

Theoretical description of the nuclear clustering phenomenon – An introduction –

J.-P. Ebran

CEA, DAM, DIF

2nd Rencontre PhyNuBE: clustering and symmetries in nuclear physics

26-31 March 2023

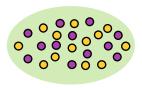
Outline

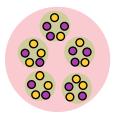
- 1. General context
- 2. Qualitative understanding of the nuclear clustering phenomenon
- 3. Theoretical description of the nuclear clustering phenomenon

- General context

1 Context

- Take a bunch of interacting classical or quantal dofs, coming in different species {●●● ··· ○○○···} and forming a bound state
 - i) How do these dofs arrange themselves ? (helps interpreting ground state/excitation/decay/reaction features)
 ⇒ Competition between kinetic (delocalization/disorder) and potential (localization/order) energies

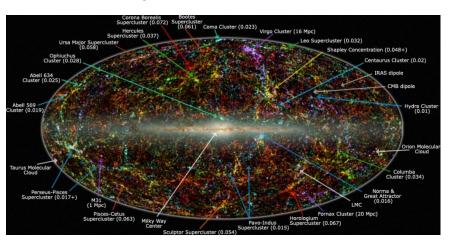


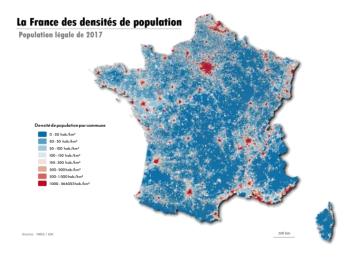


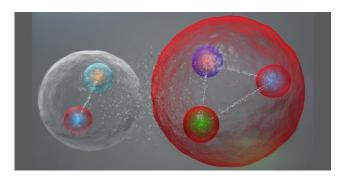
ii) How emerging structures evolve with E*, T, number of particles, species unbalance, ... ?

1 Clustering

• Clustering : an ubiquitous phenomenon



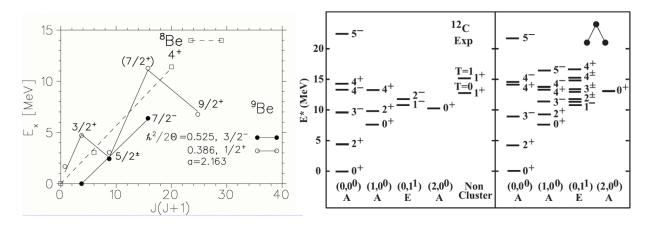


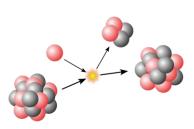


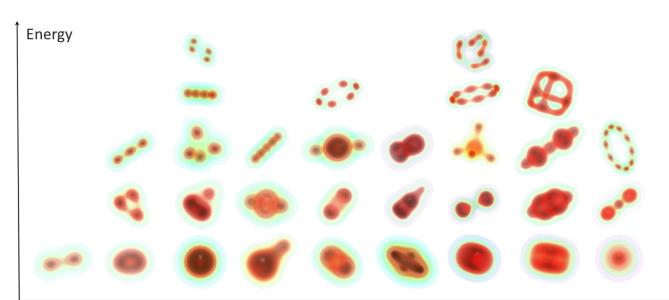
PhyNuBE II J.-P. Ebran

1 Nuclear clustering

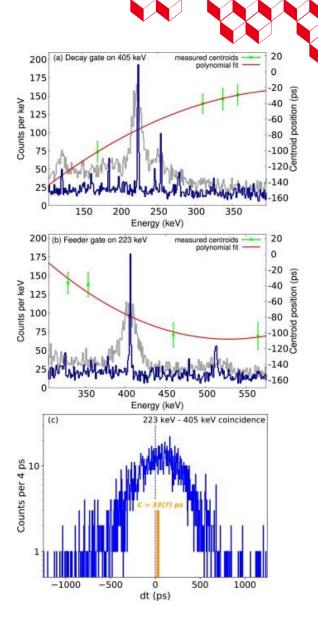
• Nuclear clustering = nucleons clumping together into sub-groups within the nucleus







Intrinsic densities

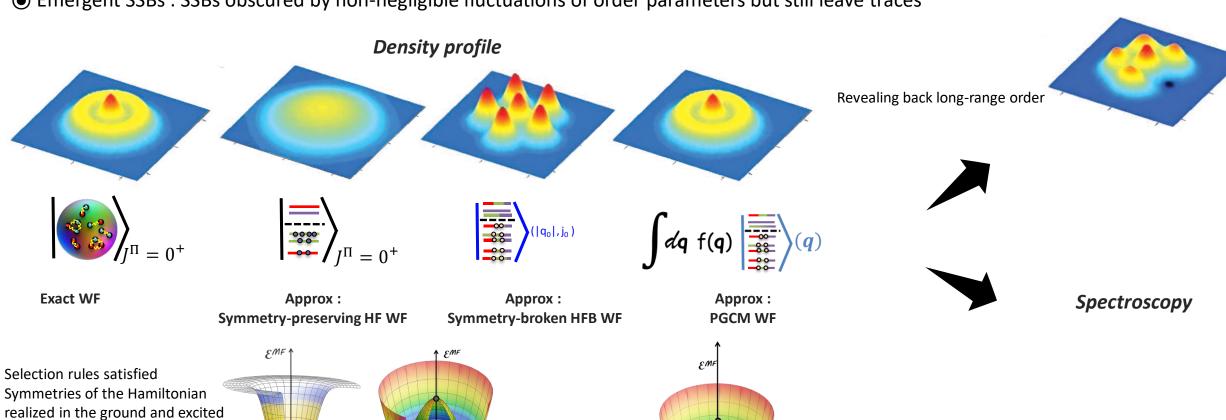


Probing cluster correlations

Closed-shell system

• Emergent SSBs : SSBs obscured by non-negligible fluctuations of order parameters but still leave traces

Open-shell system

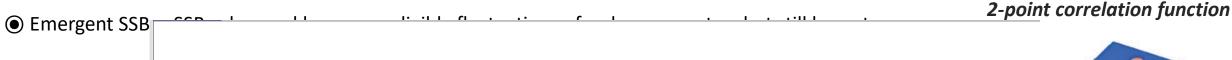


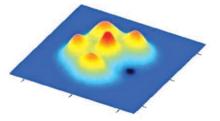
Yannouleas & Landman, 2017

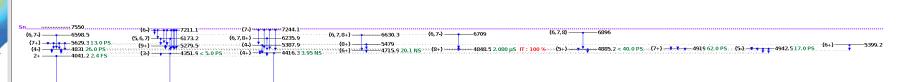
Long-range order/collectivity

states BUT ALSO

Probing cluster correlations







 $=0^{+} I^{\Pi} = 0^{+}$

J aq T(q)

Spectroscopy

Selection rules satisfie
Symmetries of the Har
realized in the ground
states
BLIT ALSO

Exact WF

states
BUT ALSO
Long-range order/colle

Approx: Approx: Approx: Band 8 Band 9 Non-hand level: Band 1 Band 6 ---11410.7 (28,29) 11418.8 (26,27) 1096 1032 (24,25) 958 9290.8 (22,23) 958 8332.8 (20,21) 4564 7435.2 (18,19) 48987 7435.2 1034.5 966.5 9881.2 $\begin{array}{c} (28+) & 1070.5 \\ (26+) & 1008.5 \\ (26+) & 944 \\ 24+ & 944 \\ (22+) & 876.5 \\ (22+) & 876.5 \\ (20+) & 7791.71 \\ (20+) & 6991.1 \\ (18+) & 6896 \\ 1 & 11779 \\ 6161.7 \\ \end{array}$ -10675.7 3+) 1130 10207, q 1130 10707, q 26+) 1062 9077, 2 24+) 1062 9015 (22+) 1002 7012, 8 (20+) 944, 5 6068, 2 (18+) 863 5, 195, 2 (14+) 739, 4 3633, 8 (12+) 656, 51, 2948, 10+ 636, 31, 2311, 7 84 592, 38-1142, 4 (25, 26) 1065 (25, 26) 992 9797.6 (23, 24) 473 8805.6 (21, 22) 473 7876.5 -10207.4 (26+) 199 7918.7 (24+) 1192 8526.7 (22+) 1033.5 6379.2 (18+) 31 6379.2 (18+) 31 6379.2 (18+) 246948 343.2 (16+) 246948 3457.7 (14+) 204693.5 3648.3 (12+) 2729.5 3288.1 (14+) 3660944 2590.1 (8+) -56006 52179.1 (8+) -56006 52179.1 (8+) -56006 52179.1 (8+) -56006 52179.1 (8+) -56006 52179.1 (25.) 901 8981.2 (23.) 901 8080.2 (21.) 949 7231.2 (19.) 754 5670.2 (15.) 764 5670.2 (15.) 286.2 4164.2 (11.) 27742-3497.6 (9.) 24666.5 2961.1 -8526.3 (19,20) 441929 7015.3 (17,18) 794861 6221.4 -6556.3 (20) 6556.3 (18.) 823 573.3 (16.) 737 4996.3 (14.) 692 4304.3 12. 397 3659.3 (10.) 403645 3109.6 (8) 412550 2398.6

-00

Yannouleas & Landman, 2017

Outline

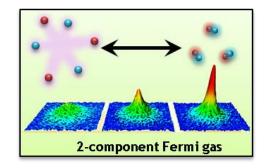
- 1. General context
- 2. Qualitative understanding of the nuclear clustering phenomenon
- 3. Theoretical description of the nuclear clustering phenomenon

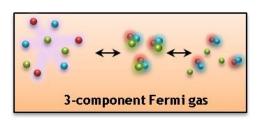
Qualitative understanding of the nuclear clustering phenomenon

N-component Fermi systems

11

• BCS/BEC crossover + phases stabilized by internal dofs





• How does this translate in nuclei = 4-component Fermi systems?

PhyNuBE II

$$lacktriangle$$
 Schematic Hamiltonian : $H=H_0+\mathcal{V}_{\mathrm{res}}$

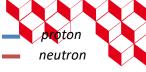
$$H_0 = \int d^3r \sum_{\alpha} \varepsilon_{\alpha} \psi_{\alpha}^{\dagger}(\mathbf{r}) \psi_{\alpha}(\mathbf{r})$$

$$\mathcal{V}_{\text{res}} \sim V_{\text{pair}} = -\int d^3r \left[g^{\text{T=1}} \sum_{\nu=\pm 1,0} P_{\nu}^{\dagger}(\boldsymbol{r}) P_{\nu}(\boldsymbol{r}) + g^{\text{T=0}} \sum_{\mu=\pm 1,0} Q_{\mu}^{\dagger}(\boldsymbol{r}) Q_{\mu}(\boldsymbol{r}) \right]$$

Correlated pair operators

$$P_{\nu}^{\dagger}(\boldsymbol{r}) \equiv \sqrt{\frac{1}{2}} \sum_{l} \sqrt{2l+1} \left\{ \psi_{l,s=\frac{1}{2},t=\frac{1}{2}}^{\dagger}(\boldsymbol{r}) \psi_{l,s=\frac{1}{2},t=\frac{1}{2}}^{\dagger}(\boldsymbol{r}) \right\}_{M_{L}=0,M_{S}=0,M_{T}=\nu}^{(L=0,S=0,T=1)}$$

$$Q_{\mu}^{\dagger}(\boldsymbol{r}) \equiv \sqrt{\frac{1}{2}} \sum_{l} \sqrt{2l+1} \left\{ \psi_{l,\frac{1}{2},\frac{1}{2}}^{\dagger}(\boldsymbol{r}) \psi_{l,\frac{1}{2},\frac{1}{2}}^{\dagger}(\boldsymbol{r}) \right\}_{M_{L}=0,M_{S}=\mu,M_{T}=0}^{(L=0,S=1,T=0)}$$



• One-to-one correspondence with a system of spin-3/2 fermions with the Hamiltonian

$$H = \int d^3r \left\{ \sum_{\alpha} \varepsilon_{\alpha} \varphi_{\alpha}^{\dagger}(\mathbf{r}) \varphi_{\alpha}(\mathbf{r}) - g_0 S_{0,0}^{\dagger}(\mathbf{r}) S_{0,0}(\mathbf{r}) - \sum_{m=\pm 2,\pm 1,0} g_{2,m} D_{2,m}^{\dagger}(\mathbf{r}) D_{2,m}(\mathbf{r}) \right\}$$

