SU3 symmetry and link to clusterization

Frédéric Nowacki

The nuclear interaction: the complex view

The nuclear interaction: the simple view

Separation of the effective Hamiltonian Monopole and multipole

Multipole expansion:

 $H = H_{monopole} + H_{multipole}$

• Spherical mean-field

H_{monopole}: • Evolution of the spherical single particle levels

🖙 pairing, quadrupole

M. Dufour and A. Zuker (PRC 54 1996 1641)

The monopole hamiltonian

$$V = \sum_{JT} V_{ijkl}^{JT} \left[(a_i^+ a_j^+)^{JT} (\tilde{a}_k \tilde{a}_l)^{JT} \right]^{00}$$

In order to express the number of articles operators $n_i = a_i^+ a_i \propto (a_i^+ \tilde{a}_i)^0$,

particle-hole recoupling :

$$V = \sum_{\lambda\tau} W_{ikjl}^{\lambda\tau} \left[(a_i^+ \tilde{a}_k)^{\lambda\tau} (a_j^+ \tilde{a}_l)^{\lambda\tau} \right]^{00}$$
$$W_{ikjl}^{\lambda\tau} \propto \sum_{JT} V_{ijkl}^{JT} \left\{ \begin{array}{cc} i & k & \lambda \\ j & l & \lambda \\ J & J & 0 \end{array} \right\} \left\{ \begin{array}{cc} \frac{1}{2} & \frac{1}{2} & \tau \\ \frac{1}{2} & \frac{1}{2} & \tau \\ T & I & 0 \end{array} \right\}$$

 \mathcal{H}_m corresponds only to the terms $\lambda \tau = 00$ and 01 which implies that i = j and k = l and writes as

$$\mathcal{H}_m = \sum_i n_i \epsilon_i + \sum_{i \leq j} n_i . n_j \, V_{ij}$$

The monopole hamiltonian

$$V = \sum_{JT} V_{ijkl}^{JT} \left[(a_i^+ a_j^+)^{JT} (\tilde{a}_k \tilde{a}_l)^{JT} \right]^{00}$$

In order to express the number of articles operators $n_i = a_i^+ a_i \propto (a_i^+ \tilde{a}_i)^0$,

particle-hole recoupling :

$$V = \sum_{\lambda\tau} W_{ikjl}^{\lambda\tau} \left[(a_i^+ \tilde{a}_k)^{\lambda\tau} (a_j^+ \tilde{a}_l)^{\lambda\tau} \right]^{00}$$
$$W_{ikjl}^{\lambda\tau} \propto \sum_{JT} V_{ijkl}^{JT} \left\{ \begin{array}{cc} i & k & \lambda \\ j & l & \lambda \\ J & J & 0 \end{array} \right\} \left\{ \begin{array}{cc} \frac{1}{2} & \frac{1}{2} & \tau \\ \frac{1}{2} & \frac{1}{2} & \tau \\ \frac{1}{7} & \frac{1}{7} & 0 \end{array} \right\}$$

 \mathcal{H}_m corresponds only to the terms $\lambda \tau = 00$ and 01 which implies that i = j and k = l and writes as

$$\mathcal{H}_m = \sum_i n_i \epsilon_i + \sum_{i \leq j} n_i . n_j \, V_{ij}$$

$$\mathcal{H}_M = \mathcal{H} - \mathcal{H}_m$$

 $H_{multipole}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- L = 0 isovector and isoscalar pairing
- Elliott's quadrupole
- $\bullet \ \vec{\sigma}\vec{\tau}\cdot\vec{\sigma}\vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

		pp(JT)			ph	(λau)	
	10	01	21	20	40	10	11
KB USD-A CCEI NN+NNN-MBPT NN-MBPT	-5.83 -5.62 -6.79 -6.40 -6.06	-4.96 -5.50 -4.68 -4.36 -4.38	-3.21 -3.17 -2.93 -2.91 -2.92	-3.53 -3.24 -3.40 -3.28 -3.35	-1.38 -1.60 -1.39 -1.23 -1.31	+1.61 +1.56 +1.21 +1.10 +1.03	+3.00 +2.99 +2.83 +2.43 +2.49

