SU3 symmetry and link to clusterization

Frédéric Nowacki

The nuclear interaction: the simple view

Separation of the effective Hamilitonian

Monopole and multipole

Multipole expansion:

$$
H=H_{\text {monopole }}+H_{\text {multipole }}
$$

- Spherical mean-field
$H_{\text {monopole }}$ - Evolution of the spherical single particle levels

- Correlations
$H_{\text {multipole }}$:
- Energy gains

M. Dufour and A. Zuker (PRC 541996 1641)

$$
V=\sum_{J T} V_{i j k l}^{J T}\left[\left(a_{i}^{+} a_{j}^{+}\right)^{J T}\left(\tilde{a}_{k} \tilde{a}_{l}\right)^{J T}\right]^{00}
$$

In order to express the number of articles operators $n_{i}=a_{i}^{+} a_{i} \propto\left(a_{i}^{+} \tilde{a}_{i}\right)^{0}$,
particle-hole recoupling :

$$
\begin{gathered}
V=\sum_{\lambda \tau} W_{i k j l}^{\lambda \tau}\left[\left(a_{i}^{+} \tilde{a}_{k}\right)^{\lambda \tau}\left(a_{j}^{+} \tilde{a}_{l}\right)^{\lambda \tau}\right]^{00} \\
W_{i k j l}^{\lambda \tau} \propto \sum_{J T} V_{i j k l}^{J T}\left\{\begin{array}{ccc}
i & k & \lambda \\
j & l & \lambda \\
J & J & 0
\end{array}\right\}\left\{\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & \tau \\
\frac{1}{2} & \frac{1}{2} & \tau \\
T & T & 0
\end{array}\right\}
\end{gathered}
$$

\mathcal{H}_{m} corresponds only to the terms $\lambda \tau=00$ and 01 which implies that $i=j$ and $k=I$ and writes as

$$
\mathcal{H}_{m}=\sum_{i} n_{i} \epsilon_{i}+\sum_{i \leq j} n_{i} \cdot n_{j} V_{i j}
$$

$$
V=\sum_{J T} V_{i j k l}^{J T}\left[\left(a_{i}^{+} a_{j}^{+}\right)^{J T}\left(\tilde{a}_{k} \tilde{a}_{l}\right)^{J T}\right]^{00}
$$

In order to express the number of articles operators $n_{i}=a_{i}^{+} a_{i} \propto\left(a_{i}^{+} \tilde{a}_{i}\right)^{0}$,
particle-hole recoupling :

$$
\begin{gathered}
V=\sum_{\lambda \tau} W_{i k j l}^{\lambda \tau}\left[\left(a_{i}^{+} \tilde{a}_{k}\right)^{\lambda \tau}\left(a_{j}^{+} \tilde{a}_{l}\right)^{\lambda \tau}\right]^{00} \\
W_{i k j l}^{\lambda \tau} \propto \sum_{J T} V_{i j k l}^{J T}\left\{\begin{array}{ccc}
i & k & \lambda \\
j & l & \lambda \\
J & J & 0
\end{array}\right\}\left\{\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & \tau \\
\frac{1}{2} & \frac{1}{2} & \tau \\
T & T & 0
\end{array}\right\}
\end{gathered}
$$

\mathcal{H}_{m} corresponds only to the terms $\lambda \tau=00$ and 01 which implies that $i=j$ and $k=I$ and writes as

$$
\mathcal{H}_{m}=\sum_{i} n_{i} \epsilon_{i}+\sum_{i \leq j} n_{i} \cdot n_{j} V_{i j}
$$

$$
\mathcal{H}_{M}=\mathcal{H}-\mathcal{H}_{m}
$$

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

	$\mathrm{pp}(\mathrm{JT})$				$\mathrm{ph}(\lambda \tau)$				
	10	01	21	20	40	10	11		
KB	-5.83	-4.96	-3.21	-3.53	-1.38	+1.61	+3.00		
USD-A	-5.62	-5.50	-3.17	-3.24	-1.60	+1.56	+2.99		
CCEI	-6.79	-4.68	-2.93	-3.40	-1.39	+1.21	+2.83		
NN+NNN-MBPT	-6.40	-4.36	-2.91	-3.28	-1.23	+1.10	+2.43		
NN-MBPT	-6.06	-4.38	-2.92	-3.35	-1.31	+1.03	+2.49		