Singlet (S=0) pairing operator

$$S_{0,0}^{\dagger} = \sum_{\alpha\beta} \left\langle \frac{3}{2} \frac{3}{2}; 00 \right| \frac{3}{2} \frac{3}{2} \alpha\beta \rangle \varphi_{\alpha}^{\dagger} \varphi_{\beta}^{\dagger}$$

Quintet (S=2) pairing operator

$$D_{2,m}^{\dagger} = \sum_{\alpha\beta} \langle \frac{3}{2} \frac{3}{2}; 2m | \frac{3}{2} \frac{3}{2} \alpha\beta \rangle \varphi_{\alpha}^{\dagger} \varphi_{\beta}^{\dagger}$$

with
$$S_{0,0}^{\dagger} = P_0^{\dagger}$$
, $D_{2,0}^{\dagger} = Q_0^{\dagger}$, $D_{2,\pm 1}^{\dagger} = P_{\pm 1}^{\dagger}$ and $D_{2,\pm 2}^{\dagger} = Q_{\pm 1}^{\dagger}$

- \odot Sp(4) \sim SO(5) symmetry without fine tuning the coupling constants

$$\Gamma^{ab} \equiv -\frac{i}{2} \left[\Gamma^a, \Gamma^b \right] \quad (1 \le a, b \le 5)$$

Bilinears of fermions can be classified according to their behavior under SO(5)

Particle-hole channel

$$n(\mathbf{r}) = \sum_{\alpha} \varphi_{\alpha}^{\dagger}(\mathbf{r}) \varphi_{\alpha}(\mathbf{r}),$$

$$n_{a}(\mathbf{r}) = \frac{1}{2} \sum_{\alpha\beta} \varphi_{\alpha}^{\dagger}(\mathbf{r}) \Gamma_{\alpha\beta}^{a} \varphi_{\beta}(\mathbf{r}),$$

$$L_{ab}(\mathbf{r}) = -\frac{1}{2} \sum_{\alpha\beta} \varphi_{\alpha}^{\dagger}(\mathbf{r}) \Gamma_{\alpha\beta}^{ab} \varphi_{\beta}(\mathbf{r}).$$

Particle-particle channel

$$\eta^{\dagger}(\boldsymbol{r}) = \frac{1}{2} \sum_{\alpha\beta} \varphi_{\alpha}^{\dagger}(\boldsymbol{r}) C_{\alpha\beta} \varphi_{\beta}^{\dagger}(\boldsymbol{r}),$$

$$\xi_{a}^{\dagger}(\boldsymbol{r}) = -\frac{i}{2} \sum_{\alpha\beta} \varphi_{\alpha}^{\dagger}(\boldsymbol{r}) (\Gamma^{a}C)_{\alpha\beta} \varphi_{\beta}^{\dagger}(\boldsymbol{r}),$$

$$\dot{C} = \Gamma^{1}\Gamma^{3}$$

$$S_{0,0}^{\dagger} = -\frac{\eta^{\dagger}}{\sqrt{2}} D_{2,0}^{\dagger} = -i\frac{\xi_{4}^{\dagger}}{\sqrt{2}}, D_{2,\pm 1}^{\dagger} = -\frac{\xi_{3}^{\dagger} \mp i\xi_{2}^{\dagger}}{\sqrt{2}}, D_{2,\pm 2}^{\dagger} = \frac{\mp \xi_{1}^{\dagger} + i\xi_{5}^{\dagger}}{\sqrt{2}}$$

C. Wu PRL 2005

$$H = \int d^3r \left\{ \sum_{\alpha} \varepsilon_{\alpha} \varphi_{\alpha}^{\dagger}(\mathbf{r}) \varphi_{\alpha}(\mathbf{r}) - g_0 S_{0,0}^{\dagger}(\mathbf{r}) S_{0,0}(\mathbf{r}) - \sum_{m=\pm 2,\pm 1,0} g_{2,m} D_{2,m}^{\dagger}(\mathbf{r}) D_{2,m}(\mathbf{r}) \right\}$$

- If $g_0 = g_2 \equiv g$, singlet and quintet pairing states are degenerate and can be recast into a sextet pairing state \Rightarrow SU(4) symmetry
- lacktriangle 2 different superfluid orders : i) Sp(4)-singlet BCS pairing phase : $\eta^{\dagger}(r)$
 - ii) SU(4) molecular superfluid phase formed from bound states of 4 fermions: $A^{\dagger}(r) \equiv \varphi_{\frac{3}{2}}^{\dagger}(r) \varphi_{-\frac{1}{2}}^{\dagger}(r) \varphi_{-\frac{3}{2}}^{\dagger}(r) \varphi_{-\frac{3}{2}}^{\dagger}($
- ullet Competition manifested by a \mathbb{Z}_2 discrete symmetry (coset between the center of SU(4) and the center of Sp(4)) $\mathcal{U}_n=e^{in_4\pi}$

$$\eta^{\dagger} \mapsto \mathcal{U}_n \eta^{\dagger} \mathcal{U}_n^{-1} = -\eta^{\dagger},$$

$$A^{\dagger} \mapsto \mathcal{U}_n A^{\dagger} \mathcal{U}_n^{-1} = A^{\dagger}.$$

 \mathbb{Z}_2 needs to be spontaneously broken to stabilize the BCS quasi-long range order.

 \mathbb{Z}_2 remaining unbroken \Rightarrow strong quantum fluctuations in the spin channel suppressing Cooper pairing (2 fermions can't form a \mathbb{Z}_2 singlet) \Rightarrow leading superfluid instability = quartetting

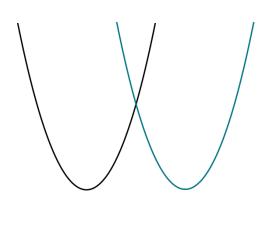
Deformation & Nuclear clustering

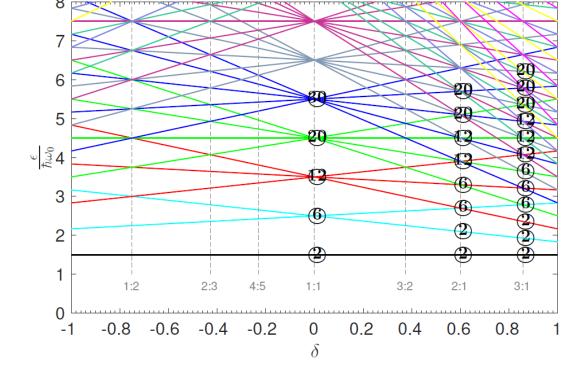
Role of deformation

N-dimensional anisotropic HO with commensurate frequencies enjoys dynamical symmetries involving multiple independent copies of SU(N) irreps

Susceptibility of nucleons in deformed nuclei to arrange into multiple spherical fragments

SPHERICAL MAGIC NUMBERS	SUPERDEFORMED PROLATE MAGIC NUMBERS	SUPERDEFORMED PROLATE SPECTRUM	
70 O = 40 O =	140 110 80 0 60	$egin{array}{cccccccccccccccccccccccccccccccccccc$	
20 ○€	→ 00 40 → 00 28	2 —	
80	→ 0 16 → 10	1	
2 ○€	<u></u> ○ 2	0	
	A B	(000) (001)	





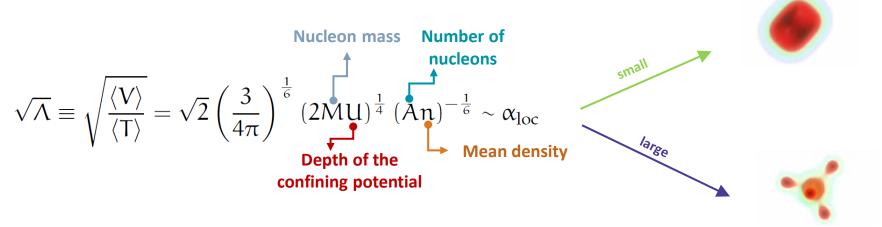
Deformation = necessary condition, but not a sufficient one

Nazarewicz & Dobaczewski, PRL 1992

PhyNuBE II J.-P. Ebran 16

Strength of correlations

Strength of correlations measured by dimensionless ratios



Ebran, Khan, Niksic & Vretenar Nature 2012 Ebran, Khan, Niksic & Vretenar PRC 2013

PhyNuBE II

Strength of correlations

Strength of correlations measured by dimensionless ratios

$$\sqrt{\Lambda} \equiv \sqrt{\frac{\langle V \rangle}{\langle T \rangle}} = \sqrt{2} \left(\frac{3}{4\pi}\right)^{\frac{1}{6}} (2MU)^{\frac{1}{4}} (An)^{-\frac{1}{6}} \sim \alpha_{loc}$$
 Mean density confining potential

Clustering favored

- → For deep confining potential
- → For light nuclei
- ---> In regions at low-density

Ebran, Khan, Niksic & Vretenar Nature 2012 Ebran, Khan, Niksic & Vretenar PRC 2013

PhyNuBE II

Strength of correlations

Strength of correlations measured by dimensionless ratios

$$\sqrt{\Lambda} \equiv \sqrt{\frac{\langle V \rangle}{\langle T \rangle}} = \sqrt{2} \left(\frac{3}{4\pi}\right)^{\frac{1}{6}} (2MU)^{\frac{1}{4}} (An)^{-\frac{1}{6}} \sim \alpha_{loc}$$
Depth of the confining potential

Clustering favored

- → For deep confining potential
- ---> For light nuclei
- ---> In regions at low-density
- Formation/dissolution of clusters : Mott parameter

Size of the nucleus X
$$\frac{R_X}{d_{Mott}^X} \sim 1 \Rightarrow n_{Mott}^X \sim \frac{\rho_{sat}}{A_X}$$
 inter-nucleon average distance

$$n_{Mott}^{\alpha} \sim 0.25 \rho_{sat}$$

$$\sim \frac{\rho_{sat}}{3}$$

Size of an α in free-space

0.9 size of an lpha in free-space

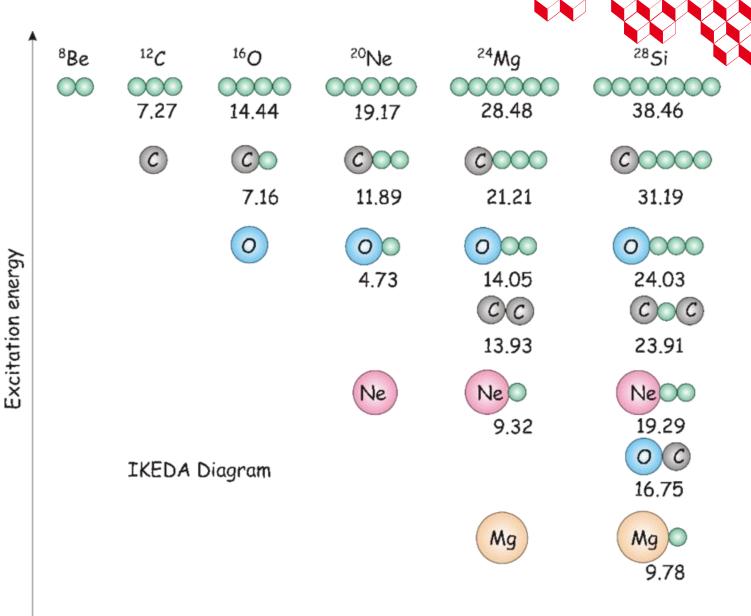
Ebran, Girod, Khan, Lasseri, Schuck, PRC 2020 Ebran, Khan, Niksic, Vretenar, PRC 2014

PhyNuBE II

Coupling to the continuum

Clustering as threshold effectStrong impact of the continuum (Ploszajczak)

 But at the same time, clustering correlations impact structure of compact states



Outline

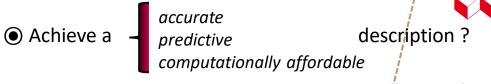
- 1. General context
- 2. Qualitative understanding of the nuclear clustering phenomenon
- 3. Theoretical description of the nuclear clustering phenomenon

Theoretical description of the nuclear clustering phenomenon

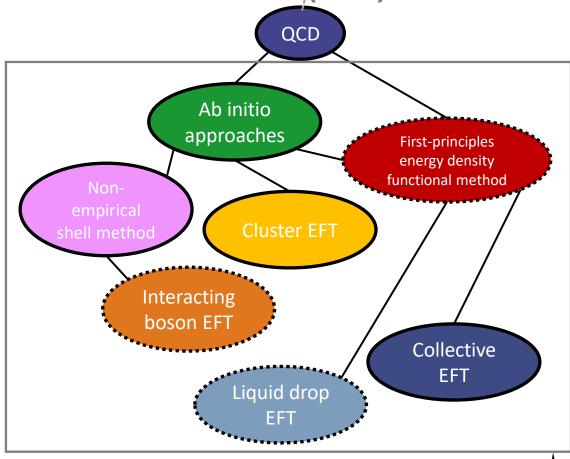
Strategies

Era of models Ab initio approaches (empirical NN+NNN interactions) Phenomenological energy density **Empirical** functional method Interacting boson model model Algebraic model Collective Liquid drop model model

- ☑ Gives insight about relevant scales/dofs
- ☑ Ready to be used
- - ⇒ double counting issues, error compensation, no error assessment



Era of effective (field) theories



- ☑ Full control ⇒ systematically improvable, no error compensation, no double counting, possibility of error estimation, ...
- ☑ ► Force you to step back and rethink

PhyNuBE II J.-P. Ebran

2 possible viewpoints for describing nuclear clustering

Relevant dofs = inert clusters + possibly single nucleons

Relevant dofs = nucleons

<u>Cea</u> PhyNuBE II

"non-microscopic" approaches: empirical perspective

• View the nucleus as a system of N "elementary" clusters in which the A nucleons are distributed and solve $H\Psi = E\Psi$ with

$$H = \sum_{i=1}^{N} \frac{\mathbf{P}_{i}^{2}}{2M_{i}} + \sum_{i < j=1}^{N} V_{ij} (\mathbf{R}_{i} - \mathbf{R}_{j})$$

- --> Potentials fitted on binding energies and nucleus-nucleus phase shifts
- --> Models rather simple for N=2. For N=3, hyperspherical or Faddeev methods are efficient techniques.

