

# Clustering in neutron star matter

F.Gulminelli, (LPC and Normandie Université, Caen)

### Transport properties in compact stars

- Most signals from CS involve transport properties
- Some of them mainly concern  $\rho \leq \rho_0$  matter  $\equiv$  clusters
  - o NS cooling: B-thermal evolution
  - o Relaxation after accretion & deep crust heating
  - o CC, PNS cooling & mergers

v-Z  $T > 10^{10} K$ 

e-Z,  $T \approx 10^8 K$ 

#### Schmitt&Shternin Springer 2018

- Key concept: quantify disorder => resistivity
  - o  $T \gg 0$ : distribution of nuclei (or pasta)
  - o True even for a catalyzed crust: impurities



### Transport properties in compact stars

• 
$$T < T_m$$
  $v_{tot} = v_{e,i} + v_{e,imp}$ 

• 
$$T>T_m \quad v_{e(\nu),i} \to \sum_j n_j v_{e(\nu),i}^j$$

$$Z^{2} \leftrightarrow \mathbf{Q} = \sum_{j} \mathbf{n}_{j} (Z_{j} - \langle Z \rangle)^{2}$$
  
Impurity factor  
 $v_{e(v),i}^{j} \propto S^{j}(k)$   
Static structure factor

#### Present situation:

- n<sub>j</sub> from Saha equations (Nuclear Statistical Equilibrium) or classical MD simulations Z.Lin et al, PRC 102(2020)045801
- Q taken as a free parameter in cooling and relaxation simulations

A.Deibel et al.ApJ839(2017)

$$n_{AZ} = g_{AZ}^{T} \left(\frac{M_{AZ}T}{2\pi\hbar^{2}}\right)^{3/2} exp\left[\frac{N\mu_{n} + Z\mu_{p} - M_{AZ}}{T}\right]$$

THE ASTROPHYSICAL JOURNAL, 852:135 (16pp), 2018



### Towards a more controlled

### theoretical treatment

- Aim: having the nuclear functional as unique uncertainty ⇔ unified treatment at all ρ and T
- Let us start from what we know: variational calculations in the WS cell
- From WS cell to Multi-Component (liquid or solid) plasma: cluster DoF



J. W. Negele and D. Vautherin, NPA 207, 298 (1973)

From WS to MCP: ▲ Total HFB density 0.14 0.12 Cluster 0.1 mapping in 2 steps p(r) [fm<sup>-3</sup>] 0.08 0.06 Free nucleons 0.04 0.02 electrons WS cell with a microscopic function 0 20 25 5 30 0 15 35 10 r (fm)  $\mathcal{F}_{WS}\left(\hat{\rho}_{a},\hat{\kappa}_{a}\right)=\mathcal{E}_{micro}-TS_{micro}=min$  $F_{AZ} = V_{WS} (\mathcal{F}_{WS} - \mathcal{F}_a) + \delta F$ => Optimal particle (and pairing) densities 1. OCP with cluster DoF  $\mathcal{F}_{WS} \equiv \mathcal{F}^{OCP}(A, Z, \rho_{gq}) = \mathcal{F}(\rho_{gq}) + \frac{F_{AZ}}{V_{WS}} = min$ => Optimal cluster 2. MCP with cluster DoF  $\mathcal{F}^{MCP}(\{n_{AZ}\},\rho_{gq}) = \mathcal{F}(\rho_{gq}) + \sum n_{AZ} F_{AZ} + \delta F = min$ => Optimal distribution

From WS to MCP: ▲ Total HFB density 0.14 0.12 Cluster 0.1 mapping in 2 steps p(r) [fm<sup>-3</sup>] 0.08 0.06 Free nucleons 0.04 0.02 electrons WS cell with a microscopic function 0 20 25 5 30 0 15 35 10 r (fm)  $\mathcal{F}_{WS}\left(\hat{\rho}_{a},\hat{\kappa}_{a}\right)=\mathcal{E}_{micro}-TS_{micro}=min$  $F_{AZ} = V_{WS} (\mathcal{F}_{WS} - \mathcal{F}_a) + \delta F$ => Optimal particle (and pairing) densities 1. OCP with cluster DoF  $\mathcal{F}_{WS} \equiv \mathcal{F}^{OCP}(A, Z, \rho_{gq}) = \mathcal{F}(\rho_{gq}) + \frac{F_{AZ}}{V_{WS}} = min$ => Optimal cluster 2. MCP with cluster DoF  $\mathcal{F}^{MCP}(\{n_{AZ}\},\rho_{gq}) = \mathcal{F}(\rho_{gq}) + \sum n_{AZ} F_{AZ} + \delta F = min$ => Optimal distribution

### *OCP* with cluster DoF $F_{AZ} = F_{AZ}^0 + T\left(ln\frac{\lambda_{AZ}^3(M^*)}{gV_f} - 1\right)$

- CM degree of freedom: vibrations & translations (T>T<sub>m</sub>)
- n-p interaction: (only) bound neutrons are entrained by the ion





Essentially He clusters @high density !

