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Symmetries in nuclei

Symmetries of the nuclear shell model
- Isospin and SU(2)
- Deformation and SU(3)
- Seniority and SU(2)
An application of seniority: effective operators in
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Symmeitry in quantum mechanics

Assume a Hamiltonian # which commutes with
operators g; that form a Lie algebra G

Vg €G: [ﬁ,gi]=0
-. H has symmetry G or is invariant under G.

Lie algebra: a set of (infinitesimal) operators that
closes under commutation.

Consequences of a symmeftry:
Degeneracies in the energy specfrum
Eigenstates that carry conserved quantum numbers



Symmetries of nuclear models

Heisenberg (1932): isospin SU(2) — Lenzi, Sorlin
Wigner (1937): spin-isospin SU(4) — Shen

Racah (1943): seniority SU(2) — valiente-Dobon, PVI
Elliott (1958): rotation SU(3) — Nowacki

Arima & Iachello (1976): IBM U(6) — nobody

Dynamical symmetry: conserved labels but no
degeneracy.



Isospin symmetry in nuclel

Empirical observations:
About equal masses of n(eutron) and p(rofon).
n and p have isospin 1/2.
Equal (fo about 1%) nn, np, pp strong forces.

This suggests an isospin SU(2) symmetry of the
nuclear Hamiltonian:

W. Heisenberg, Z. Phys. 77 (1932) 1
E.P. Wigner, Phys. Rev. 51 (1937) 106



Supermul tiplet/SU(4) model

Two assumptions:

The forces between nucleons are independent of spin
and isospin => SU(4) symmetry.

The n-n interaction is shorf-range atfractive.
Consequences:

Many-nucleon states can be classified according to
their spatial or spin-isospin symmefry.

States with highest spatial symmefry are lowest in
energy.

E.P. Wigner, Phys. Rev. 51 (1937) 106
F. Hund, Z. Phys. 105 (1937) 202



Supermul tiplet/SU(4) model

Particle  Spatial L Spin—-isospin  (Auv) (S,7)

number symmetry symmetry

1 O 0,2 O (100) (5, 3)

2 O0e¢)  0%2%4 E(A) 010)  (0,1)(1,0)
E(A) 1,2,3 JLI(S) (200)  (0,0) (L)

Example: one nucleon & two nucleons in the sd
shell.



Wigner binding energy

Introduce favoured (i.e., lowest-energy) SU(4)
labels in the eigenvalue expression:

(N—Z)2 +8|N - Z|+89, ,7,, + 60

pairing

(v.2)

With 6,4iring(V,2)=0, 1, 2 for even-even, odd-mass,
odd-odd, and ,,=1 for odd-odd.

Compare with Wigner binding energy:

By (N,Z)=-W(A)|N-Z|-d(A)d, ,7,,



Breaking of SU(4) symmetry

SU(4) symmetry breaking as a consequence of
Spin-orbit term in nuclear mean field.
Coulomb interaction.
Spin-dependence of the nuclear interaction.

Evidence for SU(4) symmetry breaking from
masses and from Gamow-Teller [ decay.



Elliott's SU(3) model of rotation

Harmonic oscillator (7o spin-orbit coupling) plus a
residual quadrupole interaction:

. AT 2 1 ] A . A A

H=E &+—mw2rk2 -8,0-0, 0, =Erk2Y2M (rk)

i 2m 2 k=1

Solvable for major shells N=1,2,... (p, sd,...).
For the group-theory aficionados:

U(r,) D U(3) D SU(3) D SO(3)
| | | |

J.P. Elliott, Proc. Roy. Soc. A 245 (1958) 128; 562



Example: 2n+2p in sd shell
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Importance & limitations of SU(3)

Historical importance:

Bridge between the spherical shell model and the
liguid-drop model through mixing of orbifts.

Spectrum generating algebra of Wigner's SU(4) model.
Limitations:
LS (Russell-Saunders) coupling, not jj coupling (no spin-
orbit splitting) = (beginning of) sd shell.

Q Is the algebraic quadrupole operafor = no major-
shell mixing.



SU(3): quasi, pseudo & proxy

(@) SUEG)
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(b) Quasi—SU(3)
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Theory of complex spectra

In the 1940s Racah published a series of seminal papers on
the application of group theory to atomic spectra. The
third of the series (primarily concerned with coefficients

of fractional parentage) contains the first mention of
seniority.