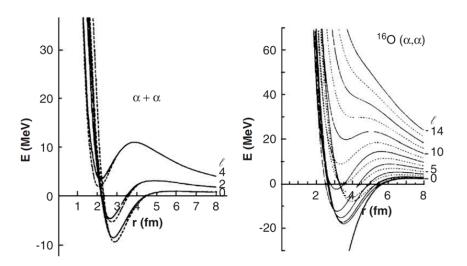
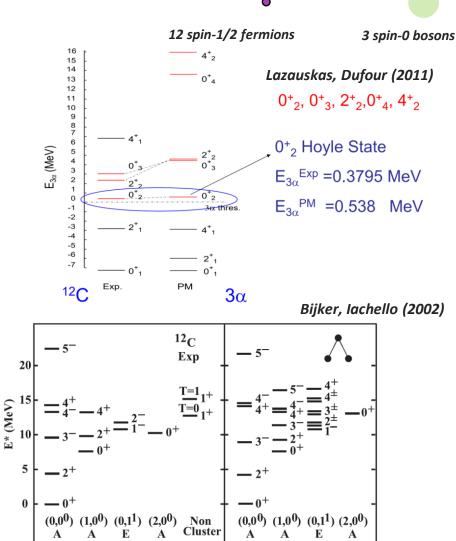


Fig. 12. Two examples of molecular local potentials for the α - α interaction, i.e. for 8 Be, and for the α - 16 O system, forming 20 Ne. Different partial waves are shown. Figure adapted from Ref. [206].



"non-microscopic" approaches: EFT perspective

26

Loosely bound cluster nuclei like ⁹Be (Borromean nucleus)

- a a a
- ---> Energy needed to separate 9 Be into $\alpha + \alpha + n : {}^{\sim}1.5$ MeV
- --> Proton separation energy of ⁴He: ~19.8 MeV
- ⇒Separation of scale calling for an EFT (cf Halo/Cluster EFT by Bira van Kolck)

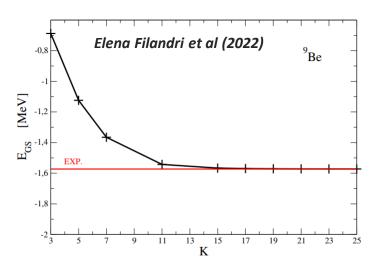


FIGURE 6.15: Ground state energy of 9 Be increasing the hyperangular momentum K with the three-body force.

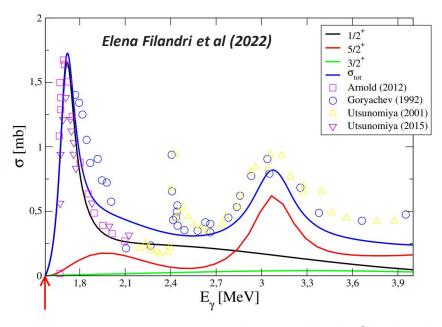


FIGURE 6.33: Comparison of our result obtained for the ⁹Be photodisintegration cross-section and the experimental data shown in Figure 1.2. The red arrow indicates the threshold.

PhyNuBE II J.-P. Ebran

Microscopic viewpoint

- Nucleus: A interacting, structure-less nucleons
- 2) Structure & dynamic encoded in Hamiltonian, Functional, ...
- 3) Solve A-nucleon Schrödinger/Dirac equation to desired accuracy

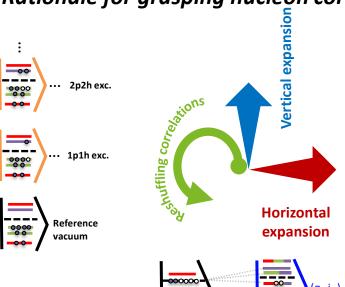
$$H(\mathbf{p},\mathbf{p},\ldots)|\Psi_{\mu,\sigma}\rangle = E_{\mu\tilde{\sigma}}\,|\Psi_{\mu,\sigma}\rangle \qquad _{N_{FCI}}\,_{\propto}\,_{\binom{L}{A}}$$
 Strongly correlated WF
$$|\Psi_{gs}\rangle = \sum_{i_1<\cdots< i_A}^{L} C_{i_1\cdots i_A}\,|\varphi_{i_1}\cdots\varphi_{i_A}\rangle \equiv \sum_{I}^{N_{FCI}} C_{I}\,|\Phi_{I}\rangle$$

00

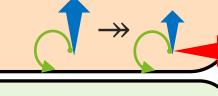
 (q_1, j_0)

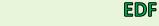
J.-P. Ebran

Rationale for grasping nucleon correlations

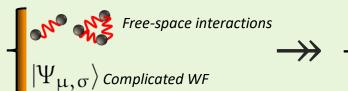


- **©** Systematically improvable free-space Hamiltonian in χ EFT
- Solving Schrödinger equation
- ♦ Pre-processing H
- ♦ Refined many-body schemes with controlled uncertainties
- --> CI (full space diag.): exponential scaling
- --> Hybrids (valence space diag.): mixed scaling
- --> Expansion methods (partition, expand and truncate): polynomial scaling
- How to challenge ab initio frontiers





Effective pseudo-Hamiltonian



- Various levels of realization
 - ---> Hartree-Fock-Bogoliubov (HFB)
 - --> Projected Generator Coordinate Method (PGCM)
 - --- Quasiparticule Random Phase Approximation (QRPA)
- **(A)** How to improve current EDFs
- Mow to turn EDF in EFT?

auxiliary WF

Effective in-medium

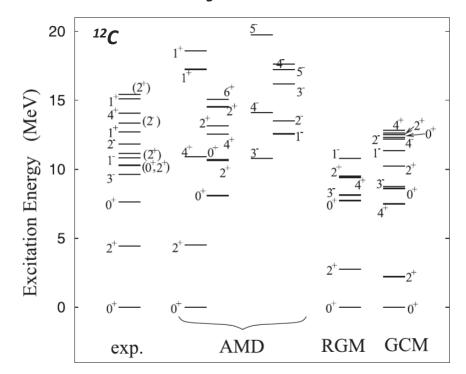
- Cluster approximation : assume that A nucleons organize into N clusters
- ⇒Impose a specific form for the nucleus total wavefunction
 - --> Resonating group method (Wheeler, Descouvement, ...) : For 2 clusters

 \checkmark A-body WF: $x_1, x_2, ..., x_A$

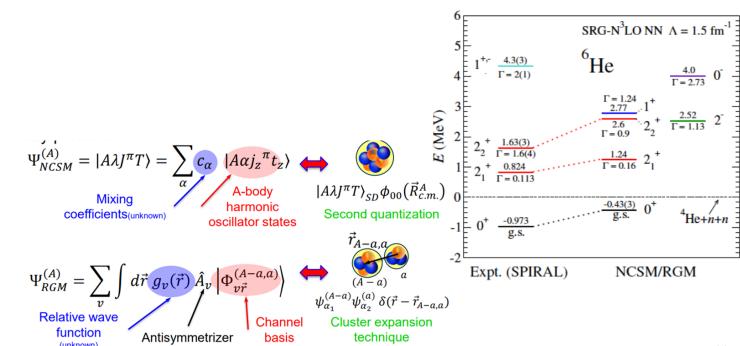
Nucleon antisymmetrizer $(A\text{-}C)\text{-}body \ internal \ WF \ of the 2nd \ cluster:}\ x_{C+1}, x_{C+2}, \dots, x_A$ $\Psi_{\rm RGM} = \mathcal{A}\left\{\phi(C_1)\phi(C_2)\chi(\boldsymbol{\xi})\right\}$ C-body internal WF of the 1st cluster: x_1, x_2, \dots, x_C

Inter-cluster WF depending on the relative coordinate between the coms of the clusters

Phenomenological



Ab initio : Navratiln Hupin, Romero, ...

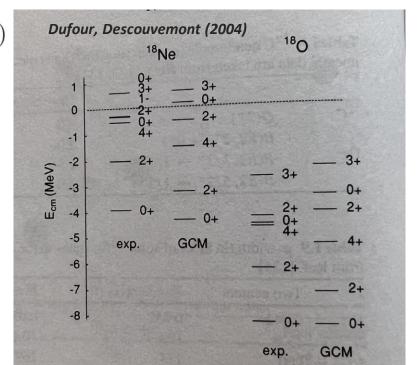


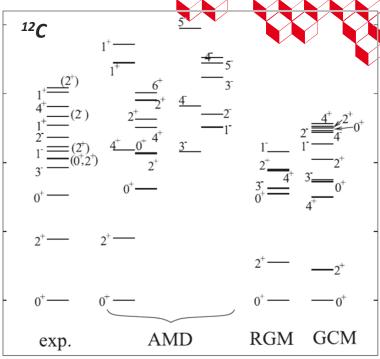
- Cluster approximation : assume that A nucleons organize into N clusters
- ⇒Impose a specific form for the nucleus total wavefunction
 - --> Resonating group method (Wheeler, Descouvement, ...)
 - --> Generator Coordinate Method with Bloch-Brink cluster WF (Descouvement, Dufour, ...)

$$\Phi_{\mathrm{BB}}(\boldsymbol{S}_{1},\ldots,\boldsymbol{S}_{k}) = n_{0}\mathcal{A}\left\{\psi(C_{1};\boldsymbol{S}_{1})\cdots\psi(C_{k};\boldsymbol{S}_{k})\right\}$$
 Written in terms of HO WF

$$\Psi_{\mathrm{GCM}} = \int d\mathbf{S}_1, \dots, d\mathbf{S}_k f(\mathbf{S}_1, \dots, \mathbf{S}_k)$$

$$\times P_{MK}^{J\pi} \Phi_{\mathrm{BB}}(\mathbf{S}_1, \dots, \mathbf{S}_k),$$





20

15

10

0

(MeV)

Excitation Energy

- ◆ Cluster approximation: assume that A nucleons organize into N clusters
 ⇒ Impose a specific form for the nucleus total wavefunction
 - --> Resonating group method (Wheeler, Descouvemont, ...) : For 2 clusters $\Psi_{
 m RGM}=\mathcal{A}\left\{\phi(C_1)\phi(C_2)\chi(m{\xi})
 ight\}$
 - --> Generator Coordinate Method with Bloch-Brink cluster WF (Descouvement, Dufour, ...)

$$\Phi_{\mathrm{BB}}(\boldsymbol{S}_{1},\ldots,\boldsymbol{S}_{k}) = n_{0}\mathcal{A}\left\{\psi(C_{1};\boldsymbol{S}_{1})\cdots\psi(C_{k};\boldsymbol{S}_{k})\right\}$$

$$\Psi_{\mathrm{GCM}} = \int d\boldsymbol{S}_{1},\ldots,d\boldsymbol{S}_{k}f(\boldsymbol{S}_{1},\ldots,\boldsymbol{S}_{k})$$

$$\times P_{MK}^{J\pi}\Phi_{\mathrm{BB}}(\boldsymbol{S}_{1},\ldots,\boldsymbol{S}_{k}),$$

--> THSR WF (Tohsaki, Horiuchi, Schuck, Röpke, Funaki, Zhou,...)