arch 27-31 2023

 $H_{multipole}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- L = 0 isovector and isoscalar pairing
- Elliott's quadrupole
- $\bullet \ \vec{\sigma}\vec{\tau}\cdot\vec{\sigma}\vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

		pp(JT)			ph	(λau)	
	10	01	21	20	40	10	11
KB USD-A CCEI NN+NNN-MBPT NN-MBPT	-5.83 -5.62 -6.79 -6.40 -6.06	-4.96 -5.50 -4.68 -4.36 -4.38	-3.21 -3.17 -2.93 -2.91 -2.92	-3.53 -3.24 -3.40 -3.28 -3.35	-1.38 -1.60 -1.39 -1.23 -1.31	+1.61 +1.56 +1.21 +1.10 +1.03	+3.00 +2.99 +2.83 +2.43 +2.49

 $H_{multipole}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- L = 0 isovector and isoscalar pairing
- Elliott's quadrupole
- $\bullet \ \vec{\sigma}\vec{\tau}\cdot\vec{\sigma}\vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

		pp(J1)			ph	$(\lambda \tau)$	
	10	01	21	20	40	10	11
KB USD-A CCEI NN+NNN-MBPT NN-MBPT	-5.83 -5.62 -6.79 -6.40 -6.06	-4.96 -5.50 -4.68 -4.36 -4.38	3.21 3.17 2.93 2.91 2.92	-3.53 -3.24 -3.40 -3.28 -3.35	-1.38 -1.60 -1.39 -1.23 -1.31	+1.61 +1.56 +1.21 +1.10 +1.03	+3.00 +2.99 +2.83 +2.43 +2.49

 $H_{multipole}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- L = 0 isovector and isoscalar pairing
- Elliott's quadrupole
- $\bullet \ \vec{\sigma}\vec{\tau}\cdot\vec{\sigma}\vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

	10	pp(JT)	01	20	ph	$(\lambda \tau)$	44
	10	01	21	20	40	10	11
KB USD-A CCEI NN+NNN-MBPT NN-MBPT	-5.83 -5.62 -6.79 -6.40 -6.06	-4.96 -5.50 -4.68 -4.36 -4.38	-3.21 -3.17 -2.93 -2.91 -2.92	-3.53 -3.24 -3.40 -3.28 -3.35	-1.38 -1.60 -1.39 -1.23 -1.31	+1.61 +1.56 +1.21 +1.10 +1.03	+3.00 +2.99 +2.83 +2.43 +2.49

 $H_{multipole}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- L = 0 isovector and isoscalar pairing
- Elliott's quadrupole
- $\bullet \ \vec{\sigma}\vec{\tau}\cdot\vec{\sigma}\vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (even from modern abinitio derivations, all the realistic interactions give similar values) and scale simply with the mass number

particle	-particle	Interaction		particle-hole	
<i>JT</i> = 01	<i>JT</i> = 10		$\lambda au~=~20$	$\lambda \tau = 40$	$\lambda \tau = 11$
-5.42	-5.43	KLS	-2.90	-1.61	+2.38
-5.48	-6.24	BONNB	-2.82	-1.39	+3.64
-5.69	-5.90	USD	-3.18	-1.60	+3.08
-4.75	-4.46	KB3	-2.79	-1.39	+2.46
-5.06	-5.08	FPD6	-3.11	-1.67	+3.17
-4.07	-5.74	GOGNY	-3.23	-1.77	+2.46

