads to sporadic behavior and large n
universality.
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Why are the cusp forms so elusive?

They are chaotic. (“Arithmetic chaos”, not
RMT.)

Leads to sporadic behavior and large n
universality.

Random Wave Conjecture

Gaussian Moments

[Sarnak et al; Conjecture

]

Quantum Unique
Ergodicity

Ramanujan Conjecture

Understanding this chaos in CFT: still in
progress!

Spectral parameter Spectral parameter

[Hejhal, Rackner; Then]



The power of modularity is its ability to relate “UV"” data to

"

In 2d CFT, relates low-E and high-E spectral densities (Cardy formuld) —

\
\
\

Normally, modularity of Z() is obscured while character expansion is mMamntfest:
The spectral decomposition reverses this.

[Benjamin, Collier,
Fitzpatrick, Maloney,

: : . EP
Beware: Z(r) is not square-integrable. Apply with care! !
w(c—1) 2
Zprimary (y — OO) ~e 6 Y Zprimary(ZJ — OO) ~ yc/
Virasoro U(1)< Narain [Benjamin, Chang; Haehl,
CFT CFT Marteau, Reeves, Rozali;

Benjamin, Collier, Kruthoff,
Interesting connections to random matrix statistics and wormholes in AdSiyde, Zhang; Di

ravit Ubaldo, EP]
gravity. [Luo, Wang]

Manv fiirther CFT annlicationce awaAait



The spectral decomposition fits like a glove in = 4 SYM.,

In any CFT at finite coupling, well-defined observables are finite, modulo possible
divergences at boundaries of moduli space.

In =4 SYM, the cusp just maps to the free theory, where observables converge to
their free values.

= Free = 4 SYM

[Collier,
Therefore, = 4 SYM observables admit a spectral decomposition. EP]



Spectral Decomposition of = 4 SYM

O(r) = @+i/ ds {0, E, E* (1 Z@gbngbn
Res—— n—1

471

This is a complete basis. The overlaps are the observable.

{@7 ES}7 (©7¢n)

Resist the temptation to revert to -space!




In = 4 SYM, Fourier number = Instanton numB&(t) = ) + Z 2™ O (

k70 k = total instanton
number
An obvious constraint: consistent perturbation theory. (qngn% + c.c.)
(N.B. insensitive to cusp forms.) 1
OQo(y) =0+ — ds {0, Es}A(s)y”
271 JRe s=1

To develop large y (small g2) expansion, deform to left. Demand no logs, only integer
powers of

7Is
O, E,} = — s(l—s s) + S
{0, B} = ——5(1 - 8)f5(s) + fup(8)
Perturbati\(e, ~ ! Non-perturbative,
Values on integers encode weak Instanton-anti-instanton
coupling data corrections

. . . Collier,
These functions are reflection symmetric (s [] 1-s) and real (for real s). [Ep? -



Back to integrated correlators.

What about finite N?

A solution may be inferred from SUSY localization, for all N, p and 7!

This was pioneered by [Dorigoni, Green, Wen], who conjectured/computed this for p=2:

Rational function involving

2 Jacobi polynomials, e.g.
z / 0t By (& exp( |m+n"r| )
Y

(m mez 3¢(3 — 106 + 3¢2)
Bs(£) = ~ aror

N>2 recursively defined by “Laplace difference equation™
(A +2) 0V () = N[0 (7)-268 (1) + 68V ()| -V [0 (1) - 68" )

This recursion was later proven by [Dorigoni, Green, Wen, Xie| directly from the matrix model,

with N=2 as an initial condition.

Now pass to the SL(2,Z) spectral basis. What happens?



SL(2,7) Spectral Decomposition of Integrated Correlators

The integrated correlators become po/ynomials!

[Collier, EP; Paul, EP,
Raj]
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The integrated correlators become po/ynomials!

N
@ Cusp overlap vanishes (G, 6,) =0

[Collier, EP; Paul, EP,
Raj]



The integrated correlators become po/ynomials!

N
@ Cusp overlap vanishes (9> ( )7%) =

(N) (N>
: . JEg} = 1 —
@ Non-perturbative overlap vanishes 192 b= SN TS T s(1—=s)f3,7(s) + f2/«{a/

[Collier, EP; Paul, EP,
Raj]



The integrated correlators become po/ynomials!

N
1 Cusp overlap vanishes (95 ( )7(/5n) =

. . (V) _ oY) (N
@ Non-perturbative overlap vanishes 19: 5 Es) = T (L= 8)f5,7(s) + fo4(5)

N(N —1
( )(25—1)23F2(2—N,S,1—3;3,2;1)

3 Perturbative overlap is closed-form polynomial 9

The SU(2) integrated correlator is literally the simplest possible non-trivial overlap fora SYM
observable.