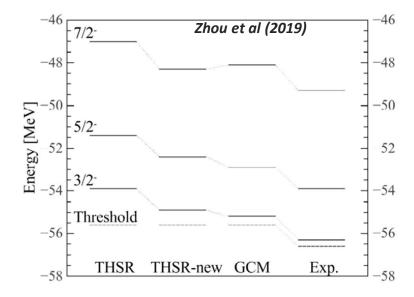


Fig. 49 Theoretical and experimental results of the energy spectrum of ⁹B [131].

$$\Phi_{THSR} = \mathscr{A} \left[\phi_{\alpha}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4) \phi_{\alpha}(\mathbf{r}_5, \mathbf{r}_6, \mathbf{r}_7, \mathbf{r}_8) \phi_{\alpha}(\mathbf{r}_{N-3}, \dots, \mathbf{r}_N) \right]$$

$$\phi_{\alpha}(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{4}) = e^{-\mathbf{R}^{2}/B^{2}} \phi(\mathbf{r}_{1} - \mathbf{r}_{2}, \mathbf{r}_{1} - \mathbf{r}_{3}, \dots)$$

$$\phi(\mathbf{r}_{1} - \mathbf{r}_{2}, \mathbf{r}_{1} - \mathbf{r}_{3}, \dots) = \exp(-[\mathbf{r}_{1} - \mathbf{r}_{2}, \mathbf{r}_{1} - \mathbf{r}_{3}, \dots]^{2}/b^{2})$$

Table 2 Comparison of the binding energies E, r.m.s. radii of matter $(R_{\rm rms})$, and monopole matrix elements $(M(0_2^+ \to 0_1^+))$ between calculated with the THSR wave function given by solving Hill-Wheeler equation, Eq. (20), calculated with the RGM/GCM wave function, and of the corresponding experimental data. $E_{3\alpha}^{\rm th}$ is the calculated 3α threshold energy. Force 1 and 2 denote Volkov No.1 [42] and slightly modified Volkov No.2 forces, respectively [2].

		Force 1, $(E_{3\alpha}^{\text{th.}} = -81.01 \text{ MeV})$		Force 2, $(E_{3\alpha}^{\text{th.}} = -82.04 \text{ MeV})$		
		${ m THSR}$ (Hill-Wheeler)	GCM	THSR (Hill-Wheeler)	RGM	Exp.
E (MeV)	0_{1}^{+}	-87.81	-87.9	-89.52	-89.4	-92.2
	0_{2}^{+}	-79.97	-79.3	-81.79	-81.7	-84.6
$R_{\rm rms}$ (fm)	0_{1}^{+}	2.40	2.40	2.40	2.40	2.44
	0_{2}^{+}	4.44	3.40	3.83	3.47	
$M(0_2^+ \to 0_1^+) \text{ (fm}^2)$		5.36	6.6	6.45	6.7	5.4

Cluster approximation: assume that A nucleons organize into N clusters ⇒Impose a specific form for the nucleus total wavefunction

• Don't assume that A nucleons organize into N clusters but still impose some restrictions on the shape of the wavefunction: AMD/FMD

$$\Phi_{\text{AMD}}(\mathbf{Z}) = \frac{1}{\sqrt{A!}} \mathscr{A}\{\varphi_1, \varphi_2, \dots, \varphi_A\} \qquad \mathbf{Z} \equiv \{X_{ni}, \xi_i\}$$

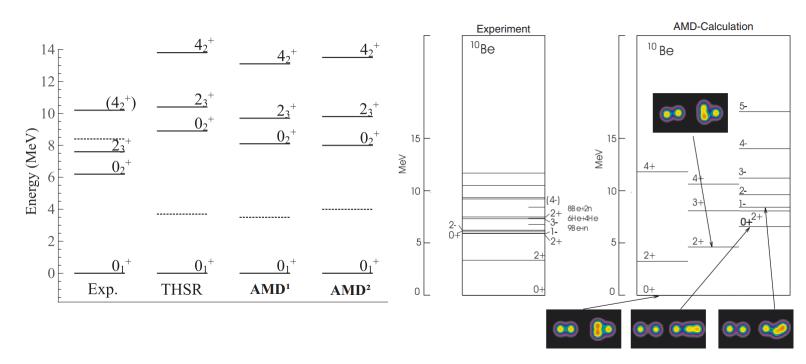
$$\mathbf{Z} \equiv \{X_{ni},\,\xi_i\}$$

$$\varphi_i = \phi_{\mathbf{X}_i} \chi_i \tau_i,$$

$$\phi_{\mathbf{X}_i}(\mathbf{r}_j) \propto \exp\left\{-v\left(\mathbf{r}_j - \frac{\mathbf{X}_i}{\sqrt{v}}\right)^2\right\},$$

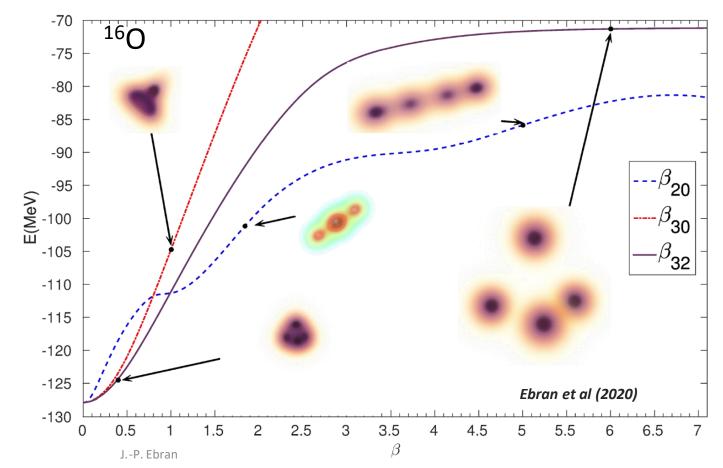
$$\chi_i = \left(\frac{1}{2} + \xi_i\right) \chi_{\uparrow} + \left(\frac{1}{2} - \xi_i\right) \chi_{\downarrow},$$

$$\Phi = P_{MK'}^{J\pm} \Phi_{\text{AMD}}(\mathbf{Z})$$



Kanada-En'yo (2006)

- ◆ Cluster approximation: assume that A nucleons organize into N clusters
 ⇒ Impose a specific form for the nucleus total wavefunction
- Don't assume that A nucleons organize into N clusters but still impose some restrictions on the shape of the wavefunction: AMD/FMD
- Don't assume that A nucleons organize into N clusters and use horizontal expansion (look for a bosonic order parameter whose fluctuations cause nucleons to aggregate into clusters): can be done in both ab initio and EDF



Horizontal expansion

HFB treatment

 \rightarrow A-nucleon problem \rightarrow A 1-nucleon problems

Correlated Anucleon wavefunction

Symmetry-conserving A independent nucleons wavefunction

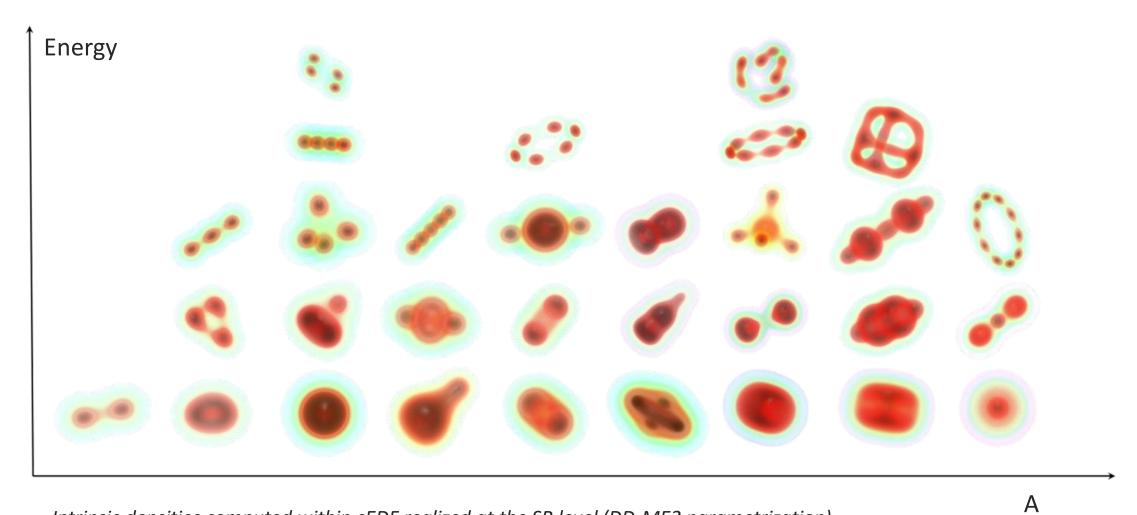
Symmetry-breaking A independent nucleons wavefunction

 $(|\mathbf{q}_0|, \varphi_0)$

→ SSB: Efficient way for capturing so-called static correlations

Nuclear clustering at the SR level

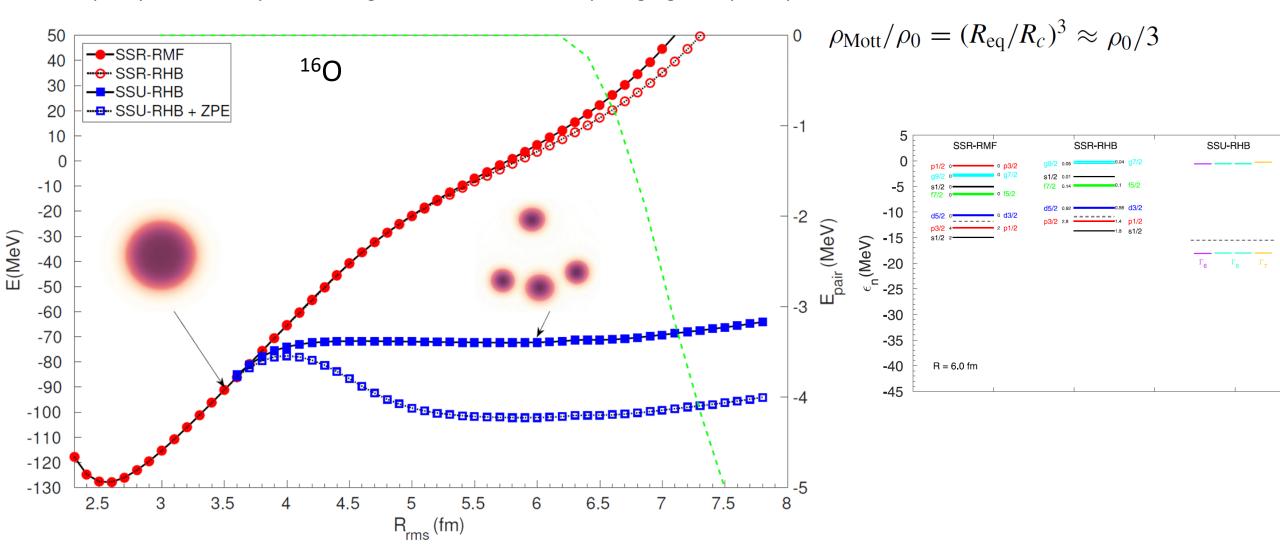
• Clustering = nucleons clumping together into sub-groups within the nucleus



Intrinsic densities computed within cEDF realized at the SR level (DD-ME2 parametrization)

Quantum Mott-like phase transition

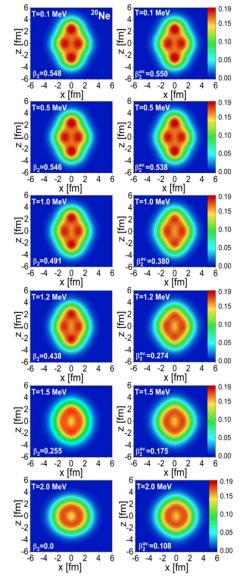
• Isotropically inflate ¹⁶O by constraining its r.m.s. radius while imposing a global quadrupole moment to be zero



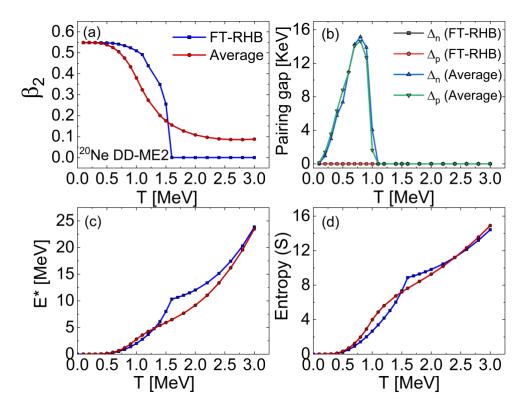
PhyNuBE II J.-P. Ebran

Thermal phase transition

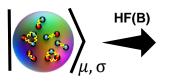
• Isotropically inflate ¹⁶O by constraining its r.m.s. radius while imposing a global quadrupole moment to be zero

