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Symmetries of nuclear models

P. Van Isacker, GANIL, France

Symmetries in nuclei
Symmetries of the nuclear shell model

- Isospin and SU(2)
- Deformation and SU(3)
- Seniority and SU(2)

An application of seniority: effective operators in 
a single-j shell.



Symmetry in quantum mechanics
Assume a Hamiltonian H which commutes with 

operators gi that form a Lie algebra G:

\ H has symmetry G or is invariant under G.
Lie algebra: a set of (infinitesimal) operators that 

closes under commutation.
Consequences of a symmetry:

Degeneracies in the energy spectrum
Eigenstates that carry conserved quantum numbers
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∀ˆ g i ∈ G : ˆ H , ˆ g i[ ] = 0



Symmetries of nuclear models
Heisenberg (1932): isospin SU(2) → Lenzi, Sorlin

Wigner (1937): spin-isospin SU(4) → Shen

Racah (1943): seniority SU(2) → Valiente-Dobon, PVI

Elliott (1958): rotation SU(3) → Nowacki

Arima & Iachello (1976): IBM U(6) → nobody

Dynamical symmetry: conserved labels but no 
degeneracy.



Empirical observations:
About equal masses of n(eutron) and p(roton).
n and p have isospin 1/2.
Equal (to about 1%) nn, np, pp strong forces.

This suggests an isospin SU(2) symmetry of the 
nuclear Hamiltonian: 

Isospin symmetry in nuclei
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n : t = 1
2 , mt = + 1

2 ; p : t = 1
2 , mt = − 1

2

⇒ ˆ t +n = 0, ˆ t +p = n, ˆ t −n = p, ˆ t −p = 0, ˆ t zn = 1
2 n, ˆ t z p = − 1

2 p

W. Heisenberg, Z. Phys. 77 (1932) 1
E.P. Wigner, Phys. Rev. 51 (1937) 106
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ˆ H nucl, ˆ T ν[ ] = 0, ˆ T ν = ˆ t ν k( )
k=1

A

∑



Supermultiplet/SU(4) model
Two assumptions:

The forces between nucleons are independent of spin 
and isospin => SU(4) symmetry.

The n-n interaction is short-range attractive.
Consequences:

Many-nucleon states can be classified according to 
their spatial or spin-isospin symmetry.

States with highest spatial symmetry are lowest in 
energy.

E.P. Wigner, Phys. Rev. 51 (1937) 106
F. Hund, Z. Phys. 105 (1937) 202



Supermultiplet/SU(4) model

Example: one nucleon & two nucleons in the sd
shell.



Wigner binding energy 
Introduce favoured (i.e., lowest-energy) SU(4) 

labels in the eigenvalue expression:

with δpairing(N,Z)=0, 1, 2 for even-even, odd-mass, 
odd-odd, and πnp=1 for odd-odd.

Compare with Wigner binding energy:

N − Z( )2 +8 N − Z +8δN ,Zπ np + 6δpairing N,Z( )

BW N,Z( ) = −W A( ) N − Z − d A( )δN ,Zπ np



Breaking of SU(4) symmetry
SU(4) symmetry breaking as a consequence of

Spin-orbit term in nuclear mean field.
Coulomb interaction.
Spin-dependence of the nuclear interaction.

Evidence for SU(4) symmetry breaking from 
masses and from Gamow-Teller b decay.



Elliott’s SU(3) model of rotation
Harmonic oscillator (no spin-orbit coupling) plus a 

residual quadrupole interaction:

Solvable for major shells N=1,2,… (p, sd,…).
For the group-theory aficionados:
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J.P. Elliott, Proc. Roy. Soc. A 245 (1958) 128; 562

U ΓN( ) ⊃ U 3( ) ⊃ SU 3( ) ⊃ SO 3( )
↓ ↓ ↓ ↓

h[ ] h$% &
' λ,µ( ) K L



Example: 2n+2p in sd shell



Importance & limitations of SU(3)
Historical importance:

Bridge between the spherical shell model and the 
liquid-drop model through mixing of orbits.

Spectrum generating algebra of Wigner’s SU(4) model.
Limitations:
LS (Russell-Saunders) coupling, not jj coupling (no spin-

orbit splitting) Þ (beginning of) sd shell.
Q is the algebraic quadrupole operator Þ no major-

shell mixing.



SU(3): quasi, pseudo & proxy
En
er
gy
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Theory of complex spectra
In the 1940s Racah published a series of seminal papers on 
the application of group theory to atomic spectra. The 
third of the series (primarily concerned with coefficients 
of fractional parentage) contains the first mention of 
seniority.



Racah’s “seniority number”



Pairing
Definition of pairing interaction in a single-j shell:

Analytic solution of pairing hamiltonian for 
identical nucleons in a single-j shell:

Seniority u (number of nucleons not in pairs 
coupled to J=0) is a good quantum number.

Correlated ground-state solution (cfr. BCS). 

jnυJ V̂pairing k, l( )
1≤k<l

n

∑ jnυJ = − 1
4 g n−υ( ) 2 j − n−υ +3( )

G. Racah, Phys. Rev. 63 (1943) 367

j2;J V̂pairing 1, 2( ) j2;J = − 1
2 2 j +1( )gδJ 0



Algebraic definition of seniority
Classification of n identical fermions with spin j :

U 2 j +1( ) ⊃ USp 2 j +1( ) ⊃  ⊃ SU 2( )
↓ ↓ ↓

1n#$ %& 1υ#$ %& J

G. Racah, Phys. Rev. 76 (1949) 1352



Algebraic definition of seniority
Classification of n identical fermions with spin j :

An equivalent representation exists with `quasi-
spin’ algebras.

