INFN

Istituto Nazionale di Fisica Nucleare

Seniority in atomic nuclei

Jose Javier Valiente Dobón
Laboratori Nazionali di Legnaro (INFN), Italia

Overview

- The seniority concept and its implications
- Seniority in the neutron-rich Pb istopes beyond $\mathrm{N}=126$
- Do Sn istopes present a seniority scheme? Caveat!
- The $\mathrm{N}=50$ isotones and the $\mathrm{Z}=28$ isotopes: Valence

Mirror Symmetry Partners -- $\mathrm{g}_{9 / 2}$

- Manifestation of the Berry phase in the mid-shell $g_{9 / 2}$ nucleus: ${ }^{213} \mathrm{~Pb}$
- Summary
- Future perspectives

What is seniority?

Seniority v is the number of unpaired identical nucleons to $\mathrm{J}=0$ in a $|j\rangle\rangle$ configuration \rightarrow Lecture by P. Van Isacker.

Id est $\rightarrow \mathrm{g}_{9 / 2}$

Seniority?
Seniority?

Seniority?

Seniority?

Seniority?

What is seniority?

Seniority v is the number of unpaired identical nucleons to $\mathrm{J}=0$ in a $|j\rangle\rangle$ configuration \rightarrow Lecture by P. Van Isacker.

Id est for $\mathrm{g}_{9 / 2}$

Is $\mathrm{J}=8$ the largest angular momentum $\mathrm{g}_{9 / 2}$ $\mathrm{v}=2$ configuration?

The seniority concept

- It leads to many simple poweful results under very general conditions. Matrix elements can be classified in terms of whether or not they conserve seniority
- Many realistic residual interactions seem to conserve seniority. So this scheme gives reaonable predictions for actual nuclei

Seniority conservation

- Seniority is conserved by any two-body interaction in the j^{n} configuration for $\mathrm{j} \leq 7 / 2$
- Theorem: any two-body interaction in the j^{n} configuration is diagonal in the seniority scheme, provided it is diagonal in the j^{3} configuration, that is, if there are no finite matrix elements connecting $v=3$ with $v=1$ states.
- two-body interactions only connect states of the same J (only states of equal J can mix). This condition is automatically satisfied for any J value that is not common to both the $\left|j^{3} v=3\right\rangle\left|j^{3} v=1\right\rangle$ states.
- For $\mathrm{j}=1 / 2$ and $3 / 2$ it is trivial: they have no $v=3$ states since they become maximally filled (midshell) at $\mathrm{n}=1$ and $\mathrm{n}=2$, respectively.
- Can you derive the rule for $j=5 / 2$ and $7 / 2$?
- For $\mathbf{j} \mathbf{~ > 7 / 2 ~ s e n i o r i t y ~ i s ~ n o t ~ n e c e s s a r i l y ~ c o n s e r v e d . ~ C o n c e p t ~ o f ~ p a r t i a l ~ s e n i o r i t y ~}$ conservation \rightarrow P. Van Isacker PRL 100, 052501 (2008).

The seniority scheme: energies

Nucleons in a valence j^{n} configuration behave according to a seniority scheme: the states can be labelled by their seniority u
$v=2$

In a pure seniority scheme, the relative level energies do not depend on the number of particles in the shell j
The 8^{+}state will be an isomer due to the small energy separation

Why such energy level separation?

Fig. 4.8. Definition and schematic illustration of some of the ideas used in the geometrical analysis of short-range residual interactions.

ngth (lower values correspond to (Left) The $T=1$ (Jeven) states. (Right) 1 above their respective plots.

- The interaction should be small for theta $\theta=90$ for both $T=0$ and $T=1$, since the particles are orbiting in nearly perpendicular planes and are seldom close enough to interact.
- For $\mathbf{T}=1$, the interaction is strong when the two nucleons orbit in opposite directions $(J=0 \theta=180)$. It vanishes when they orbit in the same direction $\left(J_{\max }, \theta=0\right)$ two particles have identical quantum numbers and the spatial wave function is required to be antisymmetric.
- For the $T=0$, particles are distinct and, for both the small and large / extremes, the orbits are nearly coplanar. Since we need not worry about antisymmetry.

