Clustering away from stability using quasifree knockout reactions

D.Beaumel
IJCLab, Orsay
> Introduction
- Ikeda and beyond
- Clustering in neutron rich nuclei towards the dripline
- Beyond alpha clustering
$>$ Cluster Knockout reactions
> First results on neutron-rich Be isotopes
alpha clustering vs triton clustering
$>$ Neutral clusters : recent results on tetraneutron and outlooks

Clustering in light nuclei

The Ikeda diagram
For $\mathrm{N}=\mathrm{Z}=2 \mathrm{n}$ "alpha-conjugate" nuclei

Mass number
K.Ikeda, N.Takigawa, H.Horiuchi, PTP (1968)
$>$ Cluster structure typically occurs close to cluster decay thresholds
$>$ Based on properties of some near threshold states
\checkmark Rotational bands with molecule-like structure Very large moment of inertia
\checkmark Large alpha-decay widths

Clustering in light nuclei

The Ikeda diagram For $\mathrm{N}=\mathrm{Z}=\mathbf{2 n}$ "alpha-conjugate" nuclei

K.Ikeda, N.Takigawa, H.Horiuchi, PTP (1968)

Case of ${ }^{8} \mathrm{Be}$

$>$ Cluster state is the ground-state (specific case)
$>$ Recognized as alpha-cluster state in the late 50's

- Rotational levels, large moment of inertia

ab initio calculations for ${ }^{8} \mathrm{Be}$

R.B. Wiringa, S.C.Pieper, J.Carlsson, V.R. Pandharipande, PRC 62 (2000) Green's function Monte-Carlo
nucleon-nucleon interaction: 2-body (AV18) +3 -body (Urbana IX)

$>0+, 2+, 4+$ sequence in ${ }^{8}$ Be well-reproduced by calc.
$>$ For precise properties, need take into account continuum coupling

Clustering in light nuclei

The Ikeda diagram For $\mathrm{N}=\mathrm{Z}=2 \mathrm{n}$ "alpha-conjugate" nuclei

Mass number
K.Ikeda, N.Takigawa, H.Horiuchi, PTP (1968)

The Hoyle state in ${ }^{12} \mathrm{C}$

Synthesis of elements heavier in ${ }^{4} \mathrm{He}$ (no stable isotopes $\mathrm{A}=5,8$)

Fusion of 3α in ${ }^{12} \mathrm{C}$ in 2 steps:
$>\alpha+\alpha \leftrightarrow{ }^{8} \mathrm{Be}$
$\tau\left({ }^{8} \mathrm{Be}\right)=9.7 \times 10^{-17} \mathrm{~s}$
$>\alpha+{ }^{8} \mathrm{Be} \rightarrow{ }^{12} \mathrm{C}^{*}$

Cluster Structure of the Hoyle state
$>$ Large radius needed to reproduce its width
(Barker and Treacy, NP1962)
\rightarrow Large degree of alpha clustering
$>$ Suggested as linear alpha chain (Morinaga, PL1966) ${ }^{1}$
$>$ Recently: Study of decay modes
> Description as an alpha condensate
(Funaki et al., PRC2009)
Tohsaki, Horiuchi, Schuck, Roepke (THSR) wave function
Volume [Hoyle state] = 3~4 times x Vol [GS]
Also: FMD calculations

Adding neutrons to $N=Z$ core

Two-center Shell Model

Scharnweber, Greiner, Mosel, Nucl.Phys. A164(1971) Von Oertzen, Z.Phys. A357, 355 (1997)

Spin projection, parity
Generalization : dimers \rightarrow polymers

Antisymmetrized Molecular Dynamics

No assumption of preformed clusters
Early calculations for Be and B cases
Kanada-En'yo, Horiuchi, Ono , PRC 52, 628 (1995)
Kanada-En’yo, Horiuchi, PTP 142, 205(2001)

Kanada-Enyo, PRC91, 014315(2015)

Clustering in light neutron-rich nuclei

GROUND-STATES !

Antisymmetrized Molecular Dynamics (AMD)
Y.Kanada-En'yo, H.Horiuchi, Front. Phys. 13 (2018)

When Adding neutrons to $\mathrm{N}=\mathrm{Z}$ nuclei:
Various Molecular structures
Neutron orbiting around the core of clusters for low-lying states including the ground-state

Case of neutron rich Be

π orbit \leftrightarrow p-orbit in SM limit - reduce clustering
σ orbit \leftrightarrow sd intruder configuration -enhance clustering
Calls for direct evidence of Molecular structure !