 $H_{multipole}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- L = 0 isovector and isoscalar pairing
- Elliott's quadrupole
- $\bullet \ \vec{\sigma}\vec{\tau}\cdot\vec{\sigma}\vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (even from modern abinitio derivations, all the realistic interactions give similar values) and scale simply with the mass number

particle	e-particle	Interaction		particle-hole	
<i>JT</i> = 01	<i>JT</i> = 10		$\lambda au~=~20$	$\lambda \tau = 40$	$\lambda \tau = 11$
-5.42	-5.43	KLS	-2.90	-1.61	+2.38
-5.48	-6.24	BONNB	-2.82	-1.39	+3.64
-5.69	-5.90	USD	-3.18	-1.60	+3.08
-4.75	-4.46	KB3	-2.79	-1.39	+2.46
-5.06	-5.08	FPD6	-3.11	-1.67	+3.17
-4.07	-5.74	GOGNY	-3.23	-1.77	+2.46

 $H_{multipole}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- L = 0 isovector and isoscalar pairing
- Elliott's quadrupole
- $\bullet \ \vec{\sigma}\vec{\tau}\cdot\vec{\sigma}\vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (even from modern abinitio derivations, all the realistic interactions give similar values) and scale simply with the mass number

particle	-particle	Interaction		particle-hole	
<i>JT</i> = 01	<i>JT</i> = 10		$\lambda au~=~20$	$\lambda au = 40$	$\lambda \tau = 11$
-5.42	-5.43	KLS	-2.90	-1.61	+2.38
-5.48	-6.24	BONNB	-2.82	-1.39	+3.64
-5.69	-5.90	USD	-3.18	-1.60	+3.08
-4.75	-4.46	KB3	-2.79	-1.39	+2.46
-5.06	-5.08	FPD6	-3.11	-1.67	+3.17
-4.07	-5.74	GOGNY	-3.23	-1.77	+2.46

Elliott's SU(3) model

see Eisenberg and Greiner, Nuclear Theory volume 3, Microscopic Theory of the nucleus (chapter on Nuclear rotations)

- Assuming spin-isospin SU(4) symmetry (no spin-orbit)
- and a quadrupole-quadrupole residual interaction:

$$\mathcal{H} = \sum_{k} \left(\frac{p_{k}^{2}}{2m} + \frac{1}{2}m\omega^{2}r_{k}^{2} \right) + \kappa Q.Q$$

which can be rewritten

$$\mathcal{H} = \sum_{k} \left(\frac{p_{k}^{2}}{2m} + \frac{1}{2}m\omega^{2}r_{k}^{2} \right) + 4\kappa C_{SU3} - 3\kappa(\vec{L}.\vec{L})$$

the eigenenergies have the following form:

$$E = \hbar\omega\left(N + \frac{3}{2}\right) + 4\kappa(\lambda^2 + \lambda\mu + \mu^2 + 3(\lambda + \mu)) - 3\kappa L(L+1)$$

where λ and μ are the labels of the SU3 irrep. and L the angular momentum. Therefore it gives a description of deformation via a rotationally invariant mixing of spherical orbits.

Consider the quadrupole force alone, taken to act in the *p*-th oscillator shell. It will tend to maximize the quadrupole moment, which means filling the lowest orbits obtained by diagonalizing the operator

$$Q_0 = 2z^2 - x^2 - y^2$$

Using the cartesian representation, $Q_0 = 2n_z - n_x - n_y = 3n_z - N$, we find eigenvalues 2*p*, 2p - 3,..., etc.

By filling the orbits orderly we obtain the intrinsic states for the lowest SU(3) representations:

- $(\lambda, 0)$ if all states are occupied up to a given level
- (λ, μ) otherwise

Diagonalization of the operator $Q_0 = 2z^2 - x^2 - y^2$ in a major HO-shell without spin-orbit (SU3-Nilsson-like single particle levels)

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} 9.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0 \end{array} \end{array} \xrightarrow{\begin{array}{c} 9.0 \\ 9.0 \\ 0.0 \end{array}} \begin{array}{c} 9.0 \\ 9.0 \\ 9.0 \\ 0.0 \end{array} \xrightarrow{\begin{array}{c} 9.0 \\ 9.0 \\ 0.0 \end{array}} \begin{array}{c} 9.0 \\ 0.0 \\ K = 5/2 \\ K = 3/2 \\ \hline \end{array} \xrightarrow{\begin{array}{c} 0.0 \\ 0.0 \end{array} \xrightarrow{\begin{array}{c} 0.0 \\ K = 1/2 \end{array}} \begin{array}{c} K = 1/2 \\ \end{array} \xrightarrow{\begin{array}{c} 0.0 \\ \pi, \nu \end{array}}$$