[Collier, EP; Paul, EP,
Raj]



This polynomial structure extends to all 22pp integrated correlators:

(N 1 s
gz(,N)(T) = g;gN) + — ds

ATl JRe s=1 sinms

s(1—s)(2s = 1)%g5" (s) E(7)

Behold the power of polynomiality: Even polynomial of

The perturbative expansion from the zero mode is degree

My = g™ L g5 "
Gp0' W) P +27Ti Re s—1 ® sins

s(1—5)(25 — 1295 (s)A(s)y’

[] The integrated correlator is completely fixed\ b))[%/J?e Zirst
perturbation theory.

“Instanton redundancy”: very strong form of resurgence

2N+2V§J 6

orders in

[Collier, EP; Paul, EP,
Raj]



A nice choice for : 0, = [0:]P?, pe2z, (“maximal trace”)  [Paul, EP, Ral]

Exact solution for all and ... just hypergeometric functions in spectral basis (cf. Hynek
Paul’s talk)



A nice choice for :

0, = [0:]P%, pe2Z, (“maximal trace”) [Paul, EP, Raj]

Exact solution for all and ... just hypergeometric functions in spectral basis (cf. Hynek

Paul’s talk)

Integrated correlators = Simple harmonic oscillators evolving over
A O (r) = =k, (Q(7) = Q7)) + mpa (QSVA(7) — QSY4(7))

(Evocative of Toda
chain for SQCD
extremal
correlators)

Qo Qo Q4 Qs

K9 K4 Kg K8

Coupling Shifted correlator

2 _
=P (V24 p—3) QM (r) =g (r) - 1

R
p 4 2 T

ATIG

5 ()



1 oo
What about O 0+ — ds{O, Es}EX (T (O, ¢ )On
the constant ( ) 4 Res=1 { } Z ¢ ¢
term?

In a general CFT with a conformal manifold , we may define an average over exactly
marginal couplings.

(0) = / dpuam(X) O(A), where dua(A) := gir, (A)dA*dN”

A natural choice of measure is the Zamolodchikov measure.
In = 4 SYM, thanks to maximal SUSY, the

Ensemble <@> — @ Modular
average average
N(N -1
oy =YD gty — () (Hn gy — Hias )

For maximal trace integrated correlators,



This application of SL(2,Z) spectral theory suggests a
rethinking of coupling-dependence in .4= 4 SYM.



Much more has been done...
flat space
. . —_—
* Integrated correlators on defects (two-point functions) E limit

[Drukker, Kong, Sakkas; Cavaglia, Gromov, Julius, Preti; Pufu, Rodriguez, Wang]

* Integrated gluon correlators [] Worldvolume gauge vertices

[Behan, Chester,
Ferrero] 4
. and can be done (!?): ~ F f(T)

* Integrated four-point functions in SQCD
[Chester; Fiol, Kong]

* Integrated four-point functions in d=2,3 SCFTs (cf. Val Reys’ talk)

« Beyond vacuum correlators



Much more has been done...
flat space
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 Integrated correlators on defects (two-point functions) E limit

[Drukker, Kong, Sakkas; Cavaglia, Gromov, Julius, Preti; Pufu, Rodriguez, Wang]

* Integrated gluon correlators [] Worldvolume gauge vertices

[Behan, Chester,
Ferrero] 4
. and can be done (!?): ~ F f(T)

* Integrated four-point functions in SQCD
[Chester; Fiol, Kong]

* Integrated four-point functions in d=2,3 SCFTs (cf. Val Reys’ talk)

- Beyond vacuum correlators



Let us study large charge, p >> 1. Why?

1) Large quantum number expansions are useful and interesting...
e =4 SYM octagon

(opop) ~ [O(z, =) ~ 252 togeost ()| 400 (0~ V5 )

e Large charge EFT in CFT
 Extremal two-point functions <pp> in .4=2 SQCD (“‘t Hooft-like limit")

O3(x3)

O1(xq)

[Coronado; Belitsky,
Korchemsky; Kostov,
Petkova, Serban; ...]