Calculations from first principles for Be isotopes

QMC calculation for ${ }^{8} \mathrm{Be}$
R.B. Wiringa, S.C.Pieper, J.Carlsson, V.R. Pandharipande Phys. Rev. C 62 (2000)
Quantum Monte-Carlo
AV18 + Urbana IX

Rotational band well reproduced

Be isotopes in no-core Monte-Carlo Shell Model

Definition:

Distance btw the positions of each highest proton density

Courtesy T.Abe (2019)

AMD: Y. Kanada-En'yo, Phys. Rev C68, 014319 (2003)
Cluster: M. Ito \& K. Ikeda, Rep. Prog. Phys. 77, 096301 (2014)

Calculations from first principles for Be isotopes

QMC calculation for ${ }^{8}$ Be
R.B. Wiringa, S.C.Pieper, J.Carlsson, V.R. Pandharipande

Phys. Rev. C 62 (2000)
Quantum Monte-Carlo
AV18 + Urbana IX

Rotational band well reproduced

Be isotopes in no-core Monte-Carlo Shell Model

T.Otsuka, T.Abe et al., Nature comm. 2022

Density Functional Theory studies for clustering in light nuclei

DDME2 relativistic functional in rel. HB calculations J.P.Ebran, E.Khan,T.Niksic, D.Vretenar, PRC90 (2014)

Recent calculations for ${ }^{12} \mathrm{Be}$
Rel. HB with DD-PC1 + projected GCM
${ }^{12} \mathrm{Be} \mathrm{GS} \quad{ }^{12} \mathrm{Be} \mathrm{G}\left(\mathrm{O}^{+}{ }_{2}\right)$
Total

Valence neutrons

Clustering evolution towards the dripline

Q. Zhao, Y. Suzuki, J. He, B. Zhou, M. Kimura, EPJA 157 (2021)
AMD calculations using Gogny D1S functional Hindrance effect due to neutron skin ?
Alternative interpretations
> Neutron single-particle configurations
$>$ Relationship between α-clustering and α-threshold

H.Motoki, et al, PTEP (2022)113D01 - AMD calculations using Gogny D1S
$>$ Hindrance of α clustering
$>$ Development of ${ }^{6} \mathrm{He}$ clutering

Experimental investigations of clustering

Cluster knockout reactions

$>$ Direct reaction
\checkmark short reaction time ($\sim 10^{-22} \mathrm{~s}$)
\checkmark one-step dominant
$>\left(e, e^{\prime} p\right),(p, 2 p)$ and $(p, p n)$ for nucleons ($p, p \alpha$), $(\alpha, 2 \alpha)$ for alpha cluster
$>$ Well-studied since the 70's with proton and alpha beams on stable targets
$>$ Incident p energy : 100~400 MeV ($\lambda \sim 0.5-0.25 \mathrm{fm})$
$>$ Peripheral reaction
$>$ Extraction of spectroscopic factors S_{α}

> Recently: new analysis procedure

Measurement of ($p, p \alpha$) reactions

$>$ Excitation energy spectrum of the residue
conservation laws -> 6 degrees of freedom (e.g. $\left(\overrightarrow{p_{1}}, \overrightarrow{p_{2}}\right)$)

$$
\begin{aligned}
E_{B} & =E_{A}+E_{0}-E_{1}-E_{2} \\
p_{B} & =\left(p_{A}^{2}+p_{1}^{2}+p_{2}^{2}-2 p_{A} p_{1} \cos \theta_{1}-2 p_{A} p_{2} \cos \theta_{2}+2 p_{1} p_{2} \cos \theta_{1-2}\right)^{1 / 2} \\
m_{B}^{*} & =\sqrt{E_{B}^{2}-p_{B}^{2}}
\end{aligned}
$$

$>$ Triple differential cross-section
$\underbrace{\frac{d^{3} \sigma}{d E_{1} d \Omega_{1}} d \Omega_{2}}$
Energy and solid angle of particle 1 solid angle of particle 2
Measured around recoil-less conditions $\overrightarrow{p_{B}}=\overrightarrow{0}$ (quasifree)

Nadasen et al., PRC(1989)

Amplitude and cross-section in Distorted Wave Impulse Approximation (DWIA)

