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Separation of the effective Hamiltonian
Monopole and multipole

Multipole expansion:

H = Hmonopole + Hmultipole

Hmonopole:

• Spherical mean-field

• Evolution of the spherical

single particle levels
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Hmultipole:
• Correlations

• Energy gains
Z pairing, quadrupole

M. Dufour and A. Zuker (PRC 54 1996 1641)
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The monopole hamiltonian

V =
∑

JT

V JT
ijkl
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Hm corresponds only to the terms λτ =00 and 01 which implies that i = j and k = l
and writes as

Hm =
∑

i

ni ǫi +
∑

i≤j

ni .nj Vij
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Multipole Hamiltonian

Hmultipole can be written in two representations, particle-particle
and particle-hole. Both can be brought into a diagonal form.
When this is done, it comes out that only a few terms are
coherent, and those are the simplest ones:

L = 0 isovector and isoscalar pairing

Elliott’s quadrupole

~σ~τ · ~σ~τ

Octupole and hexadecapole terms of the type rλYλ · rλYλ

Besides, they are universal (all the realistic interactions give

similar values) and scale simply with the mass number

pp(JT) ph(λτ )

10 01 21 20 40 10 11

KB -5.83 -4.96 -3.21 -3.53 -1.38 +1.61 +3.00
USD-A -5.62 -5.50 -3.17 -3.24 -1.60 +1.56 +2.99
CCEI -6.79 -4.68 -2.93 -3.40 -1.39 +1.21 +2.83
NN+NNN-MBPT -6.40 -4.36 -2.91 -3.28 -1.23 +1.10 +2.43
NN-MBPT -6.06 -4.38 -2.92 -3.35 -1.31 +1.03 +2.49
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• Pairing regime: spherical nuclei

ground state = pairs of like-particles coupled at J=0 (seniority v=0)

2+ state (break of pair; v=2) at high energy

Underlying SU2 symmetry

superfluid nucleus:

|j −m >

|j m’>

|j −m’>

|j m >

Typical example: Tin isotopes

• Quadrupole regime: deformed nuclei

Underlying SU3 symmetry

prolate nucleus:

Typical example: open shell N=Z nuclei
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Multipole Hamiltonian

Hmultipole can be written in two representations, particle-particle and particle-hole. Both

can be brought into a diagonal form. When this is done, it comes out that only a few
terms are coherent, and those are the simplest ones:

L = 0 isovector and isoscalar pairing

Elliott’s quadrupole

~σ~τ · ~σ~τ

Octupole and hexadecapole terms of the type rλYλ · rλYλ

Besides, they are universal (even from modern abinitio derivations, all the realistic
interactions give similar values) and scale simply with the mass number

particle-particle Interaction particle-hole

JT = 01 JT = 10 λτ = 20 λτ = 40 λτ = 11

-5.42 -5.43 KLS -2.90 -1.61 +2.38
-5.48 -6.24 BONNB -2.82 -1.39 +3.64
-5.69 -5.90 USD -3.18 -1.60 +3.08

-4.75 -4.46 KB3 -2.79 -1.39 +2.46
-5.06 -5.08 FPD6 -3.11 -1.67 +3.17
-4.07 -5.74 GOGNY -3.23 -1.77 +2.46
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Elliott’s SU(3) model

see Eisenberg and Greiner, Nuclear Theory volume 3, Microscopic Theory of the nucleus (chapter on Nuclear rotations)

Assuming spin-isospin SU(4) symmetry (no spin-orbit)

and a quadrupole-quadrupole residual interaction:

H =
∑

k

(

p2
k

2m
+

1

2
mω2r2

k

)

+ κQ.Q

which can be rewritten

H =
∑

k

(

p2
k

2m
+

1

2
mω2r2

k

)

+ 4κCSU3 − 3κ(~L.~L)

the eigenenergies have the following form:

E = ~ω

(

N +
3

2

)

+ 4κ(λ2 + λµ+ µ2 + 3(λ+ µ))− 3κL(L + 1)

where λ and µ are the labels of the SU3 irrep. and L the angular

momentum. Therefore it gives a description of deformation via a

rotationally invariant mixing of spherical orbits.
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Spherical Shell Model and Deformation

Consider the quadrupole force alone, taken to act in the p-th

oscillator shell. It will tend to maximize the quadrupole moment,

which means filling the lowest orbits obtained by diagonalizing

the operator

Q0 = 2z2 − x2 − y2

Using the cartesian representation,

Q0 = 2nz − nx − ny = 3nz − N, we find eigenvalues 2p,

2p − 3,. . . , etc.