The seniority scheme: $B(E L), B(M L)$

Where v is to be conserved?

Example: neutron-rich lead isotopes - the $\mathrm{g}_{9 / 2}$ orbital

The $Z=82$ and beyond $N=126$

$212,214,216 \mathrm{~Pb}: 8^{+}$isomer

Reduced transition prob. $\mathrm{B}(\mathrm{E} 2)$

B(E2) calculated considering internal conversion coefficients, and a 20-90 keV energy interval for unknown transitions.

$B(E 2) \sim E_{V}^{-5}(1+\alpha)^{-1} T^{-1}$

Filling of the $g_{9 / 2}$

Shell Model calculations Kuo-Herling

Calculations with Antoine and Nathan codes and K-H interaction

E.K. Warburton and B.A. Brown PRC43, 602 (1991).

Reduced transition prob. $\mathrm{B}(\mathrm{E} 2)$

B(E2) calculated considering internal conversion coefficients, and a 2090 keV energy interval for unknown transitions.

	${ }^{210} \mathrm{~Pb}$	${ }^{212} \mathrm{~Pb}$	${ }^{214} \mathrm{~Pb}$	${ }^{216} \mathrm{~Pb}$
Isomer $\mathrm{t}_{1 / 2}(\boldsymbol{\mu s})$	$0.20(2)$	$6.0(8)$	$6.2(3)$	$0.40(4)$
$\mathrm{B}(\mathrm{E} 2) \mathrm{e}^{2} \mathrm{fm}^{4} \mathrm{Exp}$.	$47(4)$	$1.8(3)$	$1.4-1.9$	$24.7-30.5$
$\mathrm{~B}(\mathrm{E} 2) \mathrm{e}^{2} \mathrm{fm}^{4} \mathrm{KH}$	41	8	0.26	16.4

Upper limit 90 keV based on $\mathrm{K}_{\alpha} \mathrm{X}$ rays intensity (K electrons bound $\sim 88 \mathrm{keV}$)

Caveat: neutron-deficient Sn isotopes

Light Sn isotopes

Excitation energies in Sn isotopes

R. Kumar et al., PRC 81, 024306 (2010)

Generalized seniority scheme

Schematic variation of reduced transition probabilities for electric and magnetic transitions in both a single-j shell and a multi-j shell, respectively, by using the electromagnetic and seniority selection rules.

Many worldwide measurements

ISOLDE (2008)

A. Banu et al., PRC 72, 061305(R) (2005)
J. Cederkall et al., PRL 98 (2007) 172501.
C. Vaman et al. PRL 99, 162501 (2007)

P. Doornenbal et al., PRC90, 061302(R) (2014)
G. Guastalla et al., PRL 110 (2013) 172501.

Coulomb excitation measurements (safe or relativistic)
A.Ekstrom et al., PRL 101 (2008) 012502.

M. Siciliano et al., PLB806, 135474 (2020)

$\mathrm{B}(\mathrm{E} 2)$ transition probabilities in Sn

Proton excitations in Sn isotopes

A. Banu, ${ }^{12, * *}$ J. Gerl, ${ }^{1}$ C. Fahlander, ${ }^{3}$ M. Górska, ${ }^{1}$ H. Grawe, ${ }^{1}$ T. R. Saito, ${ }^{1}$ H.-J. Wollersheim, ${ }^{1}$ E. Caurier, ${ }^{4}$ T. Engeland, ${ }^{5}$ A. Gniady, ${ }^{4}$ M. Hjorth-Jensen, ${ }^{5}$ F. Nowacki, ${ }^{4}$ T. Beck, ${ }^{1}$ F. Becker, ${ }^{1}$ P. Bednarczy, ${ }^{1,6}$ M. A. Bentley, ${ }^{7}$ A. Bürger, ${ }^{8}$
 J. Pochodzalla, ${ }^{2}$ W. Prokopowicz, ${ }^{1,6}$ P. Reiter ${ }^{11}$ D. Rudolph, ${ }^{3}$ C. Rusu, ${ }^{9}$ N. Saito, ${ }^{1}$ H. Schaffner, ${ }^{1}$ D. Sohler, ${ }^{10}$ H. Weick, ${ }^{1}$ C. Wheldon, ${ }^{1,+\dagger}$ and M. Winkler ${ }^{1}$

FIG. 3. Comparison of measured $B(E 2 \uparrow)$ values with LSSM predictions by taking into account ph core excitations. The $t=0$ curve corresponds to calculations only for the valence neutrons as active particles. The $t=2$ curve shows the major contribution as given by proton core excitations. The $t=4$ curves are shown for the whole tin chain in a truncated proton model space and untruncated in the $g d s$ major shell.