PHYSICAL REVIEW VOLUME 63, NUMBERS 9 AND 10 MAY 1 AND 15, 1943

Theory of Complex Spectra. III

GryLio Racan
The Hebrew University, Jerusalem, Palestine
{Received February 8, 1943)

The consideration of the phases of the fractional-parentage coefficients allows the extension
of the matrix methods to configurations with more than two equivalent electrons. Tables are
given for the parentages of the terms of p* and d*. Applications are made to the spin-orbit
interaction of the d* terms and to the electrostatic interaction between the configurations &%,
d*ls, and % %% Errata in Part I are indicated.




Racah’s “seniority number”

In this section we shall classify the terms of
the confliguration #* according to the eigenvalues

of
Q = Z ERD

<7

(34)

where g;; is a scalar operator which operates on
the two equivalent clectrons ¢ and j and is
defined by the relation

(BLM ge;| PLM) = (21+1)5(L, 0).  (35)

It will be shown that to everv term of I# with
non-vanishing ¢ a term of the same kind cor-
responds in *72, and this fact will allow us to
assign to each term a ‘“‘seniority number’ ac-
cording to the value of # for which the term
appeared for the first time. Some useful relation
between the fractional parentages of correspond-
ing terms will be obtained and it will also be
shown that the classification of the terms of
{241 according to the two possibilities of (76)1I
depends only on the seniority of the term.

We may thus assign to each term in the QSL
scheme a ‘‘seniority number’’ #, which indicates
the number of electrons of the first member of
its chain; it follows immediately from (45) that
Q depends only on # and #» and that its values
are given by

Qn, vy=3(n—0v)(d+4—n—0v). (50)

Confronting (41} and (50) we see that conjugate
terms have the same seniority.

The seniority number suffices for distinguish-
ing the different terms of the same kind in the
configurations ¢* but not in f#, since there arc
in f» terms of the same kind which have also the
same scniority. For such configurations an un-
specified parameter @ must be maintained besides
v; terms corresponding according to (49) will
have the same valucs of # and of «.



Pairing
Definition of pairing interaction in a single-/ shell:

pairing

(Gl

Vene (1.2)[ 7557y = =2(2+1) g6

Analytic solution of pairing hamiltonian for
identical nucleons in a single-/ shell:

(7093 Vo

1<k<l

> ig(n—v)(Zj—n—v+3)

Seniority v (number of nucleons not in pairs
coupled to J=0) is a good quantum number.

Correlated ground-state solution (cfr. BCS).

G. Racah, Phys. Rev. 63 (1943) 367



Algebraic definition of seniority

Classification of n identical fermions with spin /:
U(2j+1) D USp(2j+1) D -+ D SU(2)
| | !

"] v J

G. Racah, Phys. Rev. 76 (1949) 1352



Algebraic definition of seniority

Classification of n identical fermions with spin s :
U(2j+1) D USp(2j+1) D -+ D SU(2)
| | !

"] v d

An equivalent representation exists with “quasi-
spin’ algebras.

A generic mechanism: dual representations.

D.J. Rowe et al., Rev. Mod. Phys. 84 (2012) 711



Quasi-spin algebra

Pair operators:

5 : + 03 5 \*
S, =22j+1(ala) ", S =(8))
Second-quantised form of pairing Hamiltonian:

Vpairing = _80§+‘§- = _80(32 - Szz + SZ)

The pairing Hamiltonian is solvable due to an SU(2)
quasi-spin symmetry:

- A A

.S ]=;(2ﬁ—2]’-1) =28, [SS] _—

+ —_

A. Kerman, Ann. Phys. (NY) 12 (1961) 300
K. Helmers, Nucl. Phys. 23 (1961) 595



Conservation of seniority

Seniority v is the number of particles not in pairs
coupled to J=0 (Racah).

Conditions for the conservation of seniority by a
an interaction can be derived in general

Any two-body interaction between identical fermions
with spin j conserves seniority if j<7/2.

A. de-Shalit & I. Talmi, NMuclear Shell Theory
L. Talmi, Simple Models of Complex Nuclei
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Conservation of seniority

Necessary and sufficient conditions for a two-body
interaction to conserve seniority:

Y (27 +)N21+1a) (T |V|j70)=0

J

o J\
al, = O +2<]J

, 1=24,..2]j],

4

>_

g Jes+)@i+ty | JoJ 1
Valid for identical fermions.

o

L. Talmi, Simple Models of Complex Nuclei



Is seniority conserved in nuclei?

