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The nuclear interaction: the simple view
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Separation of the effective Hamilton

Monopole and multipole

Multipole expansion:

H = Hmonopole + Hmultipole

e Spherical mean-field
Hmonopole:  ® Evolution of the spherical
single particle levels
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e Correlations

= pairing, quadrupole [(
e Energy gains
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The monopole hamiltonian
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Hm corresponds only to the terms A+ =00 and 01 which implies that i = jand k =/
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The monopole hamiltonian
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Multipole Hamiltonian

Hmuripoe CAN D€ Written in two representations, particle-particle
and particle-hole. Both can be brought into a diagonal form.
When this is done, it comes out that only a few terms are
coherent, and those are the simplest ones:

@ L = 0isovector and isoscalar pairing
Elliott's quadrupole
G757
Octupole and hexadecapole terms of the type r* Yy - r Y,

Besides, they are universal (all the realistic interactions give
similar values) and scale simply with the mass number

PPWT) ph(Ar)
10 01 21 20 40 10 A
KB -583 496 -321 -353 -1.38 +1.61 +3.00
USD-A 562 -550 -3.17 -324 -1.60 +156 +2.99
CCEl 679 -468 -293 -340 -1.39 +121 +2.83

NN+NNN-MBPT -6.40 -4.36 -291 -328 -123 +1.10 +2.43
NN-MBPT -6.06 -438 -292 -335 -1.31 +1.03 +2.49




Multipole Hamiltonian

H’"””’p"’e’_ e Pairing regime: spherical nuclei

and Pe ground state = pairs of like-particles coupled at J=0 (seniority v=0)

When 2+ state (break of pair; v=2) at high energy

cohere Underlying SU2 symmetry
@ [-

Ell

oT

Oc superfluid nucleus:

Beside
similar

Typical example: Tin isotopes

e Quadrupole regime: deformed nuclei

Underlying SU3 symmetry
KB
USL
CCE prolate nucleus:
NN+
NN-

Typical example: open shell N=Z nuclei




Multipole Hamiltonian

Hmuripoe CAN D€ Written in two representations, particle-particle
and particle-hole. Both can be brought into a diagonal form.
When this is done, it comes out that only a few terms are
coherent, and those are the simplest ones:

@ L = 0isovector and isoscalar pairing
Elliott's quadrupole
G737
Octupole and hexadecapole terms of the type r* Yy - r Yy

Besides, they are universal (all the realistic interactions give
similar values) and scale simply with the mass number

pp(T) ph(\7)
10 01 21 20 40 10 11
KB 583 -496 -321 -353 -1.38 +1.61 +3.00
USD-A 562 -550 -3.17 -324 -160 +1.56 +2.99
CCEl 679 -468 -293 -340 -1.39 +1.21 4283

NN+NNN-MBPT 640 -4.36 -291 -328 -1.23 +1.10 +2.43
NN-MBPT 606 438 -292 335 -1.31 +1.03 +2.49




Multipole Hamiltonian

Hmuripoe CAN D€ Written in two representations, particle-particle
and particle-hole. Both can be brought into a diagonal form.
When this is done, it comes out that only a few terms are
coherent, and those are the simplest ones:

@ L = 0isovector and isoscalar pairing
Elliott's quadrupole
G737
Octupole and hexadecapole terms of the type r* Yy - r Yy

Besides, they are universal (all the realistic interactions give
similar values) and scale simply with the mass number

L) ph(A7)
10 01 21 20 40 10 11
KB -5.83 496 J3.21 -353 -1.38 +1.61 +3.00
USD-A -5.62f -550 §3.17 -3.24 -160 +1.56 +2.99
CCEl -6.79] -4.68 J293 -3.40 -1.39 +1.21 +2.83
NN+NNN-MBPT  -6.40f -4.36 §2.91 -328 -1.23 +1.10 +2.43
NN-MBPT -6.06f -438 J292 -3.35 -1.31 +1.03 +2.49




Multipole Hamiltonian

Hmuripoe CAN D€ Written in two representations, particle-particle
and particle-hole. Both can be brought into a diagonal form.
When this is done, it comes out that only a few terms are
coherent, and those are the simplest ones:

@ L = 0isovector and isoscalar pairing
Elliott's quadrupole
G737
Octupole and hexadecapole terms of the type r* Yy - r Yy

Besides, they are universal (all the realistic interactions give
similar values) and scale simply with the mass number