Novel Shape Evolution in Sn Isotopes from Magic Numbers 50 to 82
Tomoaki Togashi, ${ }^{1}$ Yusuke Tsunoda, ${ }^{1}$ Takaharu Otsuka, ${ }^{2,1,3,4,5,{ }^{*}}$ Noritaka Shimizu, ${ }^{1}$ and Michio Honma ${ }^{6}$

Caveat: seniority seeming like

Even if energies seem rather constant 2^{+}
Even if $B(E 2: 2+\rightarrow 0+)$ transition probabilities seem to follow v
\rightarrow we have protons and neutrons and these nuclei seem deformed so seniority can not be applied.

The $N=50$ isotones and the $Z=28$ isotopes

The first $\mathrm{g}_{9 / 2}$ proton and neutron orbital

The first $\mathrm{g}_{9 / 2}$ orbital

Valence Mirror Symmetry Partners

Seniority scheme in the $\mathrm{g}_{9 / 2}$ shell

N=50 isotones R.M. Pérez-Vidal et al. Submitted to PRL
Z=28 isotopes[6] T. Marchi et al PRL 2014, K. Kolos et al PRL 2016, C.J. Chiara et al PRC 2015, A.I. Morales et al. PRL 2018, M. Sawicka et al PRC 2003, A.I. Morales et al. PRC 2016

Shell model icalculations for the $\mathrm{Z}=28$ isotopes ($\mathrm{N}=50$ isotones) performed in the $0 f 5 / 2$ $1 \mathrm{p} 3 / 2,1 \mathrm{p} 1 / 2$, and $0 \mathrm{~g} 9 / 2$ neutron (proton) model space and with the neutron (proton) effective charge derived from microscopic calculations. A. Gargano and G. di Gregorio Private communcation.

$N=50$

R. Pérez-Vidal et al., PRL 129, 112501 (2022)

Seniority Mixing

In the middle of the $2 g_{9 / 2}$ shell: ${ }^{213} \mathrm{~Pb}$

The conservation of seniority is a consequence of a geometric phase associated with particle-hole conjugation, which becomes observable in semi-magic nuclei where nucleons half-fill the valence shell.

The $Z=82$ and beyond $N=126$

Berry phase

Hamiltonian depends on a set of parameters ζ, then the phase change of an eigenstate of $\mathbf{H}(\zeta)$ over a closed path in the parameter space is a gauge invariant quantity, and as such observable.

Proc. R. Soc. Lond. A 392, 45-57 (1984)
Printed in Great Britain

Quantal phase factors accompanying adiabatic changes
By M. V. Berry, F.R.S.
H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, U.K.
(Received 13 June 1983)
A quantal system in an eigenstate, slowly transpor by varying parameters \boldsymbol{R} in its Hamiltonian \hat{P} metrical phase factor $\exp \{\mathrm{i} \gamma(\mathrm{C})\}$ in additio. phase factor. An explicit general formula ${ }^{\text {s }}$ spectrum and eigenstates of $\hat{H}(\boldsymbol{R})$ over a degeneracy of $\hat{H}, \gamma(\mathrm{C})$ takes a simple case the sign change of eigenfunctions of ,
 e uetric matrices round a degeneracy. As an illustration $\gamma(\mathrm{C})$ is calcu dor spinning particles in slowly-changing magnetic fields; although the sign reversal of spinors on rotation is a special case, the effect is predicted to occur for bosons as well as fermions, and a method for observing it is proposed. It is shown that the Aharonov-Bohm effect can be interpreted as a geometrical phase factor.