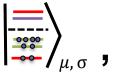


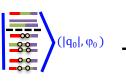
$$\overline{O} = \frac{\int d\beta_2 O(\beta_2, T) \exp(-\Delta F(\beta_2, T)/T)}{\int d\beta_2 \exp(-\Delta F(\beta_2, T)/T)}.$$



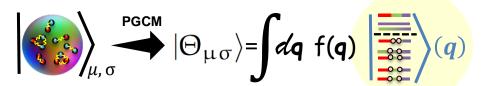
- HFB treatment
- \rightarrow A-nucleon problem \rightarrow A 1-nucleon problems

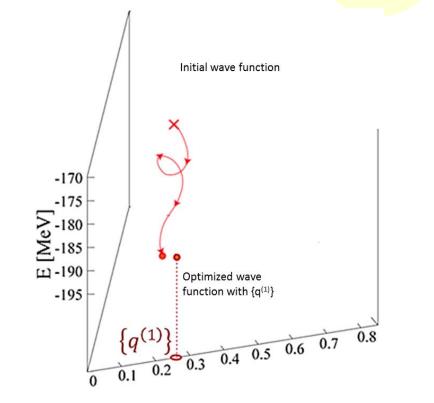






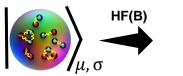
HFB constrained calculations

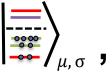


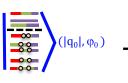


- Post-HFB treatment : PGCM
- --> Symmetry-conserving (non orthogonal) mixture of symmetry-breaking HFB vacua

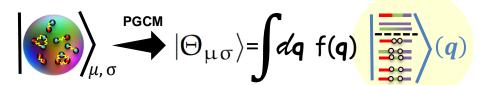
- HFB treatment
- \rightarrow A-nucleon problem \rightarrow A 1-nucleon problems







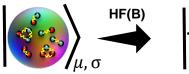
HFB constrained calculations

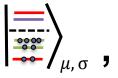


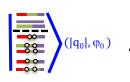
-170 -180 -185 பு -190 -195

- Post-HFB treatment : PGCM
- --> Symmetry-conserving (non orthogonal) mixture of symmetry-breaking HFB vacua

- HFB treatment
- \rightarrow A-nucleon problem \rightarrow A 1-nucleon problems

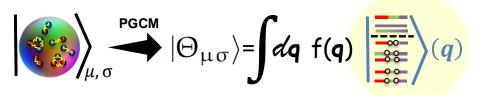


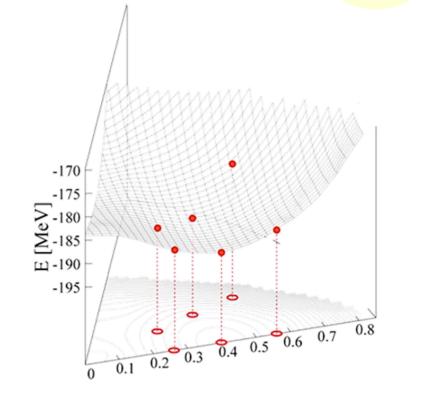




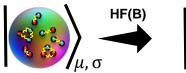
HFB constrained calculations

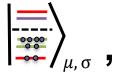
- Post-HFB treatment : PGCM
- --> Symmetry-conserving (non orthogonal) mixture of symmetry-breaking HFB vacua

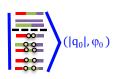




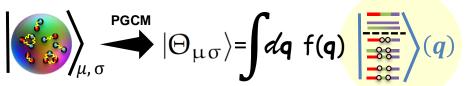
 \rightarrow A-nucleon problem \rightarrow A 1-nucleon problems

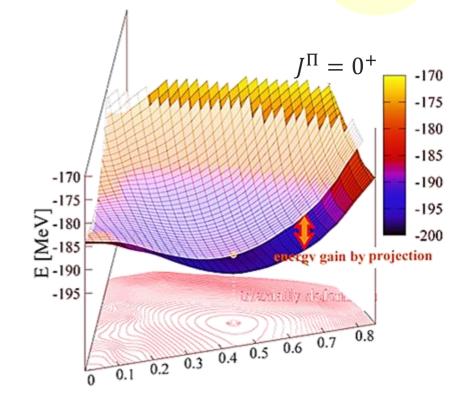




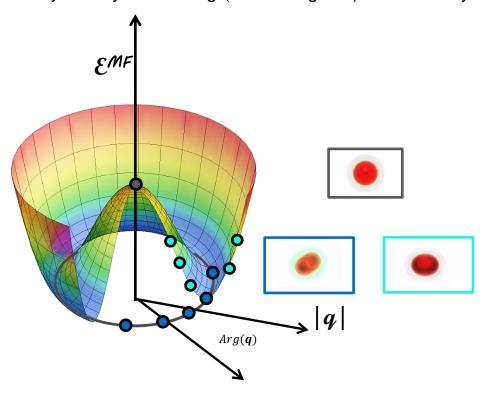


HFB constrained calculations

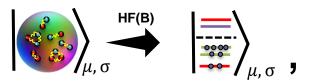


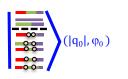


--> Symmetry-conserving (non orthogonal) mixture of symmetry-breaking HFB vacua

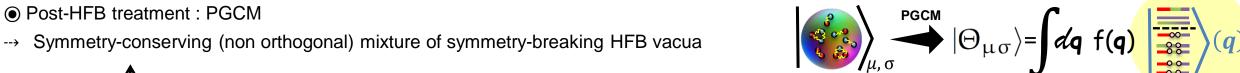


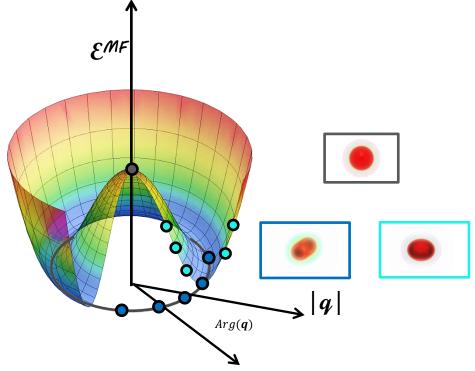
 \rightarrow A-nucleon problem \rightarrow A 1-nucleon problems

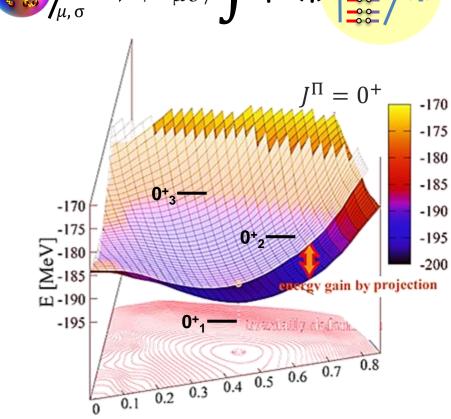




HFB constrained calculations

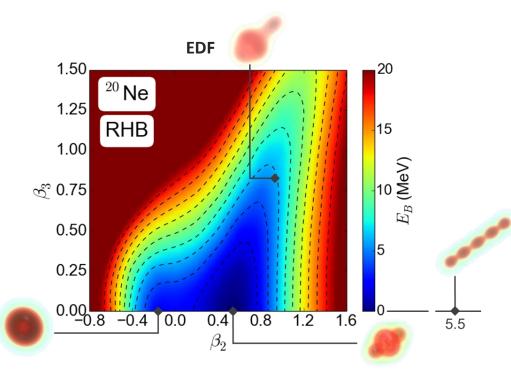






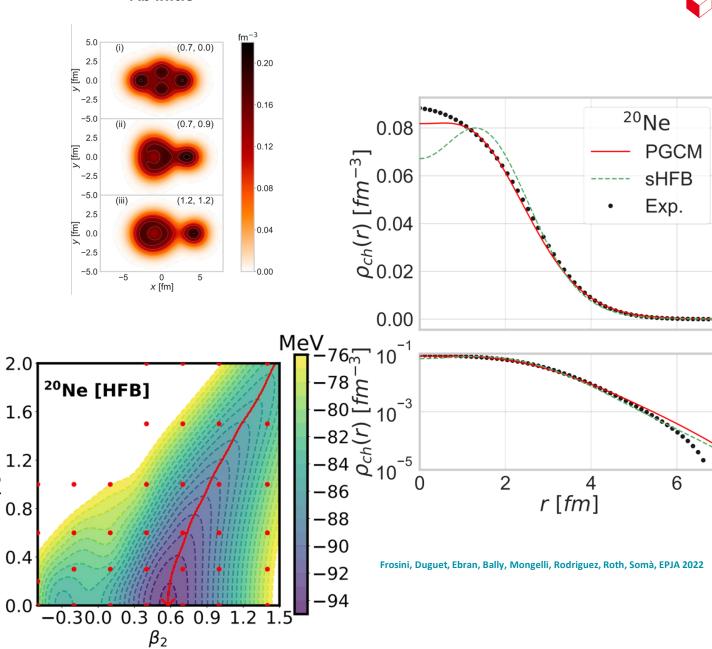
Nuclear clustering & PGCM

Correlated GS



Marevic, Ebran, Khan, Niksic, Vretenar, PRC 97 (2018)

Ab initio

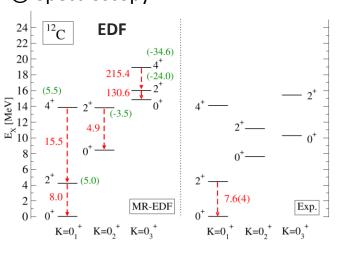


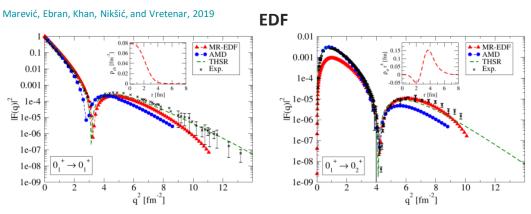
42

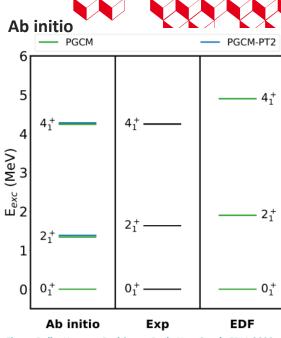
PhyNuBE II J.-P. Ebran

 β_3

Nuclear clustering & PGCM

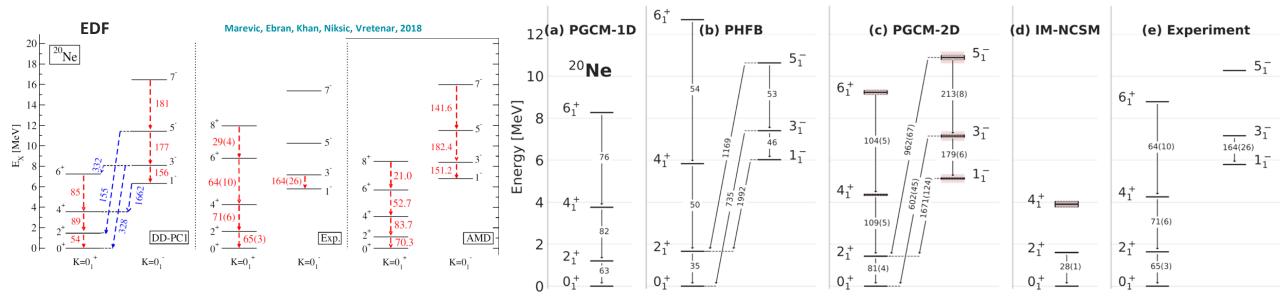






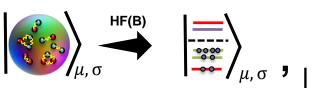
Frosini, Duguet, Ebran, Bally, Hergert, Rodriguez, Roth, Yao, Somà, EPJA 2022

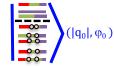
Ab initio



Frosini, Duguet, Ebran, Bally, Mongelli, Rodriguez, Roth, Somà, EPJA 2022

- HFB treatment
- \rightarrow A-nucleon problem \rightarrow A 1-nucleon problems



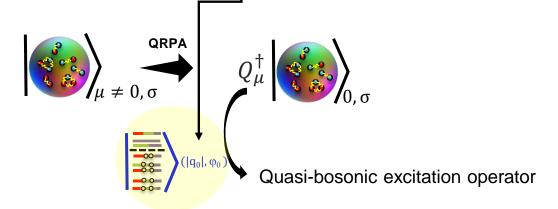


- Post-HFB treatment : PGCM
- --> Symmetry-conserving (non orthogonal) mixture of symmetry-breaking HFB vacua

