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General context1
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Disposition : Vide

⦿ Take a bunch of interacting classical or quantal dofs, coming in different species                               and forming a bound state

❶ Context

M15
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i) How do these dofs arrange themselves ? (helps interpreting ground state/excitation/decay/reaction features)
⇒ Competition between kinetic (delocalization/disorder) and potential (localization/order) energies 

…        …   

ii) How emerging structures evolve with E*, T, number of particles, species unbalance, …  ?
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❶ Clustering 

⦿ Clustering : an ubiquitous phenomenon

M15
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❶ Nuclear clustering 
⦿ Nuclear clustering = nucleons clumping together into sub-groups within the nucleus 
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Intrinsic densities
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𝐽Π = 0+

Exact WF

❶ Probing cluster correlations

7

⦿ Emergent SSBs : SSBs obscured by non-negligible fluctuations of order parameters but still leave traces

𝐽Π = 0+

Approx : 
Symmetry-preserving HF WF

Density profile

2-point correlation function

SpectroscopyApprox :
Symmetry-broken HFB WF

(|q0|, j0 )

Approx :
PGCM WF

Yannouleas & Landman, 2017

Selection rules satisfied
Symmetries of the Hamiltonian 
realized in the ground and excited 
states
BUT ALSO
Long-range order/collectivity

Closed-shell system Open-shell system

Revealing back long-range order
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Qualitative 
understanding of the 
nuclear clustering
phenomenon2
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N-component Fermi systems

proton

neutron

⦿ BCS/BEC crossover + phases stabilized by internal dofs

⦿ How does this translate in nuclei = 4-component Fermi systems ? 
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Group theory considerations

⦿ Schematic Hamiltonian : 

proton

neutron

Correlated pair operators
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Group theory considerations

⦿ One-to-one correspondence with a system of spin-3/2 fermions with the Hamiltonian

proton

neutron

Singlet (S=0) pairing operator

Quintet (S=2) pairing operator

with
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Group theory considerations

⦿ Sp(4) ∼ SO(5) symmetry without fine tuning the coupling constants 

proton

neutron

⦿ Generators of 

⦿ Bilinears of fermions can be classified according to their behavior under SO(5)

Particle-hole channel
Particle-particle channel

C. Wu PRL 2005
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Group theory considerations

⦿ If 𝑔0 = 𝑔2 ≡ 𝑔, singlet and quintet pairing states are degenerate and can be recast into a sextet pairing state  ⇒ SU(4) symmetry

proton

neutron

⦿ 2 different superfluid orders : i) Sp(4)-singlet BCS pairing phase  :

ii) SU(4) molecular superfluid phase formed from bound states of 4 fermions: 

⦿ Competition manifested by a ℤ2 discrete symmetry (coset between the center of SU(4) and the center of Sp(4) )

ℤ2 needs to be spontaneously broken to stabilize the BCS quasi-long range order. 

ℤ2 remaining unbroken ⇒ strong quantum fluctuations in the spin channel suppressing Cooper pairing (2 fermions can’t 
form a ℤ2 singlet ) ⇒ leading superfluid instability = quartetting
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Deformation & Nuclear clustering 

⦿ Role of deformation

N-dimensional anisotropic HO with commensurate frequencies enjoys dynamical 
symmetries involving multiple independent copies of SU(N) irreps

Susceptibility of nucleons in deformed nuclei to arrange into multiple spherical 
fragments  

Nazarewicz & Dobaczewski, PRL 1992
Deformation = necessary condition, but not a sufficient one
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Strength of correlations

⦿ Strength of correlations measured by dimensionless ratios

Nucleon mass

Depth of the 
confining potential

Number of 
nucleons

Mean density

Ebran, Khan, Niksic & Vretenar Nature 2012
Ebran, Khan, Niksic & Vretenar PRC 2013
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Strength of correlations