Transition amplitude

$$
T_{P_{0} P_{1} P_{2}}=\left\langle\chi_{1, P_{1}}^{(-)}\left(R_{1}\right) \chi_{2, P_{2}}^{(-)}\left(R_{2}\right)\right| t_{p \alpha}(s)\left|\chi_{0, P_{0}}^{(+)}\left(R_{0}\right) \varphi_{\alpha}\left(R_{2}\right)\right\rangle
$$

$$
\chi_{0, P_{0}}^{(+)}\left(R_{0}\right) \quad \chi_{1, P_{1}}^{(-)}\left(R_{1}\right) \chi_{2, P_{2}}^{(-)}\left(R_{2}\right) \quad \begin{aligned}
& \text { distorted waves for } \mathrm{p}-\mathrm{A}, \mathrm{p}-\mathrm{B} \text { and } \alpha-\mathrm{B} \\
& \text { Obtained from elastic scattering data }
\end{aligned}
$$

$$
t_{p \alpha}(s) \quad \text { Transition interaction }
$$

$$
\varphi_{\alpha}\left(R_{2}\right) \quad \text { Cluster Wave function }
$$

$>$ Phenomenological
> Microscopic (AMD, ab initio ...)

Analysis using microscopic cluster WF

"Test" case : reanalysis of ${ }^{20} \mathrm{Ne}(\mathrm{p}, \mathrm{p} \alpha)^{16} \mathrm{O}$ data at $101.5 \mathrm{MeV} / \mathrm{u}$
K.Yoshida et al., PRC 99, 064610 (2019)
$>$ AMD cluster WF
$>$ Reliable $\alpha+{ }^{16}$ O optical potential

Data reproduced without any normalization
($p, p \alpha$) represents a quantitative probe for a-clustering

THSR-based calculations for ${ }^{10} \mathrm{Be}(p, p \alpha){ }^{6} \mathrm{He}^{(G S)}$ at $250 \mathrm{MeV} / \mathrm{u}$

M.Lyu et al., PRC 97 (2018)

Tohsaki, Horiuchi, Schuck, Röpke (THSR) wave-function Well adapted to discuss cluster states in light nuclei \rightarrow Cluster wave-function overlap of ${ }^{10} \mathrm{Be}$ and ${ }^{6} \mathrm{He}$
\rightarrow Optical potentials
folding of calculated density
Good reproduction of :

- ${ }^{10}$ Be GS energy
- Charge radius 2.31 fm (exp=2.36fm)

${ }^{10} \mathrm{Be}(\mathrm{p}, \mathrm{p} \alpha)$ cross-section

Kinematics for alpha quasifree knockout reactions
Direct vs inverse kinematics

INVERSE

Proton

- $50^{\circ}-70^{\circ}$
- $20 \sim 150 \mathrm{MeV}$

Alpha

- $4-10^{\circ}$
- $\mathrm{V} \approx \mathrm{V}_{\text {beam }}$

Study ${ }^{10,12, ~}{ }^{14} \mathrm{Be}(\mathrm{p}, \mathrm{p} \alpha)$ at $150 \mathrm{MeV} / \mathrm{u}$

$>$ Clustering in n-rich Be
> First spectrum for the 6 n system

- Missing-mass measurement
- measure: $\mathrm{GS} \rightarrow \mathrm{GS}$ and $\mathrm{GS} \rightarrow 2^{+}$transitions

Collaboration: IJCLab, Hong Kong U., RIKEN, TI Tech, LPC Caen, Tohoku U., RCNP Osaka, CEA Saclay, Kyoto U., TU Darmstadt, NIPNE Bucharest, Kyushu U.

Setup around target

Target : 2mm-thick solid H
Y.Matsuda et al., NIMA 643 (2011)

Energy calibrations of ESPRI

Energy calibrations of Telescopes

α beams at 120 and $150 \mathrm{MeV} / \mathrm{u}$

Particle identification - channel selection

Excitation energy spectra

$\sigma\left({ }^{6} \mathrm{He}^{\mathrm{GS}}\right)=1.1 \mathrm{MeV}$
${ }^{12} \mathrm{Be}(p, p \alpha)$

$$
\sigma\left({ }^{8} \mathrm{He}^{\mathrm{GS}}\right)=1.1 \mathrm{MeV}
$$

Calculations for ${ }^{10} \mathrm{Be}(p, p \alpha){ }^{6} \mathrm{He}^{(G S)}$ at $150 \mathrm{MeV} / \mathrm{u}$