PP(T) ph(A7)
10 01 21 20 40 10 11
KB -5.83 -496 -32¢ -3.53 J-1.38 +1.61 +3.00
USD-A 5662 -550 -3.14 -3.24 j-1.60 +1.56 +2.99
CCEl -6.79 -468 -293 -3.40 J-1.39 +1.21 +2.83
NN+NNN-MBPT  -6.40 -436 -294¢ -3.28 j-1.23 +1.10 +2.43
NN-MBPT -6.06 -438 -294 -3.35 J-1.31 +1.03 +2.49




Multipole Hamiltonian

Hmuttipote CaN be written in two representations, particle-particle and particle-hole. Both
can be brought into a diagonal form. When this is done, it comes out that only a few
terms are coherent, and those are the simplest ones:

@ L = 0isovector and isoscalar pairing

@ Elliott's quadrupole

@ 7707

@ Octupole and hexadecapole terms of the type r) Yy - rA Yy

Besides, they are universal (even from modern abinitio derivations, all the realistic
interactions give similar values) and scale simply with the mass number

particle-particle Interaction particle-hole
JT=01 JT =10 At =20 At =40 At = 11
-5.42 -5.43 KLS -2.90 -1.61 +2.38
-5.48 -6.24 BONNB -2.82 -1.39 +3.64
-5.69 -5.90 usb -3.18 -1.60 +3.08
-4.75 -4.46 KB3 -2.79 -1.39 +2.46
-5.06 -5.08 FPD6 -3.11 -1.67 +3.17

-4.07 -5.74 GOGNY -3.23 -1.77 +2.46




Multipole Hamiltonian

Hmuttipote CaN be written in two representations, particle-particle and particle-hole. Both
can be brought into a diagonal form. When this is done, it comes out that only a few
terms are coherent, and those are the simplest ones:

@ L = 0isovector and isoscalar pairing

@ Elliott's quadrupole

@ 7707

@ Octupole and hexadecapole terms of the type r) Yy - rA Yy

Besides, they are universal (even from modern abinitio derivations, all the realistic
interactions give similar values) and scale simply with the mass number

particle-particle Interaction particle-hole
————
JT =01 JT =10 At =20 At =40 At = 11
-5.42 -5.43 KLS -2.90 -1.61 +2.38
-5.48 -6.24 BONNB -2.82 -1.39 +3.64
-5.69 -5.90 usb -3.18 -1.60 +3.08
-4.75 -4.46 KB3 -2.79 -1.39 +2.46
-5.06 -5.08 FPD6 -3.11 -1.67 +3.17
-4.07 -5.74 GOGNY -3.23 -1.77 +2.46




Multipole Hamiltonian

Hmuttipote CaN be written in two representations, particle-particle and particle-hole. Both
can be brought into a diagonal form. When this is done, it comes out that only a few
terms are coherent, and those are the simplest ones:

@ L = 0isovector and isoscalar pairing

@ Elliott's quadrupole

@ 7707

@ Octupole and hexadecapole terms of the type r) Yy - rA Yy

Besides, they are universal (even from modern abinitio derivations, all the realistic
interactions give similar values) and scale simply with the mass number

particle-particle Interaction particle-hole
———
JT=01 JT =10 ATt = 200 At =40 At = 11
-5.42 -5.43 KLS -2.90 -1.61 +2.38
-5.48 -6.24 BONNB -2.82 -1.39 +3.64
-5.69 -5.90 usb -3.18 -1.60 +3.08
-4.75 -4.46 KB3 -2.79 -1.39 +2.46
-5.06 -5.08 FPD6 -3.11 -1.67 +3.17
-4.07 -5.74 GOGNY -3.23 -1.77 +2.46




Elliott’s SU(3) model
cleus (chapter on Nuclear rotations)

@ Assuming spin-isospin SU(4) symmetry (no spin-orbit)
@ and a quadrupole-quadrupole residual interaction:

H= E (i—i— 5Mw rk) +xQ.Q

which can be rewrltten
H = Z < + 2mw fk> +4kCsys — 3I€(ZI__')
the eigenenergles have the following form:

E=hw<N+§> + 4k(N2 + A+ g2+ 3(A + p)) — 3kL(L+ 1)

2
where )\ and p are the labels of the SU3 irrep. and L the angular
momentum. Therefore it gives a description of deformation via a
rotationally invariant mixing of spherical orbits.



Spherical Shell Model and Defor

Consider the quadrupole force alone, taken to act in the p-th
oscillator shell. It will tend to maximize the quadrupole moment,
which means filling the lowest orbits obtained by diagonalizing
the operator

Qo = 222 —x2 — y?