⦿ Strength of correlations measured by dimensionless ratios

Nucleon mass

Depth of the 
confining potential

Number of 
nucleons

Mean density

Ebran, Khan, Niksic & Vretenar Nature 2012
Ebran, Khan, Niksic & Vretenar PRC 2013

Clustering favored     ⇢ For deep confining potential
⇢ For light nuclei
⇢ In regions at low-density
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Strength of correlations

⦿ Strength of correlations measured by dimensionless ratios

Nucleon mass

Depth of the 
confining potential

Number of 
nucleons

Mean density

Clustering favored     ⇢ For deep confining potential
⇢ For light nuclei
⇢ In regions at low-density

⦿ Formation/dissolution of clusters : Mott parameter

Size of the nucleus X

inter-nucleon average 
distance

Size of an 𝛼 in free-space

0.9 size of an 𝛼 in free-spaceEbran, Girod, Khan, Lasseri, Schuck, PRC 2020    
Ebran, Khan, Niksic, Vretenar, PRC 2014    
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Coupling to the continuum

⦿ Clustering as threshold effect 
Strong impact of the continuum (Ploszajczak)
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⦿ But at the same time, clustering correlations impact 
structure of compact states



Disposition : Sommaire

1. General context

2. Qualitative understanding of the nuclear clustering phenomenon

3. Theoretical description of the nuclear clustering phenomenon

Outline

PhyNuBE II                                                                        J.-P. Ebran 21



Disposition : Titre de section light

Theoretical
description of the 
nuclear clustering 
phenomenon3
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Strategies

Liquid drop 
model

Collective 
model

Empirical 
shell model

Interacting 
boson 
model

Algebraic 
model

Ab initio approaches 
(empirical NN+NNN 

interactions) 

Cluster 
model

Phenomenological 
energy density 

functional method

Era of models

QCD

Ab initio 
approaches First-principles 

energy density 
functional methodNon-

empirical 
shell method Cluster EFT

Interacting 
boson EFT

Collective 
EFT

Liquid drop 
EFT

Era of effective (field) theories

 Full control ⇒ systematically improvable, no error compensation,    
no double counting, possibility of error estimation, …

 Force you to step back and rethink

 Gives insight about relevant scales/dofs
 Ready to be used
 Lack of control

⇒ double counting issues, error compensation, no error assessment

⦿ Achieve a                                                   description ?
accurate
predictive
computationally affordable
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HFBHFB

⦿ Relevant dofs = inert clusters + possibly single nucleons

PhyNuBE II                                                                        J.-P. Ebran 24

2 possible viewpoints for describing nuclear clustering

⦿ Relevant dofs = nucleons
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⦿ View the nucleus as a system of N “elementary” clusters in which the A nucleons are distributed and  solve 𝐻Ψ = 𝐸Ψ with

𝐻 = ෍

𝑖=1

𝑁
𝑷𝑖

2

2𝑀𝑖
+ ෍

𝑖<𝑗=1

𝑁

𝑉𝑖𝑗 𝑹𝑖 − 𝑹𝑗
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“non-microscopic” approaches : empirical perspective 

⤏ Potentials fitted on binding energies and nucleus-nucleus phase shifts

⤏ Models rather simple for N=2. For N=3, hyperspherical or Faddeev methods are efficient techniques.

12 spin-1/2 fermions 3 spin-0 bosons

Lazauskas, Dufour (2011)

Bijker, Iachello (2002)
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⦿ Loosely bound cluster nuclei like 9Be (Borromean nucleus)
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“non-microscopic” approaches : EFT perspective 

⤏ Energy needed to separate 9Be into 𝛼 + 𝛼 + 𝑛 : ~1.5 MeV

⤏ Proton separation energy of 4He: ~19.8 MeV 

⇒Separation of scale calling for an EFT (cf Halo/Cluster EFT by Bira van Kolck)

Elena Filandri et al (2022)

Elena Filandri et al (2022)
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Microscopic viewpoint

⦿ Effective pseudo-Hamiltonian

⦿ Various levels of realization
⤏ Hartree-Fock-Bogoliubov (HFB)
⤏ Projected Generator Coordinate Method (PGCM)
⤏ Quasiparticule Random Phase Approximation (QRPA)

↠
Free-space interactions

Effective in-medium 
interactions

Complicated WF Simplified 
auxiliary WF

⨷ How to improve current EDFs   
⨷ How to turn EDF in EFT ?   

