Near Threshold 2n Clustering ?

Aldric REVEL

CEA, Saclay, France

2nd Rencontre PhyNuBe March 27th, 2023

Ikeda conjecture (K. Ikeda et al., Prog. Theor. Phys. Supp., Ext. Num., 464, 1968)

\rightarrow N α -cluster states expected in the vicinity of their N α decay threshold \rightarrow Hoyle State (3 α cluster)

 \rightarrow Can we generalize this lkeda conjecture to other cluster configurations ?

Generalization of Ikeda conjecture

 $^{15}\mathsf{F}$ \rightarrow narrow resonance just above S_{2p}

The case of ^{15}F (V. Girard-Alcindor *et al.*, Phys. Rev. C 105, L051301, 2022)

 \rightarrow Very narrow resonance (Γ =30(15) keV) due to proximity to S_{2p}

Aldric REVEL (CEA, Saclay)

Generalization of Ikeda conjecture to 2n clustering ?

Aldric REVEL (CEA, Saclay)

The 2*n*-halo ¹¹Li nucleus

- ightarrow ¹¹Li viewed as a ⁹Li core + 2*n*-halo
- \rightarrow Investigated using (p,pn) reaction
- \rightarrow Correlation angle of the 2n measured as a function of the missing momentum
- \rightarrow Reaction calculation reveals a localization of the dineutron at around 3.6 fm

Generalization of Ikeda conjecture to 2n clustering ?

Invariant-mass method

For N-body unbound system :

$$E_{rel} = M_{inv} - \sum_{i=1}^{N} m_i$$

$$M_{inv} = \sqrt{\left(\sum_{i=1}^{N} E_i\right)^2 - \left(\sum_{i=1}^{N} \vec{p_i}\right)^2}$$

Experimental requirements :

- Momenta of the decay products $\binom{A-x}{X} + xn$
- Gamma-ray coincidence
- High-resolution
- High-statistics

2*n*-unbound ¹³Li

Typical experimental setup (e.g. SAMURAI+MINOS+NEULAND)

$^{13}{ m Li} ightarrow ^{11}{ m Li}$ + n relative energy (P. André PhD Thesis, CEA, 2022)

Decay of three-Body unbound system

What is required experimentally ?

- Measurement of full kinematic of the decay $(\vec{p}_{n_1}, \vec{p}_{n_2}, \vec{p}_f)$
- Invariant-mass method
- Clear identification of 2n-resonance
- Decay mechanism
- High stastistic
- High resolution

Decay of three-Body unbound system

$^{13}{ m Li} ightarrow ^{11}{ m Li}$ + n+n 3B-correlations (P. André PhD Thesis, CEA, 2022)

r^{Led}_{nn} systematic (P. André PhD Thesis, CEA, 2022)

Comparison with three-body calculation for ¹³Li g.s.

- Time evolution of three-body wave-functions
- Partial relative energies for the ground-state
- · Good reproduction of the experimental data

Courtesy of J. Casal, Uni. de Sevilla

Aldric REVEL	(CEA, Saclay)	
--------------	---------------	--

1.0

Comparison of three-body calculation for ^{11–13}Li g.s.

Courtesy of J. Casal, Uni. de Sevilla

Aldric REVEL	(CEA, Saclay)
--------------	---------------

2*n*-unbound ¹⁶Be

$^{16}\text{Be} \rightarrow {}^{14}\text{Be} + n + n$

- Two well resolved resonances
- \approx 840keV ground-state
- Signal observed at low ε_{nn}
- Direct decay although intermediate resonance available
- 3-body model suggests dineutron configuration dominates

Neutron-rich fluorine isotopes : $^{\rm 28,29}{\rm F}$

$^{28}F \rightarrow ^{26}F + n + n$

- Several well resolved resonances
- \approx 240keV low-lying resonance
- Signal observed at low ε_{nn}

$^{29}F \rightarrow ^{27}F + n + n$

- Several well resolved resonances
- \approx 300keV low-lying resonance
- ${}^{27}F+n$ intermediate resonance
- Statistics too low for 3-Body correlations study

S_{2n}

2n-unbound ²⁶O : unbound only by 18 keV !!

$^{26}O \rightarrow {}^{24}O + n + n$

- 18keV low-lying resonance
- $\frac{24}{O+n}$ intermediate resonance
- Predicted "cigar" configuration
- Very challenging because 3-Body are sharing only 18keV!!

Conclusion

- New era of high-statistics(+)/high-resolution(+) xn-decay experiments
 - (+) Beam intensities
 - (+)/(+) Thick LH2 target (MINOS/COCOTIER)
 - (+) Increased *n* detector volume
 - (+) High-granularity n detectors
- Study of 3-Body correlations for given resonance
 - \rightarrow Distinguish Direct/Sequential decays
 - \rightarrow Identification of intermediate resonances
 - \rightarrow *n*-*n* correlations challenging for low-energy resonances

Conclusion

• Clear observation of xn-unbound resonances

 \rightarrow Seems common feature in proximity to S $_{2n}$ \rightarrow $^{11}Li,$ $^{13}Li,$ $^{14}Be,$ $^{16}Be,$ $^{26}O,$ $^{28}F,$ ^{29}F ...

- Ongoing experimental/theoretical efforts
- Why such phenonena arise in certain nuclei and not in other ?
 - \rightarrow Achieve understanding to predict in other nuclei
 - \rightarrow May have strong implication for astrophysical processes
- What about 4n resonances ?

 \rightarrow 5-body correlations studies are now within reach ($^{28}{\rm O})$

Thank you for your attention !

Backup slides

Three-Body model

- Experimentally, we observe similar signal ([s²]₀)
- Why not $[p^2]_0$? $[d^2]_0$?

$^{14}\text{Be} \rightarrow {}^{12}\text{Be} + n + n$

Dalitz plots & correlations (MC Simulations)

nn

Phase space (no correlations)

Direct decay : Phase space \otimes n-n FSI 1

¹Lednicky&Lyuboshits, SJNP 35 (1982) 770