

Double alpha decay **PhyNuBE - Clustering & Symmetries in nuclear physics** L. Heitz 30.03.2023

Outline

- Theoretical framework
- Experimental search for 2α
 - FRS Ion Catcher / GSI
 - Isolde, CERN / Saclay

Theoretical framework Microscopic description of radioactivity

Theoretical framework Alpha & double alpha radioactivities

- First model for α decay : Gamow 1928 (tunneling)
- Phenomenological models for alpha/cluster radioactivity 0.0
- First prediction for 2 α : Poenaru 1980 , ⁸Be-like, very long half-life
- Microscopic description : Mercier 2021, Zhao 2023, of α , 2α decays (& cluster)

Single alpha decay

$BR_{cluster} \sim 10^{-10}$ Already observed

New type of radioactivity : Back-to-back double alpha decay !

Back-to-back emission of 2 α particles

$$\log_{10} \tau_{\rm th}[s] = 6.1$$

 $\log_{10} \tau_{\rm exp}[s] = ??$

LU

 au_{2lpha}

 au_{lpha}

Branching Ratio (BR) :

DIU -

Theoretical framework Double alpha candidates

Region of interest : large $Q_{2\alpha}$ value

 \equiv expected smaller τ (~Geiger-Nuttall)

 $^{208}\text{Pb}+2\alpha \equiv ^{216}\text{Rn}$

Other candidates : 218,220 Rn 220-224 Ra

Zhao, Ebran, Heitz, Khan, Mercier, Nikšic, Vretenar 2023 **Theoretical framework** Summary Black = exp**Color = theory** Single alpha : Excellent agreement 15 -<u>Cluster : good description</u> $^{14}C \exp_{^{14}C 3D}_{^{14}C 2D}$ 10 + $\alpha \exp$ $rac{lpha}{2lpha}$ Further investigation needed $\begin{bmatrix} \mathbf{N} \end{bmatrix}$ $\log_{10} au$ Double alpha : interesting BR 5 +0 +Good potential candidates for experimental probe ²²⁴Ra ²¹⁸Rn ²²⁰Rn ²²⁰Ra ²²²Ra 216 Rn 212 Po

$$BR = \frac{\tau_{2\alpha}}{\tau_{\alpha}}$$

Experimental search for 2α **FRS-Ion catcher GSI**

Theoretical prediction

2021

H. Wilsenach courtesy

FRS Ion Catcher - GSI Isotope choice - decay chain

(Only theoretical candidate at the time) Source production via ²²⁸Th

> **Beta background** $Q_{2\alpha}(^{224}Ra)/2 \simeq Q_{\alpha}(^{212}Bi)$ **Contaminant in ROI**

> > ²⁰⁸Pb

 β^{-}

559 keV

208**T**i

3.03 m

 2α candidate

Alpha emitter

Beta emitter

10

FRS Ion Catcher - GSI Data Acquisition (2022)

Data analysis

H. Wilsenach courtesy

Experimental search for 2*α* **CERN/Isolde - Saclay**

Theoretical prediction

2021

Decay chains

CERN/Isolde - Saclay Sketch of the setup

Incoming beam

220-222**Ra**

 \sim 2 10⁴ pps **30 keV/A** 1 week

 \sim tens of events expected

CERN/Isolde - Saclay Current status

Detectors & electronics tested Saclay/GANIL

Full setup almost ready GANIL

Experimental search for 2 α

	Experiment	GSI (FRS-Ion Catcher)	Saclay (CERN/Isolde)
	Isotope production	Source	Beam
	Experiment duration	~ 3 months	1 week
	Double alpha candidates	²²⁴ Ra - ²²⁰ Rn	²²² Ra - ²¹⁸ Rn ²²⁰ Ra - ²¹⁶ Rn
	Current status	Data analysis	Final setup almost ready
Theoretical		Run	Run
prediction		@GSI @(CERN
	today		
2021		2022 2	2023

Thank you for your attention !