H.DinhThi et al, A&A in press

From WS to MCP:  
mapping in 2 steps  
WS cell with a microscopic functional  

$$@(\rho_B, Y_p, T):$$
  
 $f_{WS}(\hat{\rho}_q, \hat{\kappa}_q) = \mathcal{E}_{micro} - TS_{micro} = min$   
 $=> Optimal particle (and pairing) densities$   
**1. OCP with cluster DOF**  
 $\mathcal{F}^{OCP}(A, Z, \rho_{gq}) = \mathcal{F}(\rho_{gq}) + \frac{F_{AZ}}{V_{WS}} = min$   
 $=> Optimal cluster$   
**2. MCP with cluster DOF**  
 $\mathcal{F}^{MCP}(\{n_{AZ}\}, \rho_{gq}) = \mathcal{F}(\rho_{gq}) + \sum_{A,Z} n_{AZ} F_{AZ} = min$   
 $=> Optimal distribution$ 

Grams 2018, PRC, 97, 035807 Fantina 2020, A&A, 633, A149 Carreau 2020, A&A, 640, A77 Dinh-Thi 2023, to be submitted

•  $d\mathcal{F}_{MCP}(\{n_{AZ}\}) = 0$  leads to:

Continuum subtracted & microscopic level density

$$n_{AZ} = \left(\frac{M_{AZ}^* T}{2\pi\hbar^2}\right)^{3/2} \exp\beta\left[N\mu_n + Z\mu_p - F_i + R_{AZ}(n_e)\right]$$

Rearrangement  $(n_e = \sum_{AZ} Z n_{AZ})$ 

$$\mu_{q} = \frac{\partial \mathcal{F}_{\mu}}{\partial \rho_{gq}} + \sum_{AZ} n_{AZ} \frac{\partial F_{AZ}}{\partial \rho_{gq}} \left( 1 - \sum_{AZ} n_{AZ} V_{AZ} \right)^{-1} \approx \frac{\partial \mathcal{F}_{\mu}}{\partial \rho_{gq}} + \frac{1}{V_{WS}^{OCP}} \frac{\partial F_{AZ}^{OCP}}{\partial \rho_{gq}} \left( 1 - u_{AZ}^{OCP} \right)^{-1}$$
$$= \mu_{q}^{OCP}$$
Self-consistent 
$$\mu(\rho)$$
Perturbation 1st order

#### Nuclear distribution in the outer crust



• Fantina 2020, A&A, 633, A149

Dinh-Thi 2023, to be submitted



Dinh-Thi 2023, to be submitted





Dinh-Thi 2022, to be submitted



### Clusters in-medium effects



T.Fischer et al PRC102(2020)

- the ETF approach is not very realistic for light clusters!
- Alternative approaches: in-medium modified meson couplings H.Pais, FG PRC 97(2018)045805; quasi-particle virial expansion G.Roepke, PRC101 (2020) 064310
- Constraining the inmedium modifications: see Alex talk!

### Effect on the CCSN dynamics





T.Fischer et al PRC102(2020) •

# Conclusions

• A thermodynamically consistent formalism to calculate matter composition from a given microscopic energy functional: a unified treatment for neutron stars and supernova matter

 $\Rightarrow$  First microscopic evaluation of the impurity factor  $\Rightarrow$  Possible implications for CCSN

- Important differences wrt Saha equation
  - o Subtraction of continuum states: reduced partition sum
  - o In-medium modified cluster energies (ETF)
  - o Rearrangement terms modify even the average quantities
- Important differences wrt calculations in the WS cell
  - o Center of mass motion favours the appearence of light clusters
  - Bimodal cluster distributions => increase of Qimp!
  - Cluster melting => Z=2 dominance close to the core at high temperature
  - o Light cluster functional still to be improved