Geometric phase from AharonovBohm to Pancharatnam-Berry and beyond

Fig. 1 |The Aharonov-Bohm effect. An electron is encircling a magnetic flux Φ (vertical blue arrows) confined to a thin long solenoid. Although the magnetic field is zero in the vicinity of the superposed wavepackets, the vector potential is non-zero outside the solenoid. Thus, the electronic wavepackets acquire a relative phase of $\exp (i e \Phi / \hbar)$, which causes their interference pattern to change.

The Berry phase

An intuitive classic example of transport
B. Goss Levi, Phys. Today 46, 17 (1993)

Displacement of a vector along a loop (closed path) drawn on a sphere

Gamma spectrum of ${ }^{213} \mathrm{~Pb}$

spectrum in delayed coincidence with about $2100{ }^{213} \mathrm{~Pb}$ ions

Lifetime of the isomer

Level scheme of ${ }^{213} \mathrm{~Pb}$

exp.

Reduced transition probabilities ${ }^{213} \mathrm{~Pb}$

SM calculations ${ }^{213} \mathrm{~Pb}$

Although the $\mathrm{g}_{9 / 2}$ shell is not isolated in energy, it is found to carry the dominant component of the wave function

SM calculations: valence space

Berry phase

In the middle of the $g_{9 / 2}$ shell \rightarrow a particle-hole transformation transforms the nucleus in itself but with a phase

Original and transformed state is the same besides a phase $(-)^{p}$
R. D. Lawson, Theory of the Nuclear Shell Model (Clarendon Press, Oxford, 1980).

Manifestation of the Berry phase

For any two-body interaction, of all possible $\mathrm{g}_{\mathrm{g} / 2} 5$ states only two can mix, namely those with $\mathrm{J}=9 / 2^{+}$and seniorities $v=1$ and $v=5$.

As a result, each $J=0$ pair in an n-particle state induces a minus sign under particle-hole conjugation such that

$$
\Gamma\left|j^{n} v J_{\mathrm{t}}\right\rangle=(-)^{(n-v) / 2}\left|j^{2 j+1-n} v J_{\mathrm{t}}\right\rangle
$$

$$
\left\langle j^{n} v J_{\mathrm{t}}\right| \hat{V}\left|j^{n} v^{\prime} J_{\mathrm{t}}\right\rangle=(-)^{\left(v-v^{\prime}\right) / 2}\left\langle j^{n} v J_{\mathrm{t}}\right| \hat{V}\left|j^{n} v^{\prime} J_{\mathrm{t}}\right\rangle
$$

Manifestation of the Berry phase

- The E2 transitions satisfy the selection rule $\Delta v=+/-2$
- The purity of seniority in the $17 / 2^{+}$states follows from the self-conjugate character of ${ }^{213} \mathrm{~Pb}$
- The particle-hole symmetry prevents $\Delta v=2$ mixing as a consequence of an observable Berry phase.

The Berry phase gives us a link between seniority conservation and universal quantum mechanical features.

Summary

- Seniority is conserved by any two-body interaction in the j^{n} configuration for $\mathrm{j} \leq 7 / 2$
- For $\mathrm{j}>7 / 2$ seniority is not necessarily conserved.
- Seniority can be a good description of actual nuclei when we have no proton-neutron interaction \rightarrow deformed nuclei. Caveat Sn isotopes.
- Examples in neutron-rich Pb and Ni and $\mathrm{N}=50$ isotones
- Apperance of a geometrical phase associated to particle hole conjugation \rightarrow understanding of seniority selection rules. The Berry phase gives us a link between seniority conservation and universal quantum mechanical features.

Future perspectives

- Need accurate measurements of the transitions probabilities of the states below the isomers. We need systematics.
- Lifetimes (RDDS or fast timing)
- Coulex
- Going beyond $j=9 / 2$ shell, e.g. $j=11 / 2, \ldots$
- Other mid-shell cases to look into the Berry phase:
- ${ }^{73} \mathrm{Ni}$ with five neutrons in $\mathrm{Og}_{9 / 2}$
- ${ }^{95} \mathrm{Rh} \mathrm{N}=50$ mid-shell in $\mathrm{Og}_{9 / 2}$
- ${ }^{213} \mathrm{Fr}$ with five protons in $\mathrm{Oh}_{9 / 2}$
- How to further look into seniority: Transfer reactions: complications with the reaction dynamics ...

END