A generic mechanism: dual representations.

U 2 j +1( ) ⊃ USp 2 j +1( ) ⊃  ⊃ SU 2( )
↓ ↓ ↓

1n#$ %& 1υ#$ %& J

D.J. Rowe et al., Rev. Mod. Phys. 84 (2012) 711



Quasi-spin algebra
Pair operators:

Second-quantised form of pairing Hamiltonian:

The pairing Hamiltonian is solvable due to an SU(2) 
quasi-spin symmetry:
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ˆ V pairing = −g0
ˆ S + ˆ S − = −g0
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A. Kerman, Ann. Phys. (NY) 12 (1961) 300
K. Helmers, Nucl. Phys. 23 (1961) 595
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Conservation of seniority
Seniority u is the number of particles not in pairs 

coupled to J=0 (Racah).
Conditions for the conservation of seniority by a 

an interaction can be derived in general
Any two-body interaction between identical fermions 

with spin j conserves seniority if j£7/2.

A. de-Shalit & I. Talmi, Nuclear Shell Theory
I. Talmi, Simple Models of Complex Nuclei
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Conservation of seniority
Necessary and sufficient conditions for a two-body 

interaction to conserve seniority:

Valid for identical fermions.

2J +1( ) 2I +1 ajI
J j2;J V̂ j2;J

J
∑ = 0, I = 2, 4,…, 2 j"# $%,

ajI
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I. Talmi, Simple Models of Complex Nuclei



Is seniority conserved in nuclei?
The interaction between nucleons is “short range”.
A d interaction is therefore a reasonable 

approximation to the nucleon two-body force.
The d interaction between identical nucleons 

conserves seniority.
\ In semi-magic nuclei seniority is conserved to a 

good approximation.



Generalised seniority models
Generalisation of pairing from a single-j shell to 

several degenerate j shells.
Non-degenerate shells:

Generalised seniority (Talmi).
Integrable pairing models (Richardson, Gaudin).

Pairing with neutrons and protons (isospin):
SO(5) T=1 pairing (Racah, Flowers; Hecht).
SO(8) T=0 & T=1 pairing (Flowers and Szpikowski).



Particle-hole (ph) conjugation
A long history, cfr. Condon & Shortley (1935).
In atomic and nuclear physics: Racah and Bell.
The ph conjugation operator Γ transforms a 

problem of n fermions in a j shell into one with 
2j+1-n fermions.

In the language of second quantisation:

E.U. Condon & G.H. Shortley, The Theory of Atomic Spectra
G. Racah, Phys. Rev. 62 (1942) 438
J.S. Bell, Nucl. Phys. 12 (1959) 117

Γ̂ 0 = aj,m= j
+ aj,m= j−1

+ …aj,m=− j
+ 0

Γ̂ajm
+ Γ̂+ = −( ) j+m aj,−m ≡ ajm, Γ̂ ajmΓ̂

+ = ajm
+



Seniority and ph conjugation
A representation of the ph transformation

where S± are the quasi-spin operators

The relation with seniority: 
Γ̂ Ŝ+( )

p
Γ̂+ = −( )p Ŝ−( )

p

Γ̂ jnυJ = −( ) n−υ( )/2 j2 j+1−nυJ

A. Müller-Arnke, Nucl. Phys. A 215 (1973) 205

Γ̂ = exp 1
2 π Ŝ+ − Ŝ−( )#
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A geometric phase
The action of ph conjugation on a seniority state:

The sign is without any consequence except if the 
left and right states are the same, that is for a 
half-filled shell, n=2j+1-n.

The observable consequence of this phase is that 
Δυ=±2 seniority mixing is forbidden.

R.D. Lawson, Theory of the Nuclear Shell Model
J.J. Valiente-Dobón et al., Phys. Lett. B 816 (2021) 136183

Γ̂ jnυJ = −( ) n−υ( )/2 j2 j+1−nυJ



Four nucleons in a j=7/2 shell



Five nucleons in a j=9/2 shell



An application: effective operators
Higher-order operators in a single-j shell. Here: 

higher-order effective charges in E2 operator.
Application to N = 126 isotones with protons in the 

0h9/2 orbital. E2 data are available in 210Po and 
211At.

Analysis profits from seniority considerations.



Bare and effective operators

Bare operators

82-126 shell
f 5/2 f 7/2 h9/2 i13/2 p1/2 p3/2

H1 +H2
T1 (E2)

Effective operators

single- j shell
h9/2

H1
eff +H2

eff +H3
eff +

T1
eff (E2) + T2

eff (E2)+



One-body E2
One kind of nucleon in a single-j shell

Matrix elements between n-nucleon states are 
calculated cursively until

One effective charge.

T̂1 E2( ) = e1 aj+ aj( )
2( )

j T̂1 E2( ) j = e1 5



One+two-body E2
In a single-j shell

Many effective charges, here taken from E2 data.
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State-dependent one-body E2
In a single-j shell

Matrix elements between n-body states are 
calculated cursively until

Many effective charges, here taken from E2 data.

T̂1 E2( ) = e1 Ji, Jf( ) aj+ aj( )
2( )
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E2 data in 210Po and 211At
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V. Karayonchev et al., Phys. Rev. C 106 (2022) 044321



One-body E2
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State-dependent one-body E2
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One+two-body E2
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Conclusions
Symmetry considerations are useful to obtain 

insight in the structure of nuclear models.
Seniority is a relevant quantum number in semi-

magic nuclei.
Seniority conservation in mid-shell nuclei is the 

consequence of a geometric phase associated 
with particle-hole conjugation.

Application: effective charges in a single-j shell.