◈ Refined many-body schemes with controlled uncertainties 
⤏ CI (full space diag.) : exponential scaling
⤏ Hybrids (valence space diag.) : mixed scaling
⤏ Expansion methods (partition, expand and truncate) : polynomial scaling

⨷ How to challenge ab initio frontiers

⦿ Systematically improvable free-space Hamiltonian in 𝜒EFT

⦿ Solving Schrödinger equation
◈ Pre-processing H

1) Nucleus: A interacting, structure-less nucleons

Strongly correlated WF

2)     Structure & dynamic encoded in Hamiltonian, Functional, …  

3) Solve A-nucleon  Schrödinger/Dirac equation to desired accuracy

V
e

rt
ic

a
l e

xp
a

n
si

o
n

Horizontal 
expansion

Rationale for grasping nucleon correlations

Reference 
vacuum

… 1p1h exc.

… 

…
 

2p2h exc.

(q0,j0 ) (q0,j1 ) (q1,j0 )

𝜇, σ
𝑈 𝜆 𝐻𝑈†(𝜆)

↠

↠
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Capture clustering in a microscopic framework
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⦿ Cluster approximation : assume that A nucleons organize into N clusters
⇒Impose a specific form for the nucleus total wavefunction 

⤏ Resonating group method (Wheeler, Descouvemont, …)   : For 2 clusters 

Nucleon antisymmetrizer

A-body WF : 𝒙1, 𝒙2, … , 𝒙𝐴

C-body internal WF of the 1st cluster : 𝒙1, 𝒙2, … , 𝒙𝐶

(A-C)-body internal WF of the 2nd cluster : 𝒙𝐶+1, 𝒙𝐶+2, … , 𝒙𝐴

Inter-cluster WF depending on the relative coordinate between the coms of the clusters

12C

Phenomenological

Ab initio : Navratiln Hupin, Romero, …
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Capture clustering in a microscopic framework
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⦿ Cluster approximation : assume that A nucleons organize into N clusters
⇒Impose a specific form for the nucleus total wavefunction 

⤏ Resonating group method (Wheeler, Descouvemont, …)

⤏ Generator Coordinate Method with Bloch-Brink cluster WF (Descouvemont, Dufour, …)

Written in terms of HO WF

12C

Dufour, Descouvemont (2004)
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Capture clustering in a microscopic framework
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⦿ Cluster approximation : assume that A nucleons organize into N clusters
⇒Impose a specific form for the nucleus total wavefunction 

⤏ Resonating group method (Wheeler, Descouvemont, …)   : For 2 clusters 

⤏ Generator Coordinate Method with Bloch-Brink cluster WF (Descouvemont, Dufour, …)

⤏ THSR WF (Tohsaki, Horiuchi, Schuck, Röpke, Funaki, Zhou,…) Φ𝑇𝐻𝑆𝑅

Zhou et al (2019)
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Capture clustering in a microscopic framework
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⦿ Cluster approximation : assume that A nucleons organize into N clusters
⇒Impose a specific form for the nucleus total wavefunction 

⦿ Don’t assume that A nucleons organize into N clusters but still impose some restrictions on the shape of the wavefunction : AMD/FMD

Kanada-En’yo (2006)
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Capture clustering in a microscopic framework
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⦿ Cluster approximation : assume that A nucleons organize into N clusters
⇒Impose a specific form for the nucleus total wavefunction 