- Quadrupole regime: deformed nuclei Underlying SU3 symmetry

KB US[CCE NN_{+} NN-
prolate nucleus:

Typical example: open shell $\mathbf{N}=\mathbf{Z}$ nuclei
$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

	$\operatorname{pp}(\mathrm{JT})$				$\operatorname{ph}(\lambda \tau)$			
	10	01	21	20	40	10	11	
KB	-5.83	-4.96	-3.21	-3.53	-1.38	+1.61	+3.00	
USD-A	-5.62	-5.50	-3.17	-3.24	-1.60	+1.56	+2.99	
CCEI	-6.79	-4.68	-2.93	-3.40	-1.39	+1.21	+2.83	
NN+NNN-MBPT	-6.40	-4.36	-2.91	-3.28	-1.23	+1.10	+2.43	
NN-MBPT	-6.06	-4.38	-2.92	-3.35	-1.31	+1.03	+2.49	

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

	10	$\begin{gathered} \mathrm{pp}(\mathrm{JI}) \\ 01 \end{gathered}$	21	$\operatorname{ph}(\lambda \tau)$			
				20	40	10	11
KB	-5.83	-4.96	3.21	-3.53	-1.38	+1.61	+3.00
USD-A	-5.62	-5.50	3.17	-3.24	-1.60	+1.56	+2.99
CCEI	-6.79	-4.68	2.93	-3.40	-1.39	+1.21	+2.83
NN+NNN-MBPT	-6.40	-4.36	2.91	-3.28	-1.23	+1.10	+2.43
NN-MBPT	-6.06	-4.38	2.92	-3.35	-1.31	+1.03	+2.49

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

	$\mathrm{pp}(\mathrm{JT})$			$\mathrm{ph}(\lambda \tau)$			
	10	01	21	20	40	10	11
KB	-5.83	-4.96	-3.21	-3.53	-1.38	+1.61	+3.00
USD-A	-5.62	-5.50	-3.17	-3.24	-1.60	+1.56	+2.99
CCEI	-6.79	-4.68	-2.9	-3.40	-1.39	+1.21	+2.83
NN+NNN-MBPT	-6.40	-4.36	-2.9	-3.28	-1.23	+1.10	+2.43
NN-MBPT	-6.06	-4.38	-2.92	-3.35	-1.31	+1.03	+2.49

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (even from modern abinitio derivations, all the realistic interactions give similar values) and scale simply with the mass number

particle-particle	Interaction	particle-hole			
$J T=01$	$J T=10$		$\lambda \tau=20$	$\lambda \tau=40$	$\lambda \tau=11$
-5.42	-5.43	KLS	-2.90	-1.61	+2.38
-5.48	-6.24	BONNB	-2.82	-1.39	+3.64
-5.69	-5.90	USD	-3.18	-1.60	+3.08
				-1.39	+2.46
-4.75	-4.46	KB3	-2.79	-1.67	+3.17
-5.06	-5.08	FPD6	-3.11	-1.77	+2.46
-4.07	-5.74	GOGNY	-3.23		

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (even from modern abinitio derivations, all the realistic interactions give similar values) and scale simply with the mass number

particle-particle		Interaction	particle-hole		
$J T=01$	$J T=10$		$\lambda \tau=20$	$\lambda \tau=40$	$\lambda \tau=11$
-5.42	-5.43	KLS	-2.90	-1.61	+2.38
-5.48	-6.24	BONNB	-2.82	-1.39	+3.64
-5.69	-5.90	USD	-3.18	-1.60	+3.08
-4.75	-4.46	KB3	-2.79	-1.39	+2.46
-5.06	-5.08	FPD6	-3.11	-1.67	+3.17
-4.07	-5.74	GOGNY	-3.23	-1.77	+2.46