HFB calculation

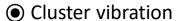
 $|\Theta_{\mu\sigma}\rangle = \int d\mathbf{q} \ f(\mathbf{q})$

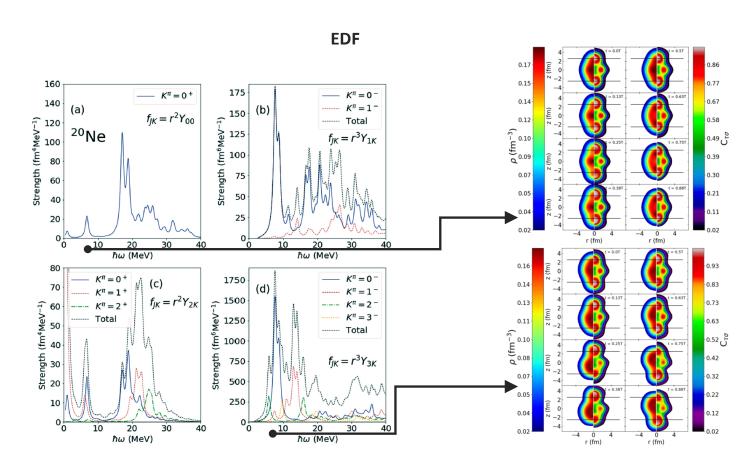
- Post-HFB : QRPA
- --> Excitations = coherent mixture of 2-qp excitations
- --> Harmonic limit of the GCM



PhyNuBE II

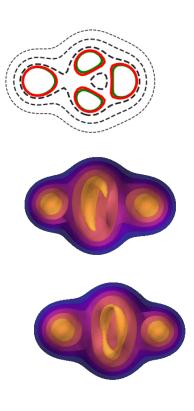
Nuclear clustering & QRPA





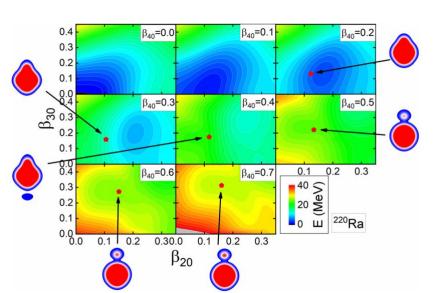
Mercier, Bjelčić, Nikšić, Ebran, Khan, Vretenar 2021 Mercier, Ebran, Khan 2022

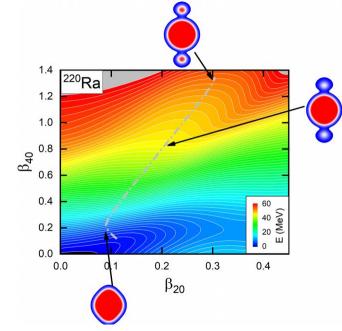
Ab initio

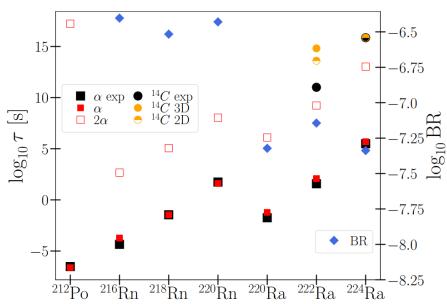


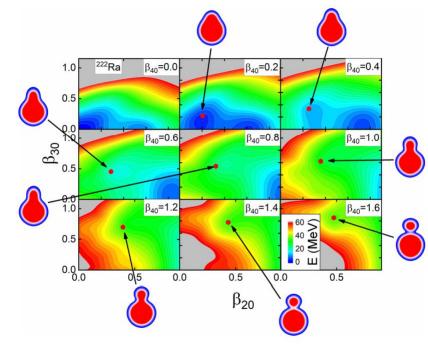
Ab initio QFAM time-dependent intrinsic density Frosini, Ebran, Duguet, Somà, unpublished

Cluster, α and 2α radioactivities









Zhao , Ebran, Heitz , Khan , Mercier, Nikšic, Vretenar (2023)

Capture clustering in a microscopic framework

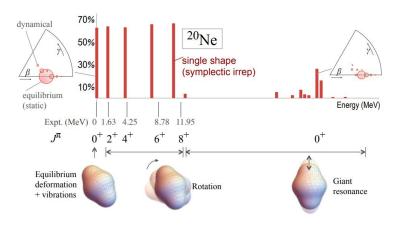
- Cluster approximation: assume that A nucleons organize into N clusters ⇒Impose a specific form for the nucleus total wavefunction
- Don't assume that A nucleons organize into N clusters but still impose some restrictions on the shape of the wavefunction: AMD/FMD
- Don't assume that A nucleons organize into N clusters and use horizontal expansion (look for a bosonic order parameter whose fluctuations cause nucleons to aggregate into clusters): can be done in both ab initio and EDF
- Don't assume that A nucleons organize into N clusters and use vertical expansion

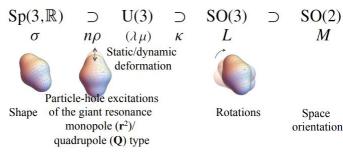
J.-P. Ebran PhyNuBE II

Symmetry-adapted NCSM

• Exploits approximate symmetry of the collective nuclear many-body dynamics to reorganize the model space into a physically relevant basis

⇒ Tames down the scaling explosion problem of NCSM





SO(2)

M

Space

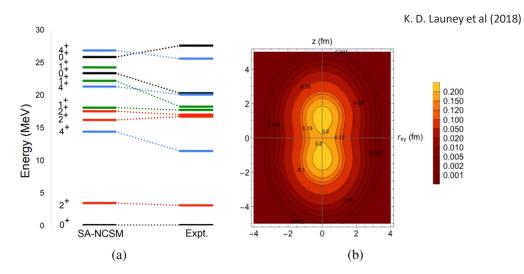


FIGURE 2. (a) Energy spectrum of ⁸Be, calculated in the *ab initio* SA-NCSM and compared to experiment. (b) The corresponding one-body density profile (in the body-fixed frame) of the ⁸Be ground state (gs) clearly reveals two alpha clusters. SA-NCSM calculations are performed using the realistic JISP16 NN [25] in a model space of 14 HO major shells ($\hbar\Omega = 20$ MeV).

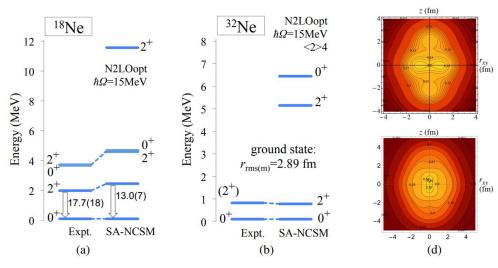


FIGURE 3. Ab initio SA-NCSM calculations using the chiral NNLO_{opt} NN [26] in ultra-large model spaces ($\hbar\Omega = 15$ MeV). Energy spectrum of (a) ¹⁸Ne in 9 HO major shells, along with the $B(E2; 2^+ \to 0^+)$ strength in W.u. reported for 33 shells, and (b) ³²Ne in 7 shells. (c) Density profile of the gs of ²⁰Ne (top) and ⁴⁸Ti (bottom). Simulations are performed on the Blue Waters system.

cea

NCSMC

- Exploits approximate symmetry of the collective nuclear many-body dynamics to reorganize the model space into a physically relevant basis
- ⇒ Tames down the scaling explosion problem of NCSM

NCSM.

$$\left|\Psi_{A}^{J^{\pi}T}\right\rangle = \sum_{Ni} c_{Ni} \left|ANiJ^{\pi}T\right\rangle$$

NCSM/RGM

$$|\Psi_A^{J^{\pi}T}\rangle = \sum_{\nu} \int d\vec{r} \chi_{\nu}(\vec{r}) \hat{A} \Phi_{\nu \vec{r}}^{J^{\pi}T(A-a,a)}$$

$$\mathcal{H}\chi = E\mathcal{N}\chi$$

$$\bar{\chi} = \mathcal{N}^{+\frac{1}{2}} \chi$$

$$(\mathcal{N}^{-\frac{1}{2}}\mathcal{H}\mathcal{N}^{-\frac{1}{2}})\bar{\chi} = E\bar{\chi}$$

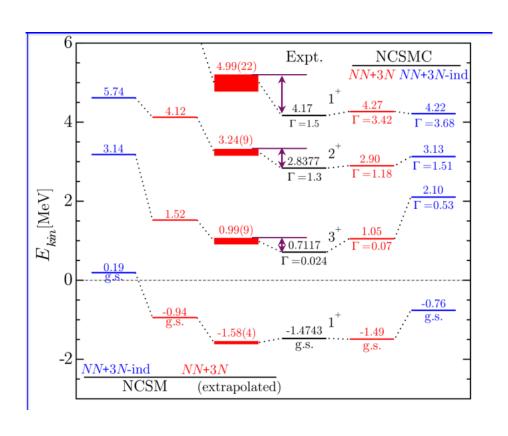
NCSMC

S. Baroni, P. N., and S. Quaglioni, PRL **110**, 022505 (2013); PRC **87**, 034326 (2013).

$$|\Psi_A^{J^{\pi}T}\rangle = \sum_{\lambda} c_{\lambda} |A\lambda J^{\pi}T\rangle + \sum_{\nu} \int d\vec{r} \left(\sum_{\nu'} \int d\vec{r}' \mathcal{N}_{\nu\nu'}^{-\frac{1}{2}}(\vec{r}, \vec{r}') \bar{\chi}_{\nu'}(\vec{r}') \right) \hat{A} \Phi_{\nu\vec{r}}^{J^{\pi}T(A-a,a)}$$

$$\begin{pmatrix} H_{NCSM} & \bar{h} \\ \bar{h} & \mathcal{N}^{-\frac{1}{2}} \mathcal{H} \mathcal{N}^{-\frac{1}{2}} \end{pmatrix} \begin{pmatrix} c \\ \bar{\chi} \end{pmatrix} = E \begin{pmatrix} 1 & \bar{g} \\ \bar{g} & 1 \end{pmatrix} \begin{pmatrix} c \\ \bar{\chi} \end{pmatrix}$$

Hupin et al (2015)



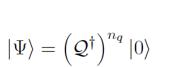
PhyNuBE II

Capture clustering in a microscopic framework

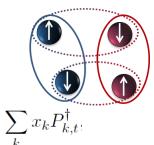
- Cluster approximation : assume that A nucleons organize into N clusters ⇒Impose a specific form for the nucleus total wavefunction
- Don't assume that A nucleons organize into N clusters but still impose some restrictions on the shape of the wavefunction: AMD/FMD
- Don't assume that A nucleons organize into N clusters and use horizontal expansion (look for a bosonic order parameter whose fluctuations cause nucleons to aggregate into clusters): can be done in both ab initio and EDF
- Don't assume that A nucleons organize into N clusters and use vertical expansion
- Don't assume that A nucleons organize into N clusters and consider in-medium C-body wavefunctions: QCM, Green's function theory, ...