Using the cartesian representation,
Qo = 2n; — nx — n, = 3n; — N, we find eigenvalues 2p,
2p—3,..., etc.

By filling the orbits orderly we obtain the intrinsic states for the
lowest SU(3) representations:

@ (A, 0) if all states are occupied up to a given level
@ (A, u) otherwise



Spherical Shell Model and Deforme

Diagonalization of the operator Qp = 222 - x2 -y? in a major
HO-shell without spin-orbit (SU3-Nilsson-like single particle

levels)

k=2p

-Qo/b2+2p

SU3

9.0

9.0 9.0 9.0

K =17/2
6.0 6.0 60 g _ s
S0 320 k=32
UL Y2
T,V



Example in the sd shell

In the sd shell, N=2

N:nx+ny+nz

2(ny 4 ny — 2n.)

There are 6 possible (ny, ny, n;):
(2,0,0) (0,2,0) (0,0,2)
(1,1,0) (1,0,1) (0,1,1)

i

Qozznz_nx_ny:(4’17_2)

Starting filling from below ===  prolate deformation

Starting filling from above ===  oblate deformation



Deformed harmonic oscillator and

1
h=—5-A+ E(wﬁxz +wiy? + wiz?)
spherical orbits |nfjmr) = (ny, n,, n;)

due to o and 7 each (nx, ny, nz) state is 4 fold degenerate

Correspondance between intrinsic states of harmonic oscillator
and SU3 states:

Highest Weight state (A, 1) build on (ny, ny, n;) state at the
spherical limit

N:nx+ny+nz
)\:nz_nx
/.l:nx_ny



Spherical Shell Model and Defor

Nucleus  configuration Intrinsic state (Ap) shape
“He OpOh (000)* (0,00  spherical
%Be OpOh (000)*(001)* (4,0) prolate
e 0pOh (000)*(001)*(100)? (4,2) prolate

2p2h (000)*(001)*(002)? (6,0) prolate
2c 0pOh (000)*(100)*(010)* (0,4) oblate
4p4h (000)*(001)*(002)* (12,00  prolate

0 OpOh (000)*(100)*(010)*(001)* (0,00  spherical
4p4h (000)*(100)*(001)*(002)* (8,4) triaxial
8psh (000)*(001)*(002)*(003)* (24,0)  prolate
20Ne 0OpOh (000)*(100)*(010)*(001)*(002)* (8,0) prolate
Mg 0pOh (000)*(100)*(010)*(001)*(002)* (101)* (8,4) triaxial
2g;j 0pOh (000)*(100)*(010)*(001)*(200)* (020)*(110)*  (0,12) oblate
0pOh (000)*(100)*(010)*(001)*(002)* (101)*(011)*  (12,0)  prolate

Deformed harmonic oscillator, even if inadequate for a detailled description contains

already many clusterization effects in light nuclei

o v Abgrall, G. Baron, E. Caurier and G. Monsonego

Nuc. Phys. A131 (1969) 609

@ V. Abgrall, B. Morand, and E. Caurier
Nuc. Phys. A192 (1972) 372



Spherical Shell Model and Defor

Nucleus  configuration Intrinsic state (Ap) shape
“He 0pOh (000)* (0,00  spherical
®Be 0pOh (000)*(001)* (4.0) prolate

JOURNAL Dt PHYSIQUE  Collogue C6, supplément au n® 11-12, Tome 32, Novembre-Décembre 1971, page C6-63

DEFORMED STRUCTURES
AND ALPHA-PARTICLE DESCRIPTION OF LIGHT NUCLEI

Y. ABGRALL

Laboratoire de Physique Théorique, Université de Bordeaux, France

and
E. CAURIER

Laboratoire de Physique Théorique, Centre de Recherches Nucléaires de Strasbourg, France

Y. Abgrall, B. Morand, and E. Caurier
Nuc. Phys. A192 (1972) 372



Spherical Shell Model and Defor

Moreover, it can be shown to be a limit of the Brink o model
when distances go to zero:

Case of 8Be: -
Y = A|p(rirarara; 0y )o(rsrerzrg; d2)) with ¢(r, di) = Nexp — (r ;bzi) ,
(x — d)? (x + d)?
p1=e 20 andgpp=e 2b°
develop when d — 0 as
x2 X2
YY) dx 1, dx 555 ax 1, dx
202 (1 — == 4+ —(==)2 — 2b2 =L (=22
e (1 2b2+2(2b2) ..)and e (1+2b2+2(2b2) +...)
x? x2