H. Wilsenach, O. Hall, T. Dickel, PM. Reiter, D. Amanbayev, T. Davinson, L. Heitz, I. Pohjalainen, M. Simonov, N. Tortorelli, L. Varga, J. Yu, J. Zhao, S. Ayet, S. Beck, Z. Ge, H. Geissel, C. Hornung, N. Kalantar-Nayestanaki, E. Khan, G. Kripko-Koncz, I. Mardor, D. Morrissey, M. Narang, W. Plaß, C. Scheidenberger, A. State, C. Theisen, M. Vandebrouck, P. Woods and the FRS Ion Catcher Collaboration

C. Theisen, E. Khan, L. Heitz, T. Roger, T. Chaminade, B. Blank, J. Giovinazzo, M. Vandebrouck, B.Sulignano, D.Thisse, J.-P. Ebran, M. Zielinska, A. Drouart, L. Thuilliez, E. Clement, H. Wilsenach, T. Dickel, M. Simonov, M. Assié, D. Beaumel, Y. Blumenfeld, I. Moore, I. Pohjalainen, PM Reiter, P. Woods, T.Davinson, M. Kowalska and the Double Alpha @CERN Collaboration

> Robert Doisneau L'horloge

Back-up

2 alpha predictions

	Approach	Comments	Best B.R.
Poenaru - 1985	Super Asymetric Fission	Large BR. Close to ⁸ Be	~10 ⁻¹³
Tretyak - 2021	⁸ Be cluster	Very Large BR (T _{2alpha} >10 ³³ yr)	•••
Santhosh - 2021	Modified Liquid Drop Model	Large BR. Close to ⁸ Be, weird ²⁰⁹ Bi	Close to Poenaru
Mercier Zhao - 2021,2023	Time Dependant evolution, EDF	uncertainties hard to estimate	~10 ^{-6.5}
Denisov - 2022	Modification of Unified Model for Alpha Decay	Very small B.R.	~10-2

Half-life computation

Generic (phenomenological) formula for radioactive decays >

Different models : different S, P_{S} (*E* and *B*) >

$^{-1} = \nu \times S \times P_s$

Barrier Penetration Probability

WKB-like expressions

Preformation factor

Hard to estimate

 $\log P_s \propto -2 \int dr \sqrt{2B(r)(E(r)-E_0)}$

 $B \sim reduced mass$ $E \sim energy of the system$

$$T_{1/2} = \frac{\ln(2)}{nP}$$

$$\mathcal{M}_{\text{eff}}(s) = \sum_{ij} \mathcal{M}_{ij} \frac{\mathrm{d}q_i}{\mathrm{d}s} \frac{\mathrm{d}q_i}{\mathrm{d}s}$$

$$\mathcal{M} = M_{(1)}^{-1} M_{(3)} M_{(3)}^{-1}$$

$$[M_{(k)}]_{ij} = \sum_{\mu\nu} \frac{\langle 0|\hat{q}_i|\mu\nu\rangle \langle \mu\nu|\hat{q}_j}{(E_\mu + E_\nu)^k}$$

PES Information about energy cost of a path (Computed w/ RHB)

FRS Ion Catcher - GSI

Simulations

Barrier

History of radioactivity

- **1895 Wilhelm Röntgen : X-ray** .
- **1896 Henri Becquerel : radioactivity** ٠
- **1898** Ernest Rutherford : α and β rays ٠
- **1900 Paul Villard : gamma rays** .
- **1929** Maria Goeppert-Mayer : double gamma prediction ٠
- 1934 Irène and Fréderic Joliot-Curie : artificial radioactivity ٠
- **1935 Maria Goeppert-Mayer : double beta prediction** ٠
- **1937 Luis Alvarez : electron capture** .
- **1938 Otto Hahn, Fritz Strassmann, Lise Meitner : fission** ۰
- 1946 L.L. Green and D.L. Livesey, San-Tsiang Tsien et al. : ternary fission ٠
- 1960 Vitalii I Goldansky : proton and double proton prediction ٠
- **1970 K.P. Jackson et al. : proton emission (from an isomeric state)** .
- 1980 A. Sandulescu, D.N. Poenaru and W. Greiner : cluster radioactivity prediction ۰
- **1984 H.J. Rose and G.A. Jones : cluster radioactivity** .
- 1987 S. R. Elliott, A. A. Hahn, and M. K. Moe: double beta decay
- **1985** Dorin Poenaru : double, triple alpha prediction ٠
- 2002 Jérôme Giovinazzo et al., Marek Pfützner et al : double proton ٠

Ch. Theisen courtesy