$>$ Tohsaki, Horiuchi, Schuck, Röpke (THSR) wave-function Well adapted to discuss cluster states in light nuclei
${ }^{10} \mathrm{Be}: 2 \alpha+2 \mathrm{n}(\pi)$
Good reproduction of :

- ${ }^{10}$ Be GS energy
- Charge radius 2.31 fm (exp=2.36fm)

> AMD cluster WF

TDX for ${ }^{12} \mathrm{Be}(p, p \alpha)^{8} \mathrm{He}^{(G S)}$

TDX for ${ }^{12} \mathrm{Be}(p, p \alpha)^{8} \mathrm{He}^{(G S)}$

Sensitivity to intruder config.

> CAL1: default LS parameter
> CAL2 : weaker LS parameter
$>$ CAL3: pure $2 \mathrm{~h} \omega$

Experimental TDX for ${ }^{10 \sim 14} \mathrm{Be}(p, p \alpha)$

Gated by ${ }^{8} \mathrm{He}$ residue

Clustering evolution with \mathbf{N}

Study of surface a-clustering in ${ }^{112,116,120,124} \operatorname{Sn}(p, p \alpha)$

Clustering evolution towards the dripline

Q. Zhao, Y. Suzuki, J. He, B. Zhou, M. Kimura, EPJA 157 (2021)

AMD calculations using Gogny D1S functional
Hindrance effect due to neutron skin ?
Alternative interpretations
> Neutron single-particle configurations
$>$ Relationship between α-clustering and α-threshold

H.Motoki, Y.Suzuki, T.Kawai. M. Kimura, PTEP (2022)113D01 AMD calculations using Gogny D1S
$>$ Hindrance of α clustering
$>$ Development of ${ }^{6} \mathrm{He}$ clutering

Formation of clusters in infinite nuclear matter

Generalized DFT calculations

All kind of clusters should be formed at low density

S.Typel, J.Phys.Conf.Ser.420,012078(2013)

Neutron-rich clusters might well be predominant in neutron-rich nuclei

Z.-W. Zhang and L.-W Chen, Phys. Rev. C 95, 064330 (2017)

Seek for triton clustering in light \mathbf{n}-rich isotopes

Search for triton formation at the surface of ${ }^{14} \mathrm{Be}$

${ }^{14} \mathrm{Be}(p, p t){ }^{11} \mathrm{Li} @ 150 \mathrm{MeV} / \mathrm{u}$

Kinematical correlations

Preliminary results for triton knockout from ${ }^{14} \mathrm{Be}$

Sizeable amount of triton clusters at the surface of the ${ }^{14} \mathrm{Be}$ halo nucleus

Conclusions/Prospects (clustering)

$>$ First measurement of $(p, p \alpha)$ in inverse kinematics with RIB with proper kinematical conditions
\rightarrow direct evidence of the Molecular structure of the ${ }^{10} \mathrm{Be} \mathrm{GS}$
> First steps to quantitatively probe cluster evolution in GS towards the dripline
Preliminary results show large amount of tritons at the surface of the halo nucleus ${ }^{14} \mathrm{Be}$
Complementary program using transfer reaction at LISE/GANIL with the MUGAST array E870 experiment accepted at last GANIL PAC meeting
(p, α) and ($d, 6 \mathrm{Li}$) pickup reactions in inverse kinematics
$>$ Planned study of ($\mathrm{p}, \mathrm{p} \alpha$) on n-rich Carbon isotopes at RIKEN/Samurai (accepted expt) (spokesperson: Zaihong Yang)
$>$ The "ONOKORO" research project (T.Uesaka, J.Zenihiro) study of $(p, p \alpha),(p, p t),\left(p,{ }^{3} \mathrm{He}\right),(p, p d) \ldots$ in stable and unstable medium-mass and heavy nuclei TOGAXSI device under construction

First exp ${ }^{a l}$ determination of the 6-neutron spectrum

Theory: no realistic calculation for the 6 n system

Recent (XXI century) signals on tetraneutron

M.Marques et al., PRC65, 044006 (2002)

K.Kisamori et al., PRL 116, 052501 (2016)

$$
\mathrm{E}=0.83 \pm 0.65 \text { (stat) } \pm 1.25 \text { (syst) } \mathrm{MeV}
$$

${ }^{7} \mathrm{Li}\left({ }^{7} \mathrm{Li},{ }^{10} \mathrm{C}\right) \mathbf{4 n}$

T.Faestermann et al. Phys.Lett. B 824 (2022)

$$
\mathrm{E}=0.42 \pm 0.16 \mathrm{MeV}
$$

Theory: another hard \& interesting quest

- 'Exact' calculations are categorical!