J.-P. Ebran PhyNuBE II

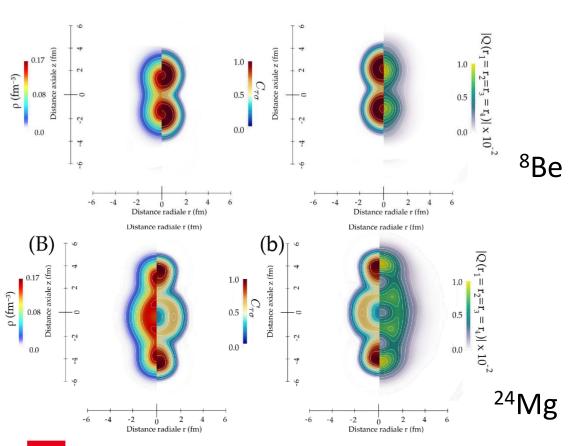
QMC

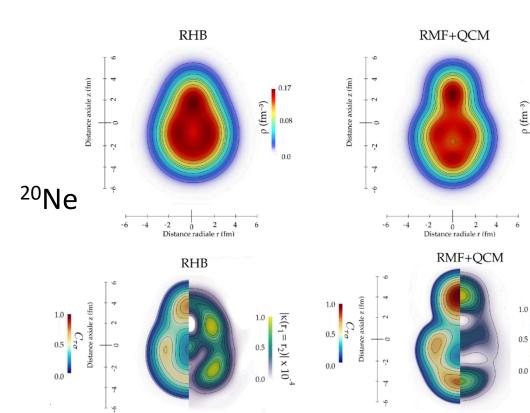


$$Q^{\dagger} = 2\Gamma_1^{\dagger} \Gamma_{-1}^{\dagger} - \left(\Gamma_0^{\dagger}\right)^2 \qquad \Gamma_t^{\dagger} = \sum_k x_k P_{k,t}^{\dagger}.$$

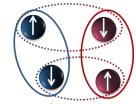


Lasseri, Ebran, Khan, Sandulescu





Quartet BCS-like theory



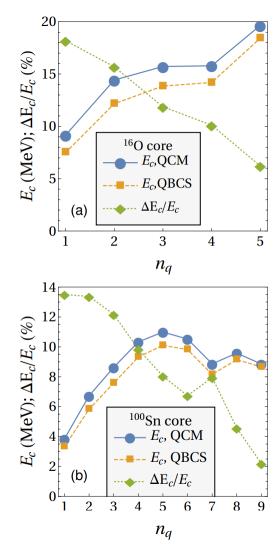
$$|\Psi\rangle = \left(\mathcal{Q}^{\dagger}\right)^{n_q}|0\rangle$$

$$|\Psi\rangle = \left(\mathcal{Q}^{\dagger}\right)^{n_q}|0\rangle$$
 $\qquad \mathcal{Q}^{\dagger} = 2\Gamma_1^{\dagger}\Gamma_{-1}^{\dagger} - \left(\Gamma_0^{\dagger}\right)^2 \qquad \Gamma_t^{\dagger} = \sum_k x_k P_{k,t}^{\dagger}$

Lasseri, Ebran, Khan, Sandulescu

$$|QBCS\rangle \equiv \exp(Q^{\dagger})|0\rangle = \sum_{n=0}^{N_{\text{lev}}} \frac{1}{n!} (Q^{\dagger})^n |0\rangle$$

Baran, Delion, 2019

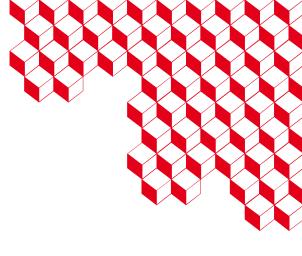


PhyNuBE II

Conclusion

- Capturing nucleons correlations governing clustering is challenging
- If one is interested to states with well developed clusters : clusters + nucleons or nucleons as relevant dofs
- Clustering correlations seem to play a role in structural properties of compact states (seeds for clusterinsation already there): nucleons as relevant dofs Tame down the complexity of treating corresponding correlations by:
- i) Presupposing that nucleons arrange into clusters (RGM, BB-GCM, THSR-GCM)
- ii) Imposing a localized gaussian form for nucleon wfs (AMD/FMD)
- iii) Let the nucleons wfs be what they are, and catch correlations via horizontal expansion (symmetry breaking and restauration): ab initio and EDF PGCM/QRPA
- iv) Let the nucleons wfs be what they are, and catch correlations via symmetry-guided vertical expansion: SA-NCSM
- v) Let the nucleons wfs be what they are, catch correlations via vertical expansion, take into account arrangement into clusters: NCSMc, Gamow SM
- vi) Let the nucleons wfs be what they are, see how correlations translate into an in-medium 4-body wf: QCM, GF

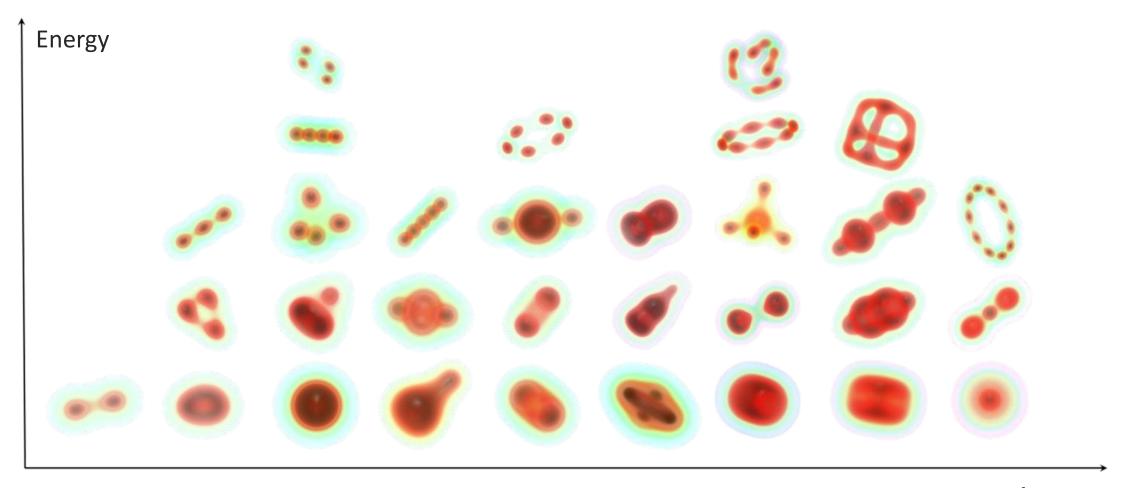
Cea PhyNuBE II



Thank you for your attention

1 Nuclear clustering

• Nuclear clustering = nucleons clumping together into sub-groups within the nucleus

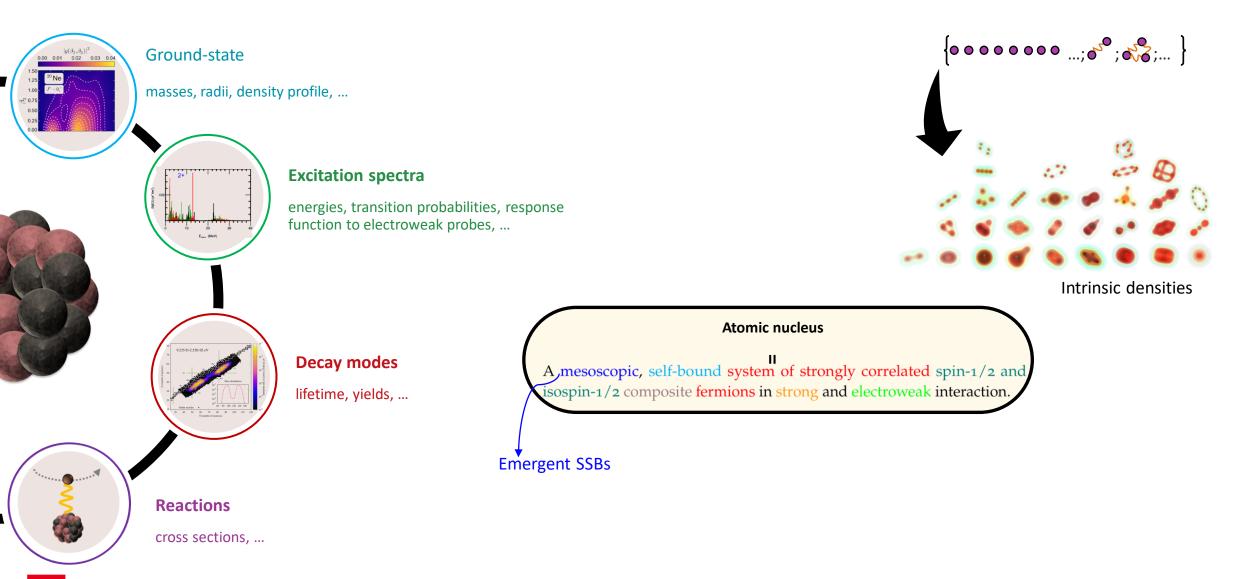


Intrinsic densities computed within cEDF realized at the SR level (DD-ME2 parametrization)

PhyNuBE II

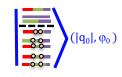
1 General goal of nuclear structure theory

• Starting from the hadronic level of organization (nucleons + interactions), what novel structures emerge and how they evolve with E_{ex}, N, Z, ...



The Energy Density Functional Method

- HFB treatment
- \rightarrow A-nucleon problem \rightarrow A 1-nucleon problems

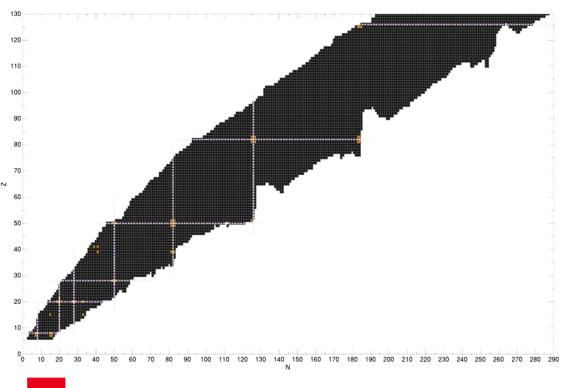


Correlated Anucleon wavefunction

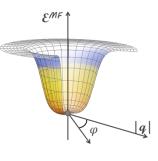
Symmetry-conserving A independent nucleons wavefunction

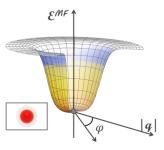
Symmetry-breaking A independent nucleons wavefunction

--> SSB: Efficient way for capturing so-called static correlations



Symmetry-restriced HF: good description of GS of doubly closedshell nuclei & neighbors (~30 nuclei)

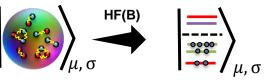


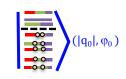


PhyNuBE II

The Energy Density Functional Method

- HFB treatment
- \rightarrow A-nucleon problem \rightarrow A 1-nucleon problems



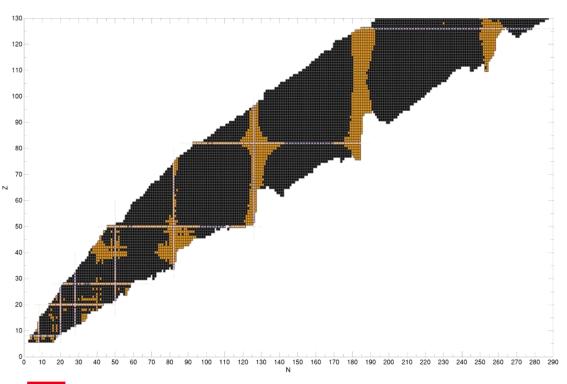


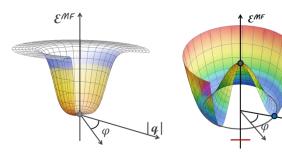
Correlated Anucleon wavefunction

Symmetry-conserving A independent nucleons wavefunction

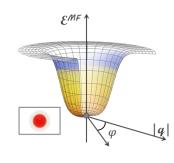
Symmetry-breaking A independent nucleons wavefunction

--> SSB: Efficient way for capturing so-called static correlations





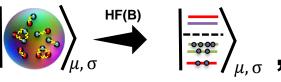
Spatial symmetry-restricted HFB: good description of GS of doubly and singly closed-shell nuclei & neighbors (~300 nuclei)



<u>cea</u>

The Energy Density Functional Method

- HFB treatment
- \rightarrow A-nucleon problem \rightarrow A 1-nucleon problems



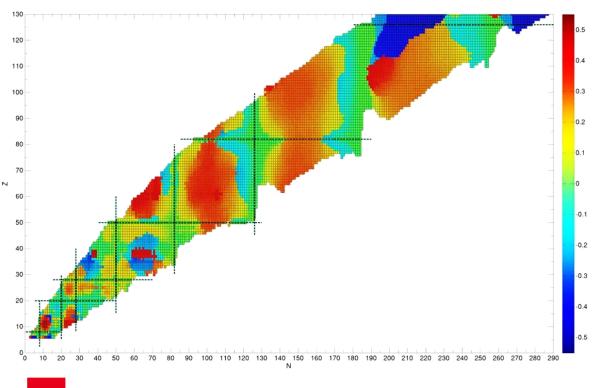
Correlated Anucleon wavefunction

Symmetry-conserving A independent nucleons wavefunction

-00 88 $(|\mathbf{q}_0|, \mathbf{\varphi}_0)$

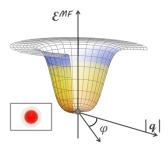
Symmetry-breaking A independent nucleons wavefunction

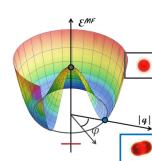
Efficient way for capturing so-called static correlations