By filling the orbits orderly we obtain the intrinsic states for the

lowest SU(3) representations:

(λ,0) if all states are occupied up to a given level

(λ, µ) otherwise
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Spherical Shell Model and Deformation

Diagonalization of the operator Q0 = 2z2 - x2 -y2 in a major

HO-shell without spin-orbit (SU3-Nilsson-like single particle

levels)

k=2p

K = 1/2

K = 3/2

K = 5/2

K = 7/2

π, ν

-Q
0
/b

2
+
2p S
U
3

0.0

3.0

6.0

9.0

3.0

6.0

9.0

6.0

9.0 9.0
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Example in the sd shell

In the sd shell, N=2

N = nx + ny + nz

There are 6 possible (nx ,ny ,nz):
(2,0,0) (0,2,0) (0,0,2)

(1,1,0) (1,0,1) (0,1,1)

Q0 = 2nz − nx − ny = (4,1,−2)

−4 −2 0 2 4

2(nx − ny)

-Q
0
=

2(
n
x
+
n
y
−

2n
z
)

-4

-1 -1

22 2

Starting filling from below prolate deformation

Starting filling from above oblate deformation
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Deformed harmonic oscillator and SU3 model

h = −
~

2

2m
∆+

1

2
(ω2

xx2 + ω2
yy2 + ω2

zz2)

spherical orbits |nljmτ〉 (nx ,ny ,nz)
due to σ and τ each (nx ,ny ,nz) state is 4 fold degenerate

Correspondance between intrinsic states of harmonic oscillator

and SU3 states:

Highest Weight state (λ, µ) build on (nx ,ny ,nz) state at the

spherical limit











N = nx + ny + nz

λ = nz − nx

µ = nx − ny
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Spherical Shell Model and Deformation

Nucleus configuration Intrinsic state (λµ) shape

4He 0p0h (000)4 (0,0) spherical
8Be 0p0h (000)4 (001)4 (4,0) prolate

10Be 0p0h (000)4 (001)4 (100)2 (4,2) prolate

2p2h (000)4 (001)4 (002)2 (6,0) prolate
12C 0p0h (000)4 (100)4 (010)4 (0,4) oblate

4p4h (000)4 (001)4 (002)4 (12,0) prolate
16O 0p0h (000)4 (100)4 (010)4 (001)4 (0,0) spherical

4p4h (000)4 (100)4 (001)4 (002)4 (8,4) triaxial

8p8h (000)4 (001)4 (002)4 (003)4 (24,0) prolate
20Ne 0p0h (000)4 (100)4 (010)4 (001)4 (002)4 (8,0) prolate
24Mg 0p0h (000)4 (100)4 (010)4 (001)4 (002)4 (101)4 (8,4) triaxial

28Si 0p0h (000)4 (100)4 (010)4 (001)4 (200)4 (020)4 (110)4 (0,12) oblate

0p0h (000)4 (100)4 (010)4 (001)4 (002)4 (101)4 (011)4 (12,0) prolate

Deformed harmonic oscillator, even if inadequate for a detailled description contains

already many clusterization effects in light nuclei

Y. Abgrall, G. Baron, E. Caurier and G. Monsonego
Nuc. Phys. A131 (1969) 609

Y. Abgrall, B. Morand, and E. Caurier
Nuc. Phys. A192 (1972) 372
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Spherical Shell Model and Deformation

Moreover, it can be shown to be a limit of the Brink α model
when distances go to zero:

Case of 8Be:

Ψ = A|φ(r1r2r3r4; d1)φ(r5r6r7r8; d2)〉 with φ(rk , di) = Nexp −
(r − di)

2

2b2
,

φ1 = e
−

(x − d)2

2b2 and φ2 = e
−

(x + d)2

2b2

develop when d → 0 as

e
−

x2

2b2 (1−
dx

2b2
+

1

2
(

dx

2b2
)2 − ...) and e

−

x2

2b2 (1+
dx

2b2
+

1

2
(

dx

2b2
)2 + ...)