The interaction between nucleons is “short range”.

A Jinteraction is therefore a reasonable
approximation to the nucleon two-body force.

The o interaction between identical nucleons
conserves seniority.

. In semi-magic nuclei seniority is conserved to a
good approximation.



Generalised seniority models

Generalisation of pairing from a single-; shell to
several degenerate / shells.

Non-degenerate shells:
Generalised seniority (Talmi).
Integrable pairing models (Richardson, Gaudin).
Pairing with neutrons and protons (isospin):
S0(5) T=I pairing (Racah, Flowers,; Hecht).
SO(8) T=0 & T=I pairing (Flowers and Szpikowski).



Particle-hole (ph) conjugation

A long history, cfr. Condon & Shortley (1935).
In atomic and nuclear physics: Racah and Bell.

The ph conjugation operator I' transforms a
problem of n fermions in a j shell into one with

2j+1-n fermions.
In the language of second quantisation:

I“O> a’ .a; ‘O>

J.m=j ijl J.m=—j

)

m

Fa

ax 4

E.U. Condon & G.H. Shortley, The Theory of Afomic Spectra
G. Racah, Phys. Rev. 62 (1942) 438
J.S. Bell, Nucl. Phys. 12 (1959) 117




Seniority and ph conjugation

A representation of the ph transformation

f=exp[%n(§+—§_)]
where S are the quasi-spin operators

5, = \2j+t(aa)”, § - (S.)

The relation with seniority:

() )

> ( )(n v)/2 j2j+1—nUJ>

A. Miiller-Arnke, Nucl. Phys. A 215 (1973) 205



A geometric phase

The action of ph conjugation on a seniority state:

A

T jnUJ> _ (_)("—U)/2 j2j+1—nvj>

The sign is without any consequence except if the
left and right states are the same, that is for a
half-filled shell, =2 /+1-n.

The observable consequence of this phase is that
Av==£2 seniority mixing is forbidden.

R.D. Lawson, Theory of the Nuclear Shell Model
J.J. Valiente-Dobon et al., Phys. Lett. B 816 (2021) 136183



Four nucleons in a j=7/2 shell
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Five nucleons in a /=9/2 shell
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An application: effective operators

Higher-order operators in a single-/ shell. Here:
higher-order effective charges in E2 operator.

Application to N = 126 isotones with protons in the
Ohy,, orbital. E2 data are available in ¢°Po and
At

Analysis profits from seniority considerations.



Bare and effective operators

82-126 shell

f5i2 F712 hor i1312 P12 P32

Bare operators

H1 + H2
T1(E2)

single— j shell
hgj2

Effective operators

eff eff eff
Hy" +H;" + Hy" +

T (E2) + TS (E2)+



One-body E?2

One kind of nucleon in a single-/ shell
7 (E2)=e(a}d)”

Matrix elements between r-nucleon states are
calculated cursively until

(|7 (E2)] )= e

One effective charge.




One+two-body E2

In a single-/ shell
~ +~\(2)
Tl+2(E2)=el(ajaj) +

2j-1

+
>
O
Y

+ e,(J,J - 2)%< [(a;a;)u_z) (&j&j)(J)

J=24,...

Many effective charges, here taken from E2 data.



State-dependent one-body E2

In a single-/ shell
2 v~ \(2)
T,(E2)=¢(J,.J;)(aa;)

Matrix elements between n-body states are
calculated cursively until

(Pl (E2)] )

Y

e (J.,J
5oa, (et

-~ (20027 +1)(2 +1)

Many effective charges, here taken from E2 data.



E2 data in 2%Po and 2!At
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V. Karayonchev et al., Phys. Rev. C 99 (2019) 024326
V. Karayonchev et al., Phys. Rev. C 106 (2022) 044321



One-body E?2
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State-dependent one-body E2
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One+two-body E2
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Conclusions

Symmetry considerations are useful to obtain
insight in the structure of nuclear models.

Seniority is a relevant quantum number in semi-
magic nuclei.

Seniority conservation in mid-shell nuclei is the
consequence of a geometric phase associated
with particle-hole conjugation.

Application: effective charges in a single-/ shell.