After orthogonalization one gets e_2—b2 and xe_2—b2,
so the Slater Determinant built on these functions corresponds to the
(000)#(001)* state of the deformed harmonic oscillator



Spherical Shell Model and Deforme

Nucleus configuration limit Intrinsic state (M)

d
gge O—O d50 (000)4(001)* (4,0)

d
120 & d—0 (000)*(100)4(010)*  (0,4)

d
O—0O—0O d—0 (0004001)*©002)* (12,0)




Spherical Shell Model and Deforma

Nucleus configuration limit Intrinsic state (Ap)
(2 d
&
160 O d—0 (000)#(100)#(010)#(001)* (0,0)
d1
: : : d1 —0
4 4 4 4
%12 0o (000)*(100)*(001)*(002) (8,4)
d—0 (000)#(001)#(002)#(003)* (24,0)
ZONe d1 -0

4 o0 (000)*(100)4(010)#(001)#(002)*  (8,0)
2

Brink « cluster model — Deformed H.O. — SU3 eigenstates



Spherical Shell Model and Defor

@ nuclear shell model often considered to be applied only
when nuclear manifestations are dominated by single
particle degrees of freedom

@ BUT work of Elliot: deformation in light nuclei explained by
algebraic SU3 model

QUESTIONS:

@ |s it possible to describe rotationnal motion within the
spherical shell model, beyond sd shell where SU3 applies
?

@ which are the minimal valence spaces containing the
relevant degrees of freedom ?

@ Is there anything like an intrinsic state in the shell model
wavefunctions ?



Spherical Shell Model and Defor

@ Limitations of SU3 model:

@ as the spin orbit term becomes rapidly important its
applicability stops at the sd shell

@ but can be recovered approximately as in the pseudo-SU3
or quasi-SU3 schemes.

See:

@ A. P. Zuker, J. Retamosa, A. Poves, and E. Caurier
Phys. Rev. bf C52, R1741 (1995)

@ A. P. Zuker, A. Poves, F. Nowacki, and S. Lenzi
Phys. Rev. bf C92, 024320 (2015)



Spherical Shell Model and Defor

The resulting “quasi SU(3)” quadrupole operator respects SU(3)
relationships, except for m = 0, where the correspondence breaks down. The
resulting spectrum is a quasi-2g- (to be compared with the SU3 one). The
result is not exact for the K = 1/2 orbits but a very good approximation.

9.0 9.0 9.0 90 o _ 7/2
. 80 6.0 6.0 g _ 5/2
2D
?L wn
) 200 30 o 3/2
~
(=)
<
20 k—1/2
T,V

k=2p

Diagonalization of the operator Qy = 222 - x* -y? in a major HO-shell without
spin-orbit in the subspace of the aligned orbits (Quasi-SU3)



Spherical Shell Model and Deform

The resulting “quasi SU(3)” quadrupole operator respects SU(3)
relationships, except for m = 0, where the correspondence breaks down. The
resulting spectrum is a quasi-2g- (to be compared with the SU3 one). The
result is not exact for the K = 1/2 orbits but a very good approximation.

25 25 k= 7/2
- 6.5 6.5 K =5/2
=
:L‘ )
c
2 35 K =3/2
~
o
< ;
0.5 K =1/2
T,V

k=2p-1/2

Diagonalization of the operator Qy = 222 - x* -y? in a major HO-shell without
spin-orbit in the subspace of the aligned orbits (Quasi-SU3)



Island of Inversion at the N=Z line

o Strongly deformed states at N = Z: ™ v
Y o (25 2812
@ Shape transition between #Mo and %Mo ] ° ®
| sy —@—— ldsj, ——@—
. . ) . g
@ Configuration mixing in "2Kr 2w —0—0—  m —0—0— zn-i0
2 [ 1 [—O—0—] 11 [—O—O—
@ Most deformed cases for 76Sr, 8zr gl !
&1 0| —o—0— | 0| —O—0—
5 132 | e 1pss2
z
ANTRRTRRNNNNNNNNN
Ni
- é a2 -1.61 -1.61 L2 28-128
|z K=5/2 - - K =5/2
<1E 411 41
T T -0~
K =3/2 K =3/2
6.83 -6.83
K=1/2 K=1/2
T v B(E2)(e? .fm*)
nucleus ~ NpNh*  ZRP  PHF  DNO-SM  Exp.
2.61 257 2.37 2.37 2.57 261
K=5/2 - - K =5/2 4p-4h 924 806
768e 8p-8h 2189 2101
-
= 2108 g 141 -Lo8 120-12h 2316 R 1847 2220
B Keas °* -~ e P
3|E 4p4h 587 637
Z 2L 3% 807¢ 8p-8h 1713 1509
K=1/2 K=1/2 12p-12h 2663 2396 2325 1910