Example in the sd shell

$$Q_0 = 2n_z - n_x - n_y = (4, 1, -2)$$

Deformed harmonic oscillator and SU3 model

$$h = -\frac{\hbar^2}{2m}\Delta + \frac{1}{2}(\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2)$$

spherical orbits $|nljm\tau\rangle$ \longrightarrow (n_x, n_y, n_z) due to σ and τ each (nx, ny, nz) state is 4 fold degenerate

Correspondance between intrinsic states of harmonic oscillator and SU3 states:

Highest Weight state (λ, μ) build on (n_x, n_y, n_z) state at the spherical limit

$$\begin{cases} N = n_x + n_y + n_z \\ \lambda = n_z - n_x \\ \mu = n_x - n_y \end{cases}$$

Nucleus	configuration	Intrinsic state	$(\lambda \mu)$	shape
⁴ He	0p0h	$(000)^4$	(0,0)	spherical
⁸ Be	0p0h	$(000)^4 (001)^4$	(4,0)	prolate
¹⁰ Be	0p0h	$(000)^4 (001)^4 (100)^2$	(4,2)	prolate
	2p2h	$(000)^4 (001)^4 (002)^2$	(6,0)	prolate
¹² C	0p0h	$(000)^4 (100)^4 (010)^4$	(0,4)	oblate
	4p4h	$(000)^4 (001)^4 (002)^4$	(12,0)	prolate
¹⁶ O	0p0h	$(000)^4 (100)^4 (010)^4 (001)^4$	(0,0)	spherical
	4p4h	$(000)^4 (100)^4 (001)^4 (002)^4$	(8,4)	triaxial
	8p8h	$(000)^4 (001)^4 (002)^4 (003)^4$	(24,0)	prolate
²⁰ Ne	0p0h	$(000)^4 (100)^4 (010)^4 (001)^4 (002)^4$	(8,0)	prolate
²⁴ Mg	0p0h	$(000)^4 (100)^4 (010)^4 (001)^4 (002)^4 (101)^4$	(8,4)	triaxial
²⁸ Si	0p0h	$(000)^4 (100)^4 (010)^4 (001)^4 (200)^4 (020)^4 (110)^4$	(0,12)	oblate
	0p0h	$(000)^4 (100)^4 (010)^4 (001)^4 (002)^4 (101)^4 (011)^4$	(12,0)	prolate

Deformed harmonic oscillator, even if inadequate for a detailled description contains

already many clusterization effects in light nuclei

- Y. Abgrall, G. Baron, E. Caurier and G. Monsonego Nuc. Phys. A131 (1969) 609
- Y. Abgrall, B. Morand, and E. Caurier Nuc. Phys. A192 (1972) 372

	Nucleus	configuration	Intrinsic state	$(\lambda \mu)$	shape
	⁴ He ⁸ Be	0p0h 0p0h	(000) ⁴ (000) ⁴ (001) ⁴	(0,0) (4,0)	spherical prolate
JOUI	RNAL DE PHYSI AND	QUE Colloque C6, D D ALPHA-PAR	supplément au nº 11-12, Tome 32, Nove EFORMED STRUCTURES FICLE DESCRIPTION OF L	mbre-Décembre 1971, page o	C6-63
			Y. ABGRALL		_
		Laboratoire de F	hysique Théorique, Université de Borde	eaux, France	
			and		
			E. CAURIER		
	Laborato	ire de Physique Thé	orique, Centre de Recherches Nucléaire	s de Strasbourg, France	

Nuc. Phys. A192 (1972) 372

Moreover, it can be shown to be a limit of the Brink α model when distances go to zero:

Case of ⁸Be:

 $\Psi = \mathcal{A} |\phi(r_1 r_2 r_3 r_4; d_1) \phi(r_5 r_6 r_7 r_8; d_2)\rangle \text{ with } \phi(r_k, d_i) = Nexp - \frac{(r - d_i)^2}{2b^2},$

$$\phi_1 = e^{-rac{(x-d)^2}{2b^2}}$$
 and $\phi_2 = e^{-rac{(x+d)^2}{2b^2}}$

develop when
$$d \to 0$$
 as
 $e^{-\frac{x^2}{2b^2}}(1 - \frac{dx}{2b^2} + \frac{1}{2}(\frac{dx}{2b^2})^2 - ...)$ and $e^{-\frac{x^2}{2b^2}}(1 + \frac{dx}{2b^2} + \frac{1}{2}(\frac{dx}{2b^2})^2 + ...)$

After orthogonalization one gets e^{-2b^2} and xe^{-2b^2} , so the Slater Determinant built on these functions corresponds to the $(000)^4(001)^4$ state of the deformed harmonic oscillator

x²

Nucleus	configuration	limit	Intrinsic state	$(\lambda \mu)$
⁸ Be	O	d ightarrow 0	(000) ⁴ (001) ⁴	(4,0)
¹² C	ď	d ightarrow 0	(000) ⁴ (100) ⁴ (010) ⁴	(0,4)
		d ightarrow 0	(000) ⁴ (001) ⁴ (002) ⁴	(12,0)

Nucleus	configuration	limit	Intrinsic state	$(\lambda \mu)$
¹⁶ O	d1	d ightarrow 0	(000) ⁴ (100) ⁴ (010) ⁴ (001) ⁴	(0,0)
		$egin{array}{l} d_1 ightarrow 0 \ rac{d_1}{d_2} ightarrow \infty \ d ightarrow 0 \end{array}$	$(000)^4(100)^4(001)^4(002)^4$ $(000)^4(001)^4(002)^4(003)^4$	(8,4) (24,0)
²⁰ Ne	d1	$egin{array}{c} d_1 ightarrow 0 \ rac{d_1}{d_2} ightarrow \infty \end{array}$	(000) ⁴ (100) ⁴ (010) ⁴ (001) ⁴ (002) ⁴	(8,0)

Brink α cluster model \rightarrow Deformed H.O. \rightarrow SU3 eigenstates

- nuclear shell model often considered to be applied only when nuclear manifestations are dominated by single particle degrees of freedom
- BUT work of Elliot: deformation in light nuclei explained by algebraic SU3 model

QUESTIONS:

- Is it possible to describe rotationnal motion within the spherical shell model, beyond *sd* shell where SU3 applies ?
- which are the minimal valence spaces containing the relevant degrees of freedom ?
- Is there anything like an intrinsic state in the shell model wavefunctions ?

- Limitations of SU3 model:
 - as the spin orbit term becomes rapidly important its applicability stops at the sd shell
 - but can be recovered approximately as in the pseudo-SU3 or quasi-SU3 schemes.

See:

- A. P. Zuker, J. Retamosa, A. Poves, and E. Caurier Phys. Rev. bf C52, R1741 (1995)
- A. P. Zuker, A. Poves, F. Nowacki, and S. Lenzi Phys. Rev. bf C92, 024320 (2015)

The resulting "quasi SU(3)" quadrupole operator respects SU(3) relationships, except for m = 0, where the correspondence breaks down. The resulting spectrum is a quasi-2 q_{20} (to be compared with the SU3 one). The result is not exact for the K = 1/2 orbits but a very good approximation.

Diagonalization of the operator $Q_0 = 2z^2 - x^2 - y^2$ in a major HO-shell without spin-orbit in the subspace of the aligned orbits (Quasi-SU3)

The resulting "quasi SU(3)" quadrupole operator respects SU(3) relationships, except for m = 0, where the correspondence breaks down. The resulting spectrum is a quasi-2 q_{20} (to be compared with the SU3 one). The result is not exact for the K = 1/2 orbits but a very good approximation.