⦿ Don’t assume that A nucleons organize into N clusters but still impose some restrictions on the shape of the wavefunction : AMD/FMD

⦿ Don’t assume that A nucleons organize into N clusters and use horizontal expansion (look for a bosonic order parameter whose fluctuations cause nucleons 
to aggregate into clusters) : can be done in both ab initio and EDF

16O

Ebran et al (2020)
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HFBHFB

⦿ HFB treatment

⤏ A-nucleon problem ⟶ A 1-nucleon problems

Correlated A-

nucleon 

wavefunction

Symmetry-conserving A 

independent nucleons 

wavefunction

𝜇, σ 𝜇, σ

(|q0|, j0 )

Symmetry-breaking A 

independent nucleons 

wavefunction

HF(B)

,

⤏ SSB :    Efficient way for capturing so-called static correlations

Horizontal expansion
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Nuclear clustering at the SR level 

⦿ Clustering = nucleons clumping together into sub-groups within the nucleus 

A

Energy

Intrinsic densities computed within cEDF realized at the SR level (DD-ME2 parametrization)

PhyNuBE II                                                                        J.-P. Ebran 34



Disposition : Vide

Quantum Mott-like phase transition

⦿ Isotropically inflate 16O by constraining its r.m.s. radius while imposing a global quadrupole moment to be zero

16O
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Thermal phase transition

⦿ Isotropically inflate 16O by constraining its r.m.s. radius while imposing a global quadrupole moment to be zero
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⦿ HFB treatment

⤏ A-nucleon problem ⟶ A 1-nucleon problems
𝜇, σ 𝜇, σ

(|q0|, j0 )

HF(B)

,

⦿ Post-HFB treatment : PGCM

⤏ Symmetry-conserving (non orthogonal) mixture of symmetry-breaking HFB vacua

PGCM

∫= dq f(q) 𝒒
𝜇, σ

HFB constrained calculations

Horizontal expansion
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EMF

|q|
𝐴𝑟𝑔(𝒒)

𝐽Π = 0+

⦿ HFB treatment

⤏ A-nucleon problem ⟶ A 1-nucleon problems
𝜇, σ 𝜇, σ

(|q0|, j0 )

HF(B)
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EMF

|q|
𝐴𝑟𝑔(𝒒)
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1
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2
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3

⦿ HFB treatment

⤏ A-nucleon problem ⟶ A 1-nucleon problems
𝜇, σ 𝜇, σ
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PGCM
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𝜇, σ

HFB constrained calculations

Horizontal expansion
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Nuclear clustering & PGCM

⦿ Correlated GS

EDF
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Frosini, Duguet, Ebran, Bally, Mongelli, Rodriguez, Roth, Somà, EPJA 2022
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Nuclear clustering & PGCM
⦿ Spectroscopy

Marević, Ebran, Khan, Nikšić, and Vretenar, 2019

Frosini, Duguet, Ebran, Bally, Mongelli, Rodriguez, Roth, Somà, EPJA 2022

Marevic, Ebran, Khan, Niksic, Vretenar, 2018
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Frosini, Duguet, Ebran, Bally, Hergert, Rodriguez, Roth, Yao, Somà, EPJA 2022

EDF
EDF

Ab initio

Ab initio

EDF
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⦿ Post-HFB : QRPA

⤏ Excitations = coherent mixture of  2-qp excitations

⤏ Harmonic limit of the GCM

𝜇, σ 𝜇, σ

HF(B)

,

PGCM

∫= dq f(q) 𝒒
𝜇, σ

𝜇 ≠ 0, σ

QRPA

𝑄𝜇
†

Quasi-bosonic excitation operator

(|q0|, j0 )

(|q0|, j0 )

HFB calculation

⦿ HFB treatment

⤏ A-nucleon problem ⟶ A 1-nucleon problems

⦿ Post-HFB treatment : PGCM

⤏ Symmetry-conserving (non orthogonal) mixture of symmetry-breaking HFB vacua

0, σ

Horizontal expansion
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Nuclear clustering & QRPA
⦿ Cluster vibration