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (even from modern abinitio derivations, all the realistic interactions give similar values) and scale simply with the mass number

particle-particle		Interaction	particle-hole		
$J T=01$	$J T=10$		$\lambda \tau=20$	$\lambda \tau=40$	$\lambda \tau=11$
-5.42	-5.43	KLS	-2.90	-1.61	+2.38
-5.48	-6.24	BONNB	-2.82	-1.39	+3.64
-5.69	-5.90	USD	-3.18	-1.60	+3.08
		KB3	-2.79	-1.39	+2.46
-4.75	-4.46	FPD6	-3.11	-1.67	+3.17
-5.06	-5.08	GOGNY	-3.23	-1.77	+2.46
-4.07	-5.74				

- Assuming spin-isospin $\operatorname{SU}(4)$ symmetry (no spin-orbit)
- and a quadrupole-quadrupole residual interaction:

$$
\mathcal{H}=\sum_{k}\left(\frac{p_{k}^{2}}{2 m}+\frac{1}{2} m \omega^{2} r_{k}^{2}\right)+\kappa Q \cdot Q
$$

which can be rewritten

$$
\mathcal{H}=\sum_{k}\left(\frac{p_{k}^{2}}{2 m}+\frac{1}{2} m \omega^{2} r_{k}^{2}\right)+4 \kappa C_{S U 3}-3 \kappa(\vec{L} . \vec{L})
$$

the eigenenergies have the following form:

$$
E=\hbar \omega\left(N+\frac{3}{2}\right)+4 \kappa\left(\lambda^{2}+\lambda \mu+\mu^{2}+3(\lambda+\mu)\right)-3 \kappa L(L+1)
$$

where λ and μ are the labels of the SU3 irrep. and L the angular momentum. Therefore it gives a description of deformation via a rotationally invariant mixing of spherical orbits.

Consider the quadrupole force alone, taken to act in the p-th oscillator shell. It will tend to maximize the quadrupole moment, which means filling the lowest orbits obtained by diagonalizing the operator

$$
Q_{0}=2 z^{2}-x^{2}-y^{2}
$$

Using the cartesian representation, $Q_{0}=2 n_{z}-n_{x}-n_{y}=3 n_{z}-N$, we find eigenvalues $2 p$, $2 p-3, \ldots$, etc.

By filling the orbits orderly we obtain the intrinsic states for the lowest $\mathrm{SU}(3)$ representations:

- $(\lambda, 0)$ if all states are occupied up to a given level
- (λ, μ) otherwise

Diagonalization of the operator $Q_{0}=2 z^{2}-x^{2}-y^{2}$ in a major HO-shell without spin-orbit (SU3-Nilsson-like single particle levels)

$$
k=2 p
$$

π, ν

In the $s d$ shell, $\mathrm{N}=2$

$$
N=n_{x}+n_{y}+n_{z}
$$

There are 6 possible (n_{x}, n_{y}, n_{z}): $(2,0,0)(0,2,0)(0,0,2)$ $(1,1,0)(1,0,1)(0,1,1)$

$$
Q_{0}=2 n_{z}-n_{x}-n_{y}=(4,1,-2)
$$

Starting filling from below
Starting filling from above

$$
h=-\frac{\hbar^{2}}{2 m} \Delta+\frac{1}{2}\left(\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}+\omega_{z}^{2} z^{2}\right)
$$

spherical orbits $|n l j m \tau\rangle\left(n_{x}, n_{y}, n_{z}\right)$ due to σ and τ each ($n x, n y, n z$) state is 4 fold degenerate

Correspondance between intrinsic states of harmonic oscillator and SU3 states:
Highest Weight state (λ, μ) build on (n_{x}, n_{y}, n_{z}) state at the spherical limit

$$
\left\{\begin{array}{l}
N=n_{x}+n_{y}+n_{z} \\
\lambda=n_{z}-n_{x} \\
\mu=n_{x}-n_{y}
\end{array}\right.
$$