\square Glöckle, PRC 18 (1978) 564 : $V_{n n} \times 4.2$
 \square Offermann, NPA 318 (1979) $138: V_{n n} \times 3.7$ (+ P-waves)
 \square Witała, PRC 60 (1999) 024002 : avoid ${ }^{2} \mathrm{n}$ with $V_{n n}\left({ }^{1} \mathrm{~S}_{0}\right) \times 1$
 \square Hemmdan, PRC 66 (2002) 054001 :

"3n resonances close to the physical region will not exist"
(3n) Lazauskas, PRC 71 (2005) 044004: 3NF X
(4n) \square Lazauskas, PRC 72 (2005) 034003 : 4NF X
$(3,4 \mathrm{n}) \square$ Hiyama, PRC 93 (2016) 044004: $3 \mathrm{NF}(T=3 / 2) \times$!

- Many-body approximations, not so much ...
\square Pieper, PRL 90 (2003), 252501 :

"the resonance, if it exists at all, must be very broad"

$$
\left.\begin{array}{r}
\square \text { Shirokov, PRL } 117 \text { (2016) } 182502 \\
\square \text { Gandolfi, PRL } 118 \text { (2017) } 232501 \\
\square \text { Fosse, PRL } 119 \text { (2017) } 032501 \\
\square \text { Li, PRC } 100(2019) 054313
\end{array}\right\} 3 \mathrm{n} / 4 \mathrm{n} \vee ?
$$

Article

Observation of a correlated free four-neutron system

M. Duer et al., Nature (London) 606, 678 (2022)
https://doi.org/10.1038/s41586-022-04827-6 M. Duer ${ }^{1 \boxtimes}$, T. Aumann ${ }^{12,3}$, R. Gernhäuser ${ }^{4}$, V. Panin ${ }^{2.5}$, S. Paschalis ${ }^{1{ }^{1}}$, D. M. Rossi',

- Low energy peak

$$
\begin{aligned}
& E=2.37 \pm 0.38 \text { (stat.) } \pm 0.44 \text { (sys.) MeV } \\
& \Gamma=1.7 \pm 0.22 \text { (stat.) } \pm 0.30 \text { (sys.) MeV }
\end{aligned}
$$

$>$ Broad bump
well described by non-resonant continuum calculations

Interpretation by Lazauskas, Hiyama, Carbonell

Phys. Rev. Lett. 130, 102501 (2023)

Δ Action of the ${ }^{4} \mathrm{He}$ mean field on valence n 's $H_{f}=H_{0}+\sum_{i<j=1}^{4} V_{n n}\left(r_{i j}\right)$. adjusted to ${ }^{6} \mathrm{He}$ and ${ }^{8} \mathrm{He}$ GS binding

dineutron-dineutron correlations!
$\left.\mathrm{E}_{4 \mathrm{n}}{ }^{10} \mathrm{MeV}\right)^{15}{ }^{15} \quad 20$

Conclusions/Prospects

$3 n$ and $4 n$ system

$>$ Data for ${ }^{8} \mathrm{He}(\mathrm{p}, 2 \mathrm{p})\left\{{ }^{3} \mathrm{H}+4 \mathrm{n}\right\} \quad$ (RIKEN/Samurai) under analysis (LPC Caen)
$>\mathrm{t}\left(\mathrm{t},{ }^{3} \mathrm{He}\right) 3 \mathrm{n}$

6n system

$>{ }^{14} \mathrm{Be}(\mathrm{p}, \mathrm{pa})^{10} \mathrm{He}$ * -> 6n+alpha - Data from SAMURAI12 under analysis (O.Nasr, IJCLab)
$>{ }^{11} \mathrm{Li}(\mathrm{p}, 2 \mathrm{p})^{10} \mathrm{He*}$-> 6n+alpha - SAMURAI47 (Sp. T.Nakamura) to be run in June 2023
$>{ }^{6,8} \mathrm{He}(\mathrm{p}, 3 \mathrm{p})$ accepted at RIKEN