[Hellerman, ...]

log ((Tr(¢2)”Tr(gb2)”>) = Zn_g]:g(N)()\n) + (non-pert in n) (n — 00, A, := giyn fixed)

N

g=0

2) We can probe string theory in backreacted geometries

[Bourget, Rodriguez-
Gomez, Russo;
Beccaria; Maeda,
Hellerman; Grassi,
Komargodski, Tizzano;

]



How? Integrated <22pp> at large®@, withO,]?/2, pe 27,

[Paul, EP, Raj]
[Brown, Wen, Xie]

Explore solution in the “ Gravity Regime”:

p>1. N>1, a=— ficed

Becomes an integrated + supersymmetric heavy-heavy-light-light correlator
(HHLL)

/dzdz,u(z,z) (0,(0)05(z,2)02(1)O,(00)) = /dzdz,u(Z,Z) (p|O2(z,2)O02(1)|p)

[] Predictions for string theory (finite ') in backreacted geometry

e 2VMBa - Ro=1420 - 2/ala+1)

e.g. instanton effects ~ , . _
Large charge screening factor of AdS. x S*> semiclassical

cFrinma Fhanryv




[Chen, Elvang,

Are we any closer to the full AdS. x 8® tree-level string amplitude? Herderschee]

[Schlotterer,

. . . Stieb
We have everything we need: 10d string n-point functions + exact AdS; x S5 strlns croer

background.

Suggestion: planar 4-point functions are more likely to be solved in closed-form than 3-
point functions.

[Maldacena, Ooguri;
Dei, Eberhardt;
Bufalini, Iguri,

(Side note: we do know the “AdS-Virasoro-Shapiro” amplitude in AdS; pure-NS case:jsky;

More generally in = 4 SYM, it seems wise to try to harness S-duality as efficiently as
possible.

Perhaps SL(2,Z) spectral theory and superconformal bootstrap can be fruitfully combined.
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We have everything we need: 10d string n-point functions + exact AdS; x S5 strlns croer

background.
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Answer #1:

| CFT data

The set of bootstrap solutions within some CFT
universality class is a (generalized) kind of of
ensemble.

What are statistics of CFT data within these
islands?

What is a typical/theory?
CFTs with exactly marginal couplings have a more literal notion of ensemble.

 What are the statistics of CFT ensembles defined by conformal manifolds ?

* How do these statistics relate to other properties of (e.g. compactness)?



Answer #2: Recent developments in low-dimensional AdS/CFT establish a duality

between random matrix ensembles and simple theories of d=2 gravity (JT/RMT dual[itygj.
Saad,

10° ‘ : : ‘ : Shenker,

Sames Stanford]

90 samples
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Even in d>2, semiclassical Einstein gravity may, in a statistical/universality sense, be a
theory of averages.

How this is compatible with 25 years of successful checks of AdS/CFT at large N,
without averaging, has been a subject of much recent work.

[Schlenker, Witten;
Chandra, Collier,

In.#= 4 SYM at large N, there is a rigorous version of these statements. Eglﬁtirenrag'la']"'a'oney;



Consider the ‘t Hooft double-scaling lifit; oo, ¢ — 0, X := ¢*N fixed

Genus expansion: O(N,A) =) N*7% 0 (\) + (NP)

9=0 (Nonzero modes and,

therefore, cusp forms are
exponentially suppressed

1 .
In the spectral decompositidii( NV, \) = (0) + 2—m/ ds {0, E} E7 o (y) nN.)
Re 3:%
Develop genus expansion Write in terms of N and

Result. everything from spectral integral is suppressed at large N and large !
O(A > 1) = (0) + (subleading in 1/N and 1/))

By standard AdS/CFT duality, the LHS is equivalent to the AdS. x S°> supergravity value.



An equivalence between large N ensemble averaging and strong coupling in planar = 4 SYM:

[O(\ — 00) = (0) = O

The traditional holographic correspondence still holds.

The ensemble average is emergent at strong coupling and large N.

Applies to observables with a genus expansion - double-trace dimensions, KK correlators, ...

e.g. Integrated correlatogigg:m (\) = 1?2;1 (1 _ O(A?»/z)) [Binder, Chester, Pufu, Wang]
p
Gy —P=1 (=D _ @-DE° =4 [Paul, EP,
. 2p N 48 N2 Raj]

Extends to all genera:
0W (A = o0) = (09 := lim N2972(0))

N— oo

This is the finite term remaining after string theory reqgularization of UV divergences of g-loop
supergravity.



The power of modularity is its ability to relate to

In 2d CFT, -invariance relates low- and high-energy spectral densities.

In gauge theory, maps strong coupling to “dual” weakly coupled
description.

Solitons become elementary particles, black holes become vacua, ...

Grand canonical partition functions for families of 2d CFTs can havﬁ 5"
modular symmetries acting on the potential conjugate to the numQier
of d.o.f.

These symmetries relate CFTs with small and large central charge.

theories? N

-

-
- -

~~~~~~

-
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