After orthogonalization one gets e
−

x2

2b2 and xe
−

x2

2b2 ,

so the Slater Determinant built on these functions corresponds to the

(000)4(001)4 state of the deformed harmonic oscillator
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Spherical Shell Model and Deformation

Nucleus configuration limit Intrinsic state (λµ)

8Be
d

d → 0 (000)4(001)4 (4,0)

12C

d

d → 0 (000)4(100)4(010)4 (0,4)

d
d → 0 (000)4(001)4(002)4 (12,0)
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Spherical Shell Model and Deformation

Nucleus configuration limit Intrinsic state (λµ)

16O

d

d → 0 (000)4(100)4(010)4(001)4 (0,0)
d1

d2 d1 → 0
d1
d2

→ ∞
(000)4(100)4(001)4(002)4 (8,4)

d
d → 0 (000)4(001)4(002)4(003)4 (24,0)

20Ne

d1

d2
d1 → 0
d1
d2

→ ∞
(000)4(100)4(010)4(001)4(002)4 (8,0)

Brink α cluster model → Deformed H.O. → SU3 eigenstates
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Spherical Shell Model and Deformation

nuclear shell model often considered to be applied only

when nuclear manifestations are dominated by single

particle degrees of freedom

BUT work of Elliot: deformation in light nuclei explained by

algebraic SU3 model

QUESTIONS:

Is it possible to describe rotationnal motion within the

spherical shell model, beyond sd shell where SU3 applies

?

which are the minimal valence spaces containing the

relevant degrees of freedom ?

Is there anything like an intrinsic state in the shell model

wavefunctions ?
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Spherical Shell Model and Deformation

Limitations of SU3 model:

as the spin orbit term becomes rapidly important its

applicability stops at the sd shell

but can be recovered approximately as in the pseudo-SU3
or quasi-SU3 schemes.

See:

A. P. Zuker, J. Retamosa, A. Poves, and E. Caurier

Phys. Rev. bf C52, R1741 (1995)

A. P. Zuker, A. Poves, F. Nowacki, and S. Lenzi

Phys. Rev. bf C92, 024320 (2015)
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Spherical Shell Model and Deformation

The resulting “quasi SU(3)” quadrupole operator respects SU(3)

relationships, except for m = 0, where the correspondence breaks down. The

resulting spectrum is a quasi-2q20 (to be compared with the SU3 one). The

result is not exact for the K = 1/2 orbits but a very good approximation.

k=2p

K = 1/2

K = 3/2

K = 5/2

K = 7/2

π, ν

-Q
0
/b

2
+
2p S
U
3

0.0

3.0

6.0

9.0

3.0

6.0

9.0

6.0

9.0 9.0

Diagonalization of the operator Q0 = 2z2 - x2 -y2 in a major HO-shell without

spin-orbit in the subspace of the aligned orbits (Quasi-SU3)
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Spherical Shell Model and Deformation

The resulting “quasi SU(3)” quadrupole operator respects SU(3)

relationships, except for m = 0, where the correspondence breaks down. The

resulting spectrum is a quasi-2q20 (to be compared with the SU3 one). The

result is not exact for the K = 1/2 orbits but a very good approximation.

k=2p-1/2

K = 1/2

K = 3/2

K = 5/2

K = 7/2

π, ν

-Q
0
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2
+
2p

Q
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U
3
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6.5
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9.5
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9.5

Diagonalization of the operator Q0 = 2z2 - x2 -y2 in a major HO-shell without

spin-orbit in the subspace of the aligned orbits (Quasi-SU3)
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Island of Inversion at the N=Z line

⋄ Strongly deformed states at N = Z :

Shape transition between 84Mo and 86Mo

Configuration mixing in 72Kr

Most deformed cases for 76Sr, 80Zr
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Island of Inversion at the N=Z line

⋄ Strongly deformed states at N = Z :

Shape transition between 84Mo and 86Mo

Configuration mixing in 72Kr

Most deformed cases for 76Sr, 80Zr
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SU2 Quasi-Spin for Shell-Model

The wave function is written as successive coupling of one shell

wave functions (c. f. p. ’s) defined by |(ji )
ni viγixi〉 :

[

[

|(j1)
n1v1γ1x1〉 |(j2)

n2v2γ2x2〉
]Γ2 ... |(jk )

nk vkγkxk 〉
]Γk

Single shell matrix elements calculation can be simplified with

the quasi-spin formalism

SU(2) Algrebra for Quasi-Spin:

S+ = −
√

Ω
2
(ãj ãj)