Spherical Shell Model and Deformation

Nucleus	configuration	Intrinsic state	$(\lambda \mu)$	shape
${ }^{4} \mathrm{He}$	OpOh	$(000)^{4}$	$(0,0)$	spherical
${ }^{8} \mathrm{Be}$	OpOh	$(000)^{4}(001)^{4}$	$(4,0)$	prolate
${ }^{10} \mathrm{Be}$	OpOh	$(000)^{4}(001)^{4}(100)^{2}$	$(4,2)$	prolate
	2p2h	$(000)^{4}(001)^{4}(002)^{2}$	$(6,0)$	prolate
${ }^{12} \mathrm{C}$	OpOh	$(000)^{4}(100)^{4}(010)^{4}$	$(0,4)$	oblate
	4p4h	$(000)^{4}(001)^{4}(002)^{4}$	$(12,0)$	prolate
${ }^{16} \mathrm{O}$	OpOh	$(000)^{4}(100)^{4}(010)^{4}(001)^{4}$	$(0,0)$	spherical
	4 p 4 h	$(000)^{4}(100)^{4}(001)^{4}(002)^{4}$	$(8,4)$	triaxial
	8 p 8 h	$(000)^{4}(001)^{4}(002)^{4}(003)^{4}$	$(24,0)$	prolate
${ }^{20} \mathrm{Ne}$	OpOh	$(000)^{4}(100)^{4}(010)^{4}(001)^{4}(002)^{4}$	$(8,0)$	prolate
${ }^{24} \mathrm{Mg}$	OpOh	$(000)^{4}(100)^{4}(010)^{4}(001)^{4}(002)^{4}(101)^{4}$	$(8,4)$	triaxial
${ }^{28} \mathrm{Si}$	OpOh	$(000)^{4}(100)^{4}(010)^{4}(001)^{4}(200)^{4}(020)^{4}(110)^{4}$	$(0,12)$	oblate
	OpOh	$(000)^{4}(100)^{4}(010)^{4}(001)^{4}(002)^{4}(101)^{4}(011)^{4}$	$(12,0)$	prolate

Deformed harmonic oscillator, even if inadequate for a detailled description contains already many clusterization effects in light nuclei

- Y. Abgrall, G. Baron, E. Caurier and G. Monsonego

Nuc. Phys. A131 (1969) 609

- Y. Abgrall, B. Morand, and E. Caurier Nuc. Phys. A192 (1972) 372

Nucleus	configuration	Intrinsic state	$(\lambda \mu)$	shape
${ }^{4} \mathrm{He}$	OpOh	$(000)^{4}$	$(0,0)$	spherical
${ }^{8} \mathrm{Be}$	OpOh	$(000)^{4}(001)^{4}$	$(4,0)$	prolate

journal de physique Colloque C6, supplément au n° 11-12, Tome 32, Novembre-Décembre 1971, page C6-63

DEFORMED STRUCTURES
 AND ALPHA-PARTICLE DESCRIPTION OF LIGHT NUCLEI

Y. ABGRALL

Laboratoire de Physique Théorique, Université de Bordeaux, France
and
E. CAURIER

Laboratoire de Physique Théorique, Centre de Recherches Nucléaires de Strasbourg, France

Moreover, it can be shown to be a limit of the Brink α model when distances go to zero:

Case of ${ }^{8} \mathrm{Be}$:
$\psi=\mathcal{A}\left|\phi\left(r_{1} r_{2} r_{3} r_{4} ; d_{1}\right) \phi\left(r_{5} r_{6} r_{7} r_{8} ; d_{2}\right)\right\rangle$ with $\phi\left(r_{k}, d_{i}\right)=\operatorname{Nexp}-\frac{\left(r-d_{i}\right)^{2}}{2 b^{2}}$,
$\phi_{1}=e^{-\frac{(x-d)^{2}}{2 b^{2}}}$ and $\phi_{2}=e^{-\frac{(x+d)^{2}}{2 b^{2}}}$
develop when $d \rightarrow 0$ as
$e^{-\frac{x^{2}}{2 b^{2}}}\left(1-\frac{d x}{2 b^{2}}+\frac{1}{2}\left(\frac{d x}{2 b^{2}}\right)^{2}-\ldots\right)$ and $e^{-\frac{x^{2}}{2 b^{2}}}\left(1+\frac{d x}{2 b^{2}}+\frac{1}{2}\left(\frac{d x}{2 b^{2}}\right)^{2}+\ldots\right)$
After orthogonalization one gets $e^{-\frac{x^{2}}{2 b^{2}}}$ and $x e^{-\frac{x^{2}}{2 b^{2}}}$,
so the Slater Determinant built on these functions corresponds to the $(000)^{4}(001)^{4}$ state of the deformed harmonic oscillator

