Theoretical framework for clustering

1. Need for articulation between microscopic and cluster EFTs

► No belittling in going from microscopic to cluster dofs

► Not the same domain of applicability

► Not the same computational complexity

2. Experimental smoking gun for what is inferred to be nucleonic clustering

Definition: All **but** the observables whose reproduction to a given accuracy **cannot** be achieved via the use of cluster dofs (i.e. via low order of a cluster EFT), i.e. all observables for which the use of cluster dofs is **sufficient**

► The faster it converges in a cluster EFT the more "smoking" it is

Ex1: what is used in cluster EFT to postulate cluster dofs: alpha separation energy vs clusterized nucleus separation energy

Ex2: moment of inertia, specific EM transitions, alpha knockout cross section, alpha decay width, ...

Conditions for clustering

- 1. Threshold and open-system character dictate clustering
 - ► Unitarity of quantum mechanical formulation crucial

Remark: Universal character shared by many-body systems, i.e. atomic/molecular systems

► Intrinsically interdisciplinary (workshop to be organized ?)

- 2. Nuclei are near "unitarity" (not the same thing as above!) = $a_s^{-1} \le k \le R^{-1}$
- -Discrete scale invariance in A≥3 body systems (bosons or more-than-3 component fermions)
 - ► Geometric series excitation spectrum (e.g. Efimov) + specific relation between A-body ground-state energies
- -The shallow character of the two-body system (unitarity) is postulated to bring specific states above threshold
 ▶ Drives nuclear clustering

- 3. Strength of correlations triggering localization/bound state formation
 - ► Dominance of localization for low density light nuclei