Diagonalization of the operator $Q_0 = 2z^2 - x^2 - y^2$ in a major HO-shell without spin-orbit in the subspace of the aligned orbits (Quasi-SU3)

Island of Inversion at the N=Z line

\diamond Strongly deformed states at N = Z:

- Shape transition between ⁸⁴Mo and ⁸⁶Mo
- Configuration mixing in ⁷²Kr
- Most deformed cases for ⁷⁶Sr, ⁸⁰Zr

			B(E2)(e ² .fm ⁴)	
nucleus	NpNh*	ZRP	PHF	DNO-SM	Exp.
⁷⁶ Se	4p-4h 8p-8h 12p-12h	924 2189 2316	806 2101 -	1847	2220
⁸⁰ Zr	4p-4h 8p-8h 12p-12h	587 1713 2663	637 1509 2396	2325	1910

Island of Inversion at the N=Z line

\diamond Strongly deformed states at N = Z:

- Shape transition between ⁸⁴Mo and ⁸⁶Mo
- Configuration mixing in ⁷²Kr
- Most deformed cases for ⁷⁶Sr, ⁸⁰Zr

R.D.O. Llewellyn et al., Phys. Rev. Lett. 124, 152501 (2020)

FIG. 3. Schematics of the $B(E2\downarrow)$ values for the N = Z nuclei ng and Symmetrie

ch 27-31 2023

SU2 Quasi-Spin for Shell-Model

The wave function is written as successive coupling of one shell wave functions (c. f. p. 's) defined by $|(j_i)^{n_i}v_i\gamma_i x_i\rangle$:

$$\left[\left[\left|(j_{1})^{n_{1}}v_{1}\gamma_{1}x_{1}\right\rangle\left|(j_{2})^{n_{2}}v_{2}\gamma_{2}x_{2}\right\rangle\right]^{\Gamma_{2}}\dots\left|(j_{k})^{n_{k}}v_{k}\gamma_{k}x_{k}\right\rangle\right]^{\Gamma_{k}}$$

Single shell matrix elements calculation can be simplified with the quasi-spin formalism

SU(2) Algrebra for Quasi-Spin:

$$egin{array}{lll} S^+ &= -\sqrt{rac{\Omega}{2}} (ilde{a}_j ilde{a}_j)^0 & S^- &= -\sqrt{rac{\Omega}{2}} (a_j^\dagger a_j^\dagger)^0 \ S_z &= rac{\Omega-n}{2} & S &= rac{\Omega-v}{2} \end{array}$$

with $\Omega = (2j + 1)/2$ and *n*, number of particles in the shell *j*

From $|nv\rangle$ to $|SS_z\rangle$ representation and operators expressed in the two body interaction are spherical tensors in the Quasi-spin space:

•
$$A \equiv \begin{pmatrix} \tilde{a}_j \\ a_j^{\dagger} \end{pmatrix}$$
 tensor of rank $\frac{1}{2}$

- $(AA)^{\omega}$ ω even : tensor of rank 1 ω odd : tensor of rank 0
- $[(AA)^{\omega} A]^{j}$ mixed tensors of rank $\frac{1}{2}$ et $\frac{3}{2}$
- $[(AA)^{\omega} (AA)^{\omega}]^0$

mixed tensors of rank 0, 1 and 2

SU2 Quasi-Spin for Shell-Model

Two main advantages:

• easy C.F.P. calculation:

 $\langle nv\gamma x ||\mathcal{O}||n'v'\gamma'x'\rangle = \langle S\gamma x |||\mathcal{O}|||S'\gamma'x'\rangle \times \text{Clebsh-Gordan coeff.}$