Mercier, Bjelčić, Nikšić, Ebran, Khan,Vretenar 2021
Mercier, Ebran, Khan  2022

PhyNuBE II                                                                        J.-P. Ebran 45

Ab initio QFAM time-dependent intrinsic density
Frosini, Ebran, Duguet, Somà, unpublished

EDF

Ab initio
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Cluster, a and 2a radioactivities
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Zhao , Ebran, Heitz , Khan , Mercier, Nikšic,Vretenar (2023)
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Capture clustering in a microscopic framework
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⦿ Cluster approximation : assume that A nucleons organize into N clusters
⇒Impose a specific form for the nucleus total wavefunction 

⦿ Don’t assume that A nucleons organize into N clusters but still impose some restrictions on the shape of the wavefunction : AMD/FMD

⦿ Don’t assume that A nucleons organize into N clusters and use horizontal expansion (look for a bosonic order parameter whose fluctuations cause nucleons 
to aggregate into clusters) : can be done in both ab initio and EDF

⦿ Don’t assume that A nucleons organize into N clusters and use vertical expansion
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Symmetry-adapted NCSM

PhyNuBE II                                                                        J.-P. Ebran 48

⦿ Exploits approximate symmetry of the collective nuclear many-body dynamics to reorganize the model space into a physically relevant basis
⇒ Tames down the scaling explosion problem of NCSM

K. D. Launey et al (2018)
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NCSMC
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⦿ Exploits approximate symmetry of the collective nuclear many-body dynamics to reorganize the model space into a physically relevant basis
⇒ Tames down the scaling explosion problem of NCSM

Hupin et al (2015)
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Capture clustering in a microscopic framework
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⦿ Cluster approximation : assume that A nucleons organize into N clusters
⇒Impose a specific form for the nucleus total wavefunction 

⦿ Don’t assume that A nucleons organize into N clusters but still impose some restrictions on the shape of the wavefunction : AMD/FMD

⦿ Don’t assume that A nucleons organize into N clusters and use horizontal expansion (look for a bosonic order parameter whose fluctuations cause nucleons 
to aggregate into clusters) : can be done in both ab initio and EDF

⦿ Don’t assume that A nucleons organize into N clusters and consider in-medium C-body wavefunctions : QCM, Green’s function theory, …

⦿ Don’t assume that A nucleons organize into N clusters and use vertical expansion
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QMC

Lasseri, Ebran, Khan, Sandulescu

20Ne

8Be

24Mg
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Quartet BCS-like theory

Lasseri, Ebran, Khan, Sandulescu
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Baran, Delion, 2019
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Conclusion
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⦿ Capturing nucleons correlations governing clustering is challenging

⦿ If one is interested to states with well developed clusters : clusters + nucleons or nucleons as relevant dofs

⦿ Clustering correlations seem to play a role in structural properties of compact states (seeds for clusterinsation already there):  nucleons as relevant dofs
Tame down the complexity of treating corresponding correlations by:
i) Presupposing that nucleons arrange into clusters (RGM, BB-GCM, THSR-GCM)
ii) Imposing a localized gaussian form for nucleon wfs (AMD/FMD)
iii) Let the nucleons wfs be what they are, and catch correlations via horizontal expansion (symmetry breaking and restauration) : ab initio and EDF PGCM/QRPA
iv) Let the nucleons wfs be what they are, and catch correlations via symmetry-guided vertical expansion :  SA-NCSM
v) Let the nucleons wfs be what they are, catch correlations via vertical expansion, take into account arrangement into clusters : NCSMc, Gamow SM
vi) Let the nucleons wfs be what they are, see how correlations translate into an in-medium 4-body wf : QCM, GF
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Thank you for your attention
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❶ Nuclear clustering 

⦿ Nuclear clustering = nucleons clumping together into sub-groups within the nucleus 