Symmetry-unrestricted HFB: good description of GS of all

nuclei

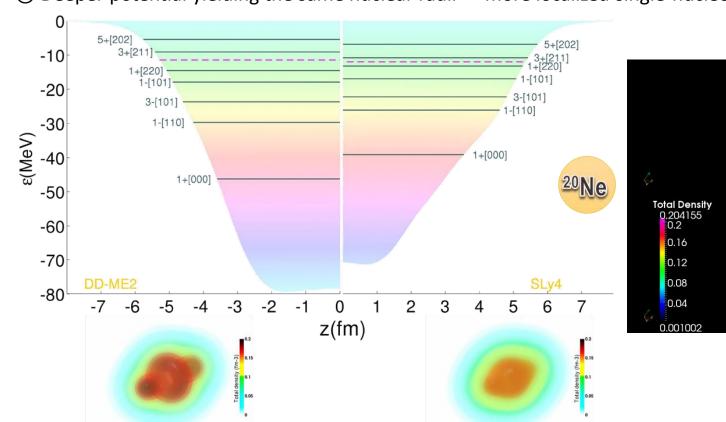


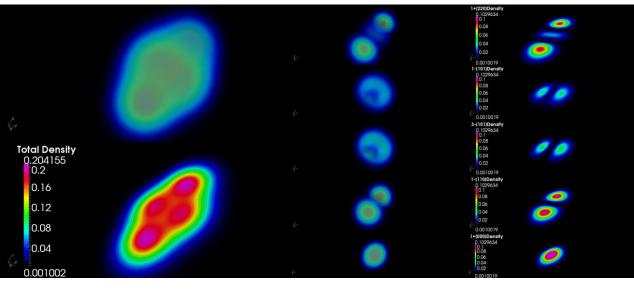


PhyNuBE II

Effect of the depth of the confining potential

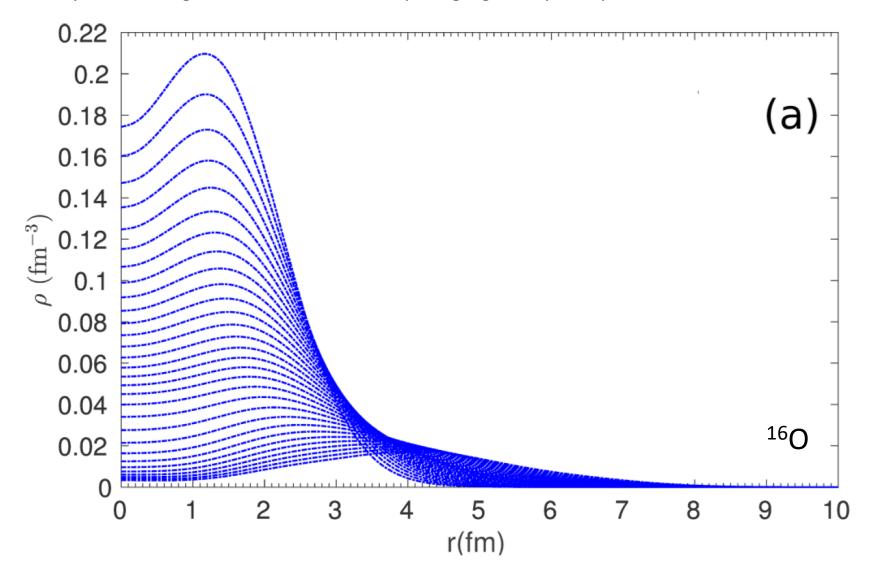
● Deeper potential yielding the same nuclear radii ⇒ more localized single-nucleon orbitals





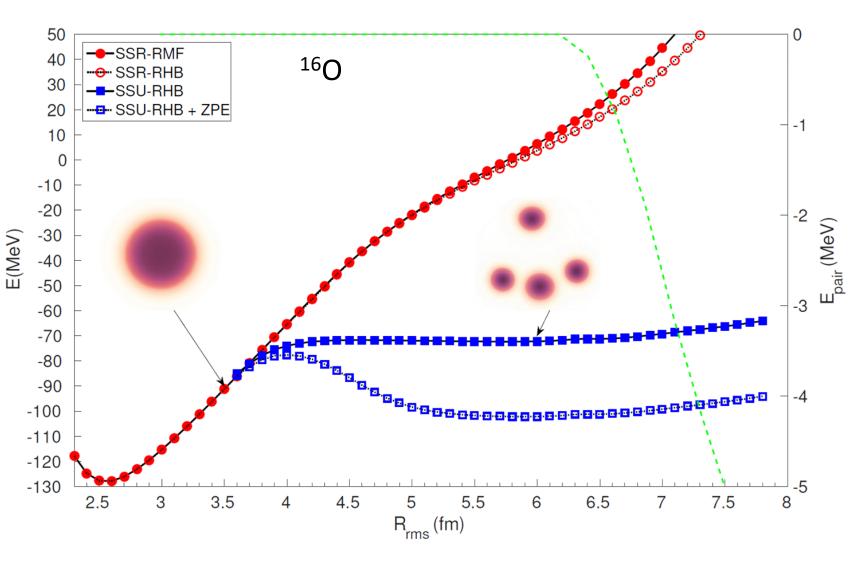
(•) When Coulomb effects are not too important and owing to Kramers degeneracy, proton \uparrow , proton \downarrow , neutron \uparrow , neutron \downarrow share the same spatial properties

• Isotropically inflate ¹⁶O by constraining its r.m.s. radius while imposing a global quadrupole moment to be zero

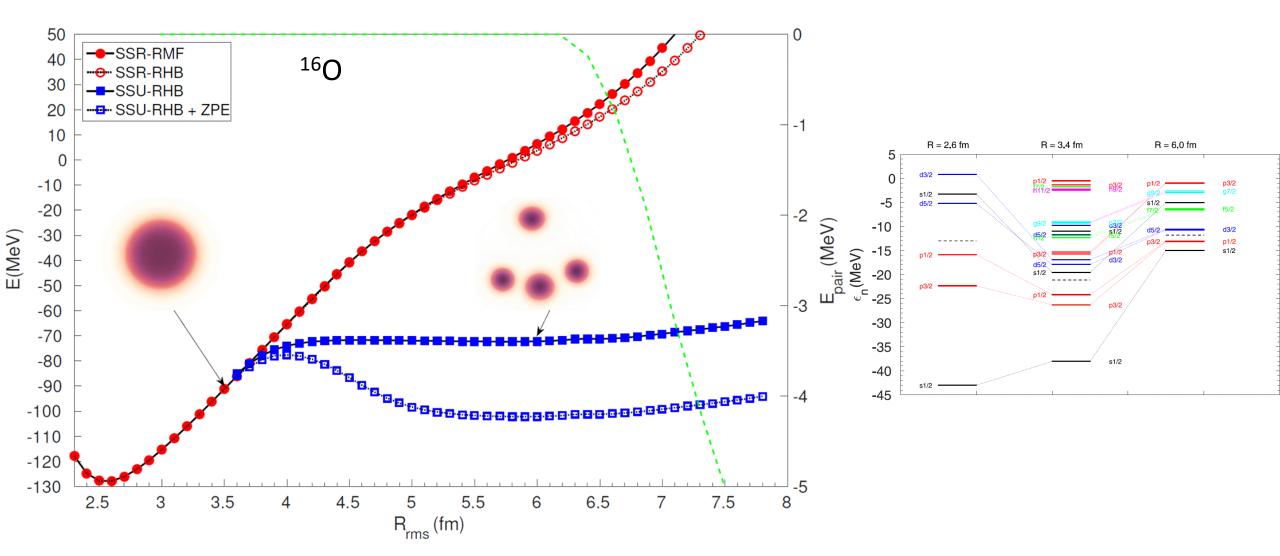


PhyNuBE II

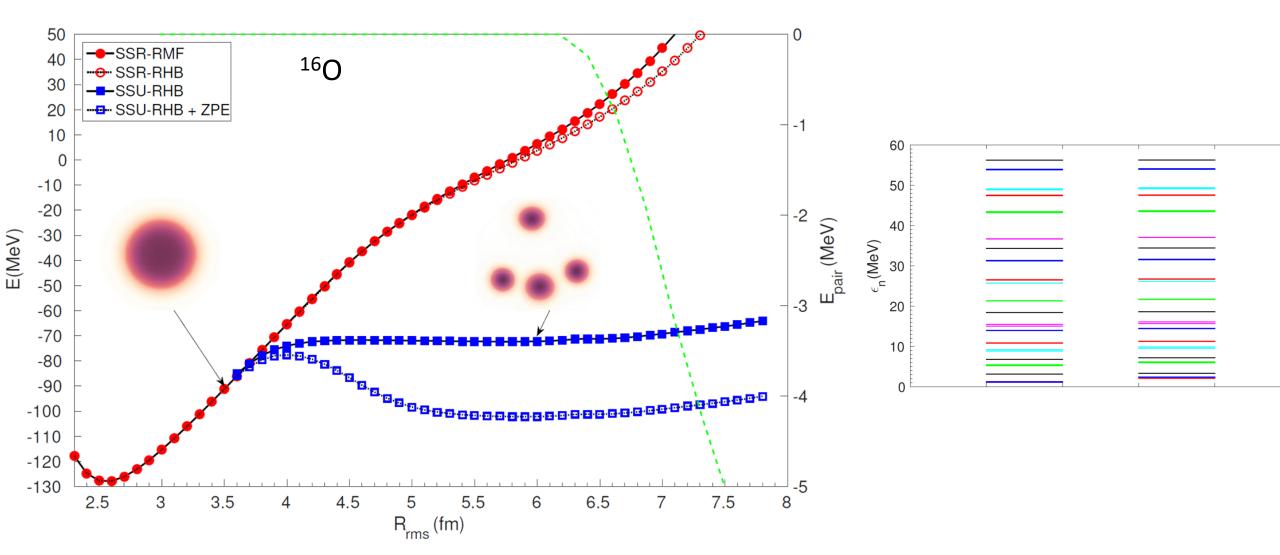
• Isotropically inflate ¹⁶O by constraining its r.m.s. radius while imposing a global quadrupole moment to be zero



• Isotropically inflate ¹⁶O by constraining its r.m.s. radius while imposing a global quadrupole moment to be zero

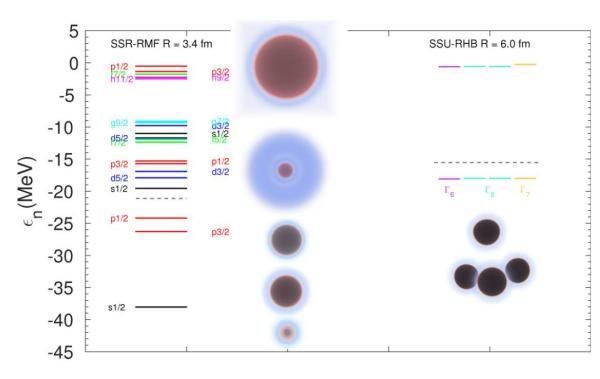


• Isotropically inflate ¹⁶O by constraining its r.m.s. radius while imposing a global quadrupole moment to be zero

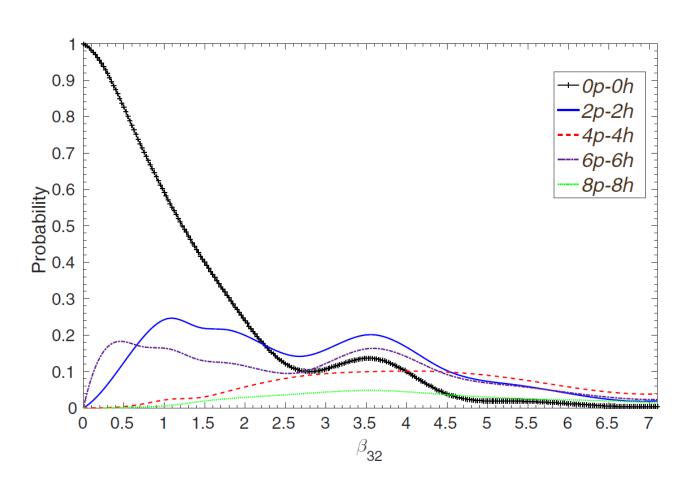


PhyNuBE II

• mp-mh content of a tetrahedrally-deformed Slater determinant



Symmetry breaking : $O(3) \rightarrow Td$



LCAO-MO

 \odot Borrowing the LCAO-MO language, on can think of the 16O thetrahedrally-deformed SD as a MO built from 4 1s α AOs

$$\psi_i = \sum_{j=1}^4 f_j^i \phi_j$$

• Find the unknowns f in the Hückel approximation :