Matrix elements are doubly reduced in spin and Quasi-spin

• easier calculation of \mathcal{N} body matrix elements : $\langle SS_z \gamma \Gamma || \mathcal{O} || S' S'_z \gamma' \Gamma' \rangle$ $= \langle S \gamma \Gamma || \mathcal{O}_1 || S' \gamma' \Gamma' \rangle \langle SS_z | \mathcal{O}_2 | S' S'_z \rangle$ Instead of computing one large matrix $\langle q \times r | |q' \times r' \rangle$,

one is left with two smaller matrices $\langle q | | q' \rangle$ et $\langle r | | r' \rangle$

Pairing correlations and $0\nu\beta\beta$ decay

 $0\nu\beta\beta$ decay favoured by proton-proton, neutron-neutron pairing, but it is disfavored by proton-neutron pairing

E. Caurier et al., PRL100 052503 (2008)

E. Caurier et al., PRL100 052503 (2008)

Addition of isoscalar pairing

Related to approximate SU(4) symmetry of the $\sum H(r)\sigma_i\sigma_i\tau_i\tau_i$ operator

- Multipole Hamiltonian decomposition shows leading Pairing and Quadrupole terms
- These terms carry underlying SU2/SU3 symmetries
- Intimate natural relation between Brink α cluster model \rightarrow Deformed H.O. \rightarrow SU3 eigenstates
- SU3 variants (pseudo/quasi) still at play and very efficient for development of deformation in heavier mass regions

Quasi-SU3

In *jj* coupling the angular part of the quadrupole operator $q^{20} = r^2 C^{20}$ has matrix elements

$$\langle j m | C^2 | j + 2 m \rangle \approx \frac{3[(j + 3/2)^2 - m^2]}{2(2j + 3)^2},$$

 $\langle j m | C^2 | j + 1 m \rangle = -\frac{3m[(j + 1)^2 - m^2]^{1/2}}{2i(2j + 2)(2j + 4)}.$

The $\Delta j = 2$ numbers are—within the approximation made—identical to those in *LS* scheme, obtained by replacing *j* by *I*. The $\Delta j = 1$ matrix elements are small, both for large and small *m*, corresponding to the lowest oblate and prolate deformed orbits respectively.

		LS coupling		$I \gg m $
$\langle \textit{Im} ilde{Q}_{20} \textit{Im} angle$	=	$\frac{l(l+1)-3m^2}{(2l-1)(2l+2)}$	\rightarrow	$\frac{1}{4}$
$\langle \textit{Im} ilde{Q}_{20} \textit{I}+2\textit{m} angle$	=	$\frac{3[(l+1)^2 - m^2]^{1/2}[(l+2)^2 - m^2]^{1/2}}{2(2l+1)^{1/2}(2l+3)(2l+5)^{1/2}}$	\rightarrow	$\frac{3}{8}$
		jj coupling		$j \gg m $
$\langle jm ilde{Q}_{20} jm angle$	=	$\frac{j(j+1)-3m^2}{4j(j+1)}$	\rightarrow	$\frac{1}{4}$
$\langle jm ilde{Q}_{20} j+1 m angle$	=	$\frac{3m[(j+1)^2 - m^2]^{1/2}}{4j(j+1)(j+2)}$	\rightarrow	$rac{3m}{4}\sim 0$
$\langle jm ilde{Q}_{20} j+2 \;m angle$	=	$\frac{3[(j+1)^2 - m^2]^{1/2}[(j+2)^2 - m^2]^{1/2}}{8(j+1)(j+2)}$	\rightarrow	3 8

If the spherical *j*-orbits are degenerate, the $\Delta j = 1$ couplings, though small, will mix strongly the two $\Delta j = 2$ sequences (e.g., $(f_{7/2}p_{3/2})$ and $(f_{5/2}p_{1/2})$). The spin-orbit splittings will break the degeneracies and favour the decoupling of the two sequences. Hence the idea of neglecting the $\Delta j = 1$ matrix elements and exploit the correspondence

$$I \longrightarrow j = I + 1/2$$
 $m \longrightarrow m + 1/2$ and $-m \longrightarrow -m - 1/2$

which is one-to-one (except for m = 0).