0 S− = −
√

Ω
2
(a†

j a
†
j )

0

Sz = Ω−n
2

S = Ω−v
2

with Ω = (2j + 1)/2 and n, number of particles in the shell j
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SU2 Quasi-Spin for Shell-Model

From |nv〉 to |SSz〉 representation and operators expressed in

the two body interaction are spherical tensors in the Quasi-spin

space:

A ≡

(

ãj

a
†
j

)

tensor of rank 1
2

(AA)ω
ω even : tensor of rank 1

ω odd : tensor of rank 0

[(AA)ω A]j mixed tensors of rank 1
2 et 3

2

[(AA)ω (AA)ω]0
mixed tensors

of rank 0, 1 and 2
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SU2 Quasi-Spin for Shell-Model

Two main advantages:

easy C.F.P. calculation:

〈nvγx ||O||n′v ′γ′x ′〉 = 〈Sγx |||O|||S′γ′x ′〉×Clebsh-Gordan coeff.

Matrix elements are doubly reduced in spin and Quasi-spin

easier calculation of N body matrix elements :

〈SSzγΓ||O||S′S′
zγ

′Γ′〉

= 〈SγΓ||O1||S
′γ′Γ′〉 〈SSz |O2|S

′S′
z〉

Instead of computing one large matrix 〈q × r | |q′ × r ′〉,
one is left with two smaller matrices 〈q| |q′〉 et 〈r | |r ′〉
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Pairing correlations and 0νββ decay

0νββ decay favoured by proton-proton, neutron-neutron pairing,

but it is disfavored by proton-neutron pairing

Ideal case: superfluid nuclei

reduced with high-seniorities

E. Caurier et al., PRL100 052503 (2008)

Addition of isoscalar pairing

reduces matrix element value

E. Caurier et al., PRL100 052503 (2008)

Related to approximate SU(4) symmetry of the
∑

H(r)σiσjτiτj operator
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Summary

Multipole Hamiltonian decomposition shows leading

Pairing and Quadrupole terms

These terms carry underlying SU2/SU3 symmetries

Intimate natural relation between

Brink α cluster model → Deformed H.O. → SU3

eigenstates

SU3 variants (pseudo/quasi) still at play and very efficient

for development of deformation in heavier mass regions
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Quasi-SU3

In jj coupling the angular part of the quadrupole operator

q20 = r2C20 has matrix elements

〈j m|C2|j + 2 m〉 ≈
3[(j + 3/2)2 − m2]

2(2j + 3)2
,

〈j m|C2|j + 1 m〉 = −
3m[(j + 1)2 − m2]1/2

2j(2j + 2)(2j + 4)

The ∆j = 2 numbers are—within the approximation

made—identical to those in LS scheme, obtained by replacing j

by l . The ∆j = 1 matrix elements are small, both for large and

small m, corresponding to the lowest oblate and prolate

deformed orbits respectively.
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Spherical Shell Model and Deformation

LS coupling l ≫ |m|

〈lm|Q̃20|lm〉 =
l(l + 1)− 3m2

(2l − 1)(2l + 3)
→

1

4

〈lm|Q̃20|l + 2 m〉 =
3[(l + 1)2 − m2]1/2[(l + 2)2 − m2]1/2

2(2l + 1)1/2(2l + 3)(2l + 5)1/2
→

3

8

jj coupling j ≫ |m|

〈jm|Q̃20|jm〉 =
j(j + 1)− 3m2

4j(j + 1)
→

1

4

〈jm|Q̃20|j + 1 m〉 =
3m[(j + 1)2 − m2]1/2

4j(j + 1)(j + 2)
→

3m

4
∼ 0

〈jm|Q̃20|j + 2 m〉 =
3[(j + 1)2 − m2]1/2[(j + 2)2 − m2]1/2

8(j + 1)(j + 2)
→

3

8
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Quasi-SU3

If the spherical j-orbits are degenerate, the ∆j = 1 couplings,

though small, will mix strongly the two ∆j = 2 sequences (e.g.,

(f7/2p3/2) and (f5/2p1/2)). The spin-orbit splittings will break the

degeneracies and favour the decoupling of the two sequences.

Hence the idea of neglecting the ∆j = 1 matrix elements and

exploit the correspondence

l −→ j = l + 1/2 m −→ m + 1/2 and −m −→ −m − 1/2

which is one-to-one (except for m = 0).


