Clustering in the g.s. Of light neutron-rich nuclei x [fm] x [fm] x [fm] Schematic views of g.s. Configurations from AMD calculations # Alpha clustering and beyond: from nuclear matter to nuclei ^{11}B 0.0 6 Future plans to investigate the presence of clusters Through knockout or transfer reactions. From D. Beaumel # Perspectives on the study of multineutron systems #### 3n and 4n system - \rightarrow Data for ⁸He (p,2p) ⁷H -> {³H+**4n**} - \rightarrow t (t, 3 He)**3n** (RIKEN/Samurai) under analysis (LPC Caen) (RIKEN/SHARAQ) under analysis (T.Miki) #### 6n system - \rightarrow ¹⁴Be(p,pa)¹⁰He* -> **6n**+alpha - ► ^{6,8}He(p,3p) accepted at RIKEN - Data from SAMURAI12 under analysis (O.Nasr, IJCLab) - \rightarrow ¹¹Li(p,2p)¹⁰He* -> **6n**+alpha SAMURAI47 (Sp. T. Nakamura) June 2023 **Uncertain Internal Structure** #### The Ikeda conjecture and its role in nuclear astrophysics Ikeda conjecture: Systematic identification of narrow resonances close to corresponding emission thresholds #### α cluster states The (3 α) Hoyle state in 12 C and the (12 C+ α) subthreshold resonance in 16 O play crucial roles in regulating the 12 C/ 16 O ratio in the universe The γ -decay branch of the Hoyle state allows the ^{12}C to be synthesized ### The Ikeda conjecture and its role in nuclear astrophysics Ikeda conjecture: Systematic identification of narrow resonances close to corresponding emission thresholds #### α cluster states The (3 α) Hoyle state in 12 C and the (12 C+ α) subthreshold resonance in 16 O play crucial roles in regulating the 12 C/ 16 O ratio in the universe The γ -decay branch of the Hoyle state allows the ^{12}C to be synthesized ¹²C + ¹²C burning direct reaction 4.0 7.84:2+ .45:5/2+ 24 Mg(α , α') 24 Mg 3.0 7.43:2+ 0 :3/2+ 7.17 : 3 = 4,43:(1/2") p₁₀ 23Mg+n 6.72:0+ $(c)\Phi_{\beta\gamma}+\Phi_{IS0}+\Phi_{\Delta N}$ 2.0 5.63:3-5.80:I 1.0 4.97:2" 2.39:1/2+ 2.08:(7/2+) 12C+12C 4.25 4+ -1.0 0.439:5/2+ E_x (MeV) -2.0 P₀ 440 keV ²³Na+p Adsley, Heine et al. PRL (2022) 1,63 12 -3.0 1634 keV -4.0 20 Ne+ α -14.0 ²⁴Mg From S. Courtin ### Can the ikeda conjecture be generalized to 2n-4n clusters? J. Okolowicz, et al. Prog. Th. Phys. Supp. 196 (2012) See also J. Okolowicz; M. Ploszajczak and W. Nazarewicz PRL 124 (2020) 042502 α cluster states 2n cluster /halo states The 2n-halo ¹¹Li nucleus (bound by 300 keV) was the only remarkable case that fell into a generalized conjecture ... ### Generalized Ikeda conjecture to 2n, 2p clusters? Occurrence for such clusters -> presence of nearby orbits ? - -> Such resonances woulc considerably speed up neutron captures in the r process nucleosythesis - -> Look at the possible competition with gamma decay Do they form a compact di-neutron or a dilute one? -> Find experimental probes to determine their distances and correlations (transfer, knockout...) ## Alpha clustering in the A=10 systems: dependence with isospin 10 Be = α + α + 2n, 10 B = α + α + n +p, 10 C= α + α + 2p Explore the isospin dependance of rotational bands Y. Kanada-En'yo, M. Kimura, A. Ono, PTEP, 01A202 (2012) ## Alpha clustering in the A=10 systems: dependence with isospin 10 Be = $\alpha + \alpha + 2n$, 10 B = $\alpha + \alpha + n + p$, 10 C= $\alpha + \alpha + 2p$ Y. Kanada-En'yo, M. Kimura, A. Ono, PTEP, 01A202 (2012) From B. Mauss ### Generalized Ikeda conjecture to ³He, t clusters? Experimental study of ³He and ³H clustering - -> Analogies and differences with clusters of bosons ⁴He - -> Is there a Hoyle-like state existing?