Nucleus	configuration	limit	Intrinsic state	$(\lambda \mu)$
${ }^{8} \mathrm{Be}$	$\bigcirc \stackrel{d}{\bigcirc}$	$d \rightarrow 0$	$(000)^{4}(001)^{4}$	$(4,0)$
${ }^{12} \mathrm{C}$		$d \rightarrow 0$	$(000)^{4}(100)^{4}(010)^{4}$	$(0,4)$
		$d \rightarrow 0$	$(000)^{4}(001)^{4}(002)^{4}$	$(12,0)$

Nucleus	configuration	limit	Intrinsic state	$(\lambda \mu)$
${ }^{16} \mathrm{O}$	0	$d \rightarrow 0$	$(000)^{4}(100)^{4}(010)^{4}(001)^{4}$	$(0,0)$
		$\begin{aligned} d_{1} & \rightarrow 0 \\ \frac{d_{1}}{d_{2}} & \rightarrow \infty \\ d & \rightarrow 0 \end{aligned}$	$\begin{aligned} & (000)^{4}(100)^{4}(001)^{4}(002)^{4} \\ & (000)^{4}(001)^{4}(002)^{4}(003)^{4} \end{aligned}$	$(8,4)$ $(24,0)$
${ }^{20} \mathrm{Ne}$		$\begin{aligned} & d_{1} \rightarrow 0 \\ & \frac{d_{1}}{d_{2}} \rightarrow \infty \end{aligned}$	$(000)^{4}(100)^{4}(010)^{4}(001)^{4}(002)^{4}$	$(8,0)$

Brink α cluster model \rightarrow Deformed H.O. \rightarrow SU3 eigenstates

- nuclear shell model often considered to be applied only when nuclear manifestations are dominated by single particle degrees of freedom
- BUT work of Elliot: deformation in light nuclei explained by algebraic SU3 model

QUESTIONS:

- Is it possible to describe rotationnal motion within the spherical shell model, beyond sd shell where SU3 applies ?
- which are the minimal valence spaces containing the relevant degrees of freedom?
- Is there anything like an intrinsic state in the shell model wavefunctions?
- Limitations of SU3 model:
- as the spin orbit term becomes rapidly important its applicability stops at the sd shell
- but can be recovered approximately as in the pseudo-SU3 or quasi-SU3 schemes.

See:

- A. P. Zuker, J. Retamosa, A. Poves, and E. Caurier Phys. Rev. bf C52, R1741 (1995)
- A. P. Zuker, A. Poves, F. Nowacki, and S. Lenzi Phys. Rev. bf C92, 024320 (2015)

The resulting "quasi $\mathrm{SU}(3)$ " quadrupole operator respects $\mathrm{SU}(3)$
relationships, except for $m=0$, where the correspondence breaks down. The resulting spectrum is a quasi-2 $2 q_{20}$ (to be compared with the SU3 one). The result is not exact for the $K=1 / 2$ orbits but a very good approximation.

$$
k=2 p
$$

$$
\pi, \nu
$$

Diagonalization of the operator $Q_{0}=2 z^{2}-x^{2}-y^{2}$ in a major HO-shell without spin-orbit in the subspace of the aligned orbits (Quasi-SU3)

The resulting "quasi $\mathrm{SU}(3)$ " quadrupole operator respects $\mathrm{SU}(3)$
relationships, except for $m=0$, where the correspondence breaks down. The resulting spectrum is a quasi-2 $2 q_{20}$ (to be compared with the SU3 one). The result is not exact for the $K=1 / 2$ orbits but a very good approximation.