A

Energy

Intrinsic densities computed within cEDF realized at the SR level (DD-ME2 parametrization)
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❶ General goal of nuclear structure theory

Ground-state

masses, radii, density profile, …

Excitation spectra

energies, transition probabilities, response 
function to electroweak probes, …

Decay modes

lifetime, yields, …

Reactions

cross sections, …

⦿ Starting from the hadronic level of organization (nucleons + interactions), what novel structures emerge and how they evolve with Eex, N, Z, …

…;       ;        ;…   

Intrinsic densities

Atomic nucleus

=

Emergent SSBs

PhyNuBE II                                                                        J.-P. Ebran 56



Disposition : Vide

HFBHFB
Symmetry-restriced HF : good description of GS of doubly closed-

shell nuclei & neighbors (∼30 nuclei)

⦿ HFB treatment

⤏ A-nucleon problem ⟶ A 1-nucleon problems

Correlated A-

nucleon 

wavefunction

Symmetry-conserving A 

independent nucleons 

wavefunction

𝜇, σ 𝜇, σ

(|q0|, j0 )

Symmetry-breaking A 

independent nucleons 

wavefunction

HF(B)

,

⤏ SSB :    Efficient way for capturing so-called static correlations

The Energy Density Functional Method
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HFBHFB
Spatial symmetry-restricted HFB: good description of GS of doubly 

and singly closed-shell nuclei & neighbors (∼300 nuclei)

⦿ HFB treatment

⤏ A-nucleon problem ⟶ A 1-nucleon problems

Correlated A-

nucleon 

wavefunction

Symmetry-conserving A 

independent nucleons 

wavefunction

𝜇, σ 𝜇, σ

(|q0|, j0 )

Symmetry-breaking A 

independent nucleons 

wavefunction

HF(B)

,

⤏ SSB :    Efficient way for capturing so-called static correlations

The Energy Density Functional Method
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HFBHFBSymmetry-unrestricted HFB: good description of GS of all 

nuclei

⦿ HFB treatment

⤏ A-nucleon problem ⟶ A 1-nucleon problems

Correlated A-

nucleon 

wavefunction
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independent nucleons 
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⤏ SSB :    Efficient way for capturing so-called static correlations

The Energy Density Functional Method
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Disposition : Vide

Effect of the depth of the confining potential

⦿ Deeper potential yielding the same nuclear radii ⇒ more localized single-nucleon orbitals

⦿ When Coulomb effects are not too important and owing to Kramers degeneracy, proton ↑, proton ↓, neutron ↑, neutron ↓ share the 
same spatial properties 
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Disposition : Vide

Effect of the density

⦿ Isotropically inflate 16O by constraining its r.m.s. radius while imposing a global quadrupole moment to be zero

16O
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Effect of the density
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16O
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Effect of the density
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Disposition : Vide

Effect of the density

⦿ Isotropically inflate 16O by constraining its r.m.s. radius while imposing a global quadrupole moment to be zero

16O
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Disposition : Vide

Effect of the density

⦿ mp-mh content of a tetrahedrally-deformed Slater determinant 

Symmetry breaking : O(3) → Td
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Disposition : Vide

LCAO-MO

⦿ Borrowing the LCAO-MO language, on can think of the 16O thetrahedrally-deformed SD as a MO built from 4 1s 𝛼 AOs

⦿ Find the unknowns f in the Hückel approximation :
;   for adjacent i,j ;                     otherwise
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Disposition : Vide

𝐽Π = 0+

Exact WF

Nuclear clustering & PGCM

𝐽Π = 0+

Approx : 

Symmetry-preserving HF WF

Density profile

2-point correlation 

function

Spectroscopy

Approx :

Symmetry-broken HFB WF

(|q0|, j0 )

Approx :

PGCM WF

Yannouleas & Landman, 2017
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Disposition : Vide

Nuclear clustering & PGCM
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