Island of Inversion at the N=Z line

o Strongly deformed states at N = Z:

@ Shape transition between %Mo and %Mo

@ Configuration mixing in 72Kr

@ Most deformed cases for 78S, 8zr

R.D.O. Llewellyn et al, Phys. Rev. Lett.
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SU2 Quasi-Spin for Shell-Model

The wave function is written as successive coupling of one shell
wave functions (c. f. p. ’s) defined by |(j;)" vivyixi) :

[ [1G) ™ vy () vevaxe) 12 oo | Gi) ™ VievieX) -

Single shell matrix elements calculation can be simplified with
the quasi-spin formalism

SU(2) Algrebra for Quasi-Spin:

St=-\/3@a)° s --\/%da)

Sz — QEn S = QEV

with Q = (2j + 1)/2 and n, number of particles in the shell j



SU2 Quasi-Spin for Shell-Model

From |nv) to |SS;) representation and operators expressed in
the two body interaction are spherical tensors in the Quasi-spin
space:

é.

e A= ( 4 ) tensor of rank }
g

o (AA) w even : tensor of rank 1

w odd : tensor of rank O

o [(AA)” Al mixed tensors of rank J et 3

mixed tensors

e [(AA)” (AA)¥]°
[(AA)" (AAY] of rank 0, 1 and 2



SU2 Quasi-Spin for Shell-Model

Two main advantages:
@ easy C.F.P. calculation:

(nvyx||O|lMV'A'X') = (Syx|||0]||S'v'x') xClebsh-Gordan coeft.

Matrix elements are doubly reduced in spin and Quasi-spin

@ easier calculation of A/ body matrix elements :
(SSATO]|S'SAT)
= (ST|01]|SYT) (85:|02|S'S;)
Instead of computing one large matrix (g x r| |q’ x r'),
one is left with two smaller matrices (q| |q’) et (r| |r')



Mo

Pairing correlations and Oz deca

Ov 33 decay favoured by proton-proton, neutron-neutron pairing,
but it is disfavored by proton-neutron pairing

Ideal case: superfluid nuclei
reduced with high-seniorities

Addition of isoscalar pairing
reduces matrix element value

———— o
I 1 I

0 2 4 6 8 10
maximum seniority

E. Caurier et al., PRL100 052503 (2008)

+ e Tul7
x Jyo7
5 * & ISMs<4|
B [SM full
a4t

T
2--.-.44‘

L L L
A=76 82 124 128 130 136

E. Caurier et al., PRL100 052503 (2008)

Related to approximate SU(4) symmetry of the > H(r)a;oj7i7;. operator



@ Multipole Hamiltonian decomposition shows leading
Pairing and Quadrupole terms

@ These terms carry underlying SU2/SU3 symmetries

@ Intimate natural relation between
Brink o cluster model — Deformed H.O. — SU3
eigenstates

@ SU3 variants (pseudo/quasi) still at play and very efficient
for development of deformation in heavier mass regions



In jj coupling the angular part of the quadrupole operator
q°° = r?C?° has matrix elements

3[(j +3/2)? — m?]
2(2j+3)2

(m|C?j+2m) ~

3m[(j +1)? — m?"/?
2j(2/+2)(2j + 4)

The Aj = 2 numbers are—within the approximation

made—identical to those in LS scheme, obtained by replacing j

by /. The Aj = 1 matrix elements are small, both for large and

small m, corresponding to the lowest oblate and prolate

deformed orbits respectively.

(miC?lj+1m) =~




Spherical Shell Model and Defor

LS coupling I |
(Im| Qzo|Im) % %
mosrem = i tsidlse
Jjj coupling ST
(jm| Qo jm) % %
(jm| Qeolj + 1 m) 3’"5/(’/: 11);(;:722%‘/2 STm .
(jm| Qeolj +2 m) 3G +1)? ;572—&155/:22))2 — /2 g




If the spherical j-orbits are degenerate, the Aj = 1 couplings,
though small, will mix strongly the two Aj = 2 sequences (e.g.,
(f7/2P3/2) and (f52p1 /2))- The spin-orbit splittings will break the
degeneracies and favour the decoupling of the two sequences.
Hence the idea of neglecting the Aj = 1 matrix elements and
exploit the correspondence

| —j=1+1/2 m— m+1/2and—-m — —-m—1/2

which is one-to-one (except for m = 0).