$k=2 p-1 / 2$

$$
\pi, \nu
$$

Diagonalization of the operator $Q_{0}=2 z^{2}-x^{2}-y^{2}$ in a major HO-shell without spin-orbit in the subspace of the aligned orbits (Quasi-SU3)
\diamond Strongly deformed states at $N=Z$:

- Shape transition between ${ }^{84} \mathrm{Mo}$ and ${ }^{86} \mathrm{Mo}$
- Configuration mixing in ${ }^{72} \mathrm{Kr}$
- Most deformed cases for ${ }^{76} \mathrm{Sr},{ }^{80} \mathrm{Zr}$

\diamond Strongly deformed states at $N=Z$:
- Shape transition between ${ }^{84} \mathrm{Mo}$ and ${ }^{86} \mathrm{Mo}$
- Configuration mixing in ${ }^{72} \mathrm{Kr}$
- Most deformed cases for ${ }^{76} \mathrm{Sr},{ }^{80} \mathrm{Zr}$
R.D.O. Llewellyn et al., Phys. Rev. Lett. 124, 152501 (2020)

FIG. 3. Schematics of the $B(\mathrm{E} 2 \downarrow)$ values for the $N=Z$ nuclei

(30 HF states)

The wave function is written as successive coupling of one shell wave functions (c. f. p. 's) defined by $\left|\left(j_{i}\right)^{n_{i}} v_{i} \gamma_{i} x_{i}\right\rangle$:

$$
\left[\left[\left|\left(j_{1}\right)^{n_{1}} v_{1} \gamma_{1} x_{1}\right\rangle\left|\left(j_{2}\right)^{n_{2}} v_{2} \gamma_{2} x_{2}\right\rangle\right]^{\Gamma_{2}} \ldots\left|\left(j_{k}\right)^{n_{k}} v_{k} \gamma_{k} x_{k}\right\rangle\right]^{\Gamma_{k}}
$$

Single shell matrix elements calculation can be simplified with the quasi-spin formalism

SU(2) Algrebra for Quasi-Spin:

$$
\begin{array}{ll}
S^{+}=-\sqrt{\frac{\Omega}{2}}\left(\tilde{a}_{j} \tilde{a}_{j}\right)^{0} & S^{-}=-\sqrt{\frac{\Omega}{2}}\left(a_{j}^{\dagger} a_{j}^{\dagger}\right)^{0} \\
S_{z}=\frac{\Omega-n}{2} & S=\frac{\Omega-v}{2}
\end{array}
$$

with $\Omega=(2 j+1) / 2$ and n, number of particles in the shell j

From $|n v\rangle$ to $\left|S S_{z}\right\rangle$ representation and operators expressed in the two body interaction are spherical tensors in the Quasi-spin space:

- $\mathrm{A} \equiv\binom{\tilde{a}_{j}}{a_{j}^{\dagger}}$ tensor of rank $\frac{1}{2}$
- (AA) ${ }^{\omega}$
ω even : tensor of rank 1
ω odd : tensor of rank 0
- $\left[(\mathrm{AA})^{\omega} A\right]^{j} \quad$ mixed tensors of rank $\frac{1}{2}$ et $\frac{3}{2}$
- $\left[(A A)^{\omega}(A A)^{\omega}\right]^{0}$
mixed tensors
of rank 0, 1 and 2

Two main advantages:

- easy C.F.P. calculation:

$$
\left\langle n v \gamma x\|\mathcal{O}\| n^{\prime} v^{\prime} \gamma^{\prime} x^{\prime}\right\rangle=\left\langle S \gamma x\| \| \mathcal{O} \| \mid S^{\prime} \gamma^{\prime} x^{\prime}\right\rangle \times \text { Clebsh-Gordan coeff. }
$$

Matrix elements are doubly reduced in spin and Quasi-spin

- easier calculation of \mathcal{N} body matrix elements:

$$
\begin{aligned}
& \left\langle S S_{z} \gamma \Gamma\|\mathcal{O}\| S^{\prime} S_{z}^{\prime} \gamma^{\prime} \Gamma^{\prime}\right\rangle \\
= & \left\langle S \gamma \Gamma\left\|\mathcal{O}_{1}\right\| S^{\prime} \gamma^{\prime} \Gamma^{\prime}\right\rangle\left\langle S S_{z}\right| \mathcal{O}_{2}\left|S^{\prime} S_{z}^{\prime}\right\rangle
\end{aligned}
$$

Instead of computing one large matrix $\langle q \times r|\left|q^{\prime} \times r^{\prime}\right\rangle$, one is left with two smaller matrices $\langle q|\left|q^{\prime}\right\rangle$ et $\langle r|\left|r^{\prime}\right\rangle$

Pairing correlations and $0 \nu \beta \beta$ decay

$0 \nu \beta \beta$ decay favoured by proton-proton, neutron-neutron pairing, but it is disfavored by proton-neutron pairing

Ideal case: superfluid nuclei reduced with high-seniorities

E. Caurier et al., PRL100 052503 (2008)

Addition of isoscalar pairing reduces matrix element value

E. Caurier et al., PRL100 052503 (2008)

Related to approximate $\mathrm{SU}(4)$ symmetry of the $\sum \sum_{i} H\left(r_{0}\right) \sigma_{j} \sigma_{j} \tau_{i} \tau_{j} \mathrm{~s}_{\mathrm{j}}$ operator r_{312023}

- Multipole Hamiltonian decomposition shows leading Pairing and Quadrupole terms
- These terms carry underlying SU2/SU3 symmetries
- Intimate natural relation between Brink α cluster model \rightarrow Deformed H.O. \rightarrow SU3 eigenstates
- SU3 variants (pseudo/quasi) still at play and very efficient for development of deformation in heavier mass regions

In $j j$ coupling the angular part of the quadrupole operator $q^{20}=r^{2} C^{20}$ has matrix elements

$$
\begin{aligned}
\langle j m| C^{2}|j+2 m\rangle & \approx \frac{3\left[(j+3 / 2)^{2}-m^{2}\right]}{2(2 j+3)^{2}}, \\
\langle j m| C^{2}|j+1 m\rangle & =-\frac{3 m\left[(j+1)^{2}-m^{2}\right]^{1 / 2}}{2 j(2 j+2)(2 j+4)}
\end{aligned}
$$

The $\Delta j=2$ numbers are-within the approximation made-identical to those in LS scheme, obtained by replacing j by I. The $\Delta j=1$ matrix elements are small, both for large and small m, corresponding to the lowest oblate and prolate deformed orbits respectively.

		LS coupling		$l \gg\|m\|$	
$\begin{array}{r} \langle I m\| \tilde{Q}_{20}\|I m\rangle \\ \left.\langle \| m\left\|\tilde{Q}_{20}\right\| I+2 m\right\rangle \end{array}$	$\begin{aligned} & =\frac{I(I+1)-3 m^{2}}{(2 I-1)(2 I+3)} \\ & =\frac{3\left[(I+1)^{2}-m^{2}\right]^{1 / 2}\left[(I+2)^{2}-m^{2}\right]^{1 / 2}}{2(2 I+1)^{1 / 2}(2 I+3)(2 I+5)^{1 / 2}} \end{aligned}$		$\rightarrow$$\rightarrow$	1	
			$\overline{4}$		
			3		
			$\overline{8}$		
jij coupling					$j \gg\|m\|$
$\langle j m\| \tilde{Q}_{20}\|j m\rangle$	$=\frac{j(j+1)-3 m^{2}}{4 j(j+1)}$			\rightarrow	1
			$\overline{4}$		
$\langle j m\| \tilde{Q}_{20}\|j+1 m\rangle$		$\frac{3 m\left[(j+1)^{2}-m^{2}\right]^{1 / 2}}{4 j(j+1)(j+2)}$		\rightarrow	$\underline{3 m} \sim 0$
		$\frac{4 j(j+1)(j+2)}{}$			
$\langle j m\| \tilde{Q}_{20}\|j+2 m\rangle$		$\underline{3\left[(j+1)^{2}-m^{2}\right]^{1 / 2}\left[(j+2)^{2}-m^{2}\right]^{1 / 2}}$	\rightarrow	3	
		$8(j+1)(j+2)$		8	

If the spherical j-orbits are degenerate, the $\Delta j=1$ couplings, though small, will mix strongly the two $\Delta j=2$ sequences (e.g., $\left(f_{7 / 2} p_{3 / 2}\right)$ and ($\left.f_{5 / 2} p_{1 / 2}\right)$). The spin-orbit splittings will break the degeneracies and favour the decoupling of the two sequences. Hence the idea of neglecting the $\Delta j=1$ matrix elements and exploit the correspondence

$$
I \longrightarrow j=I+1 / 2 \quad m \longrightarrow m+1 / 2 \text { and }-m \longrightarrow-m-1 / 2
$$

which is one-to-one (except for $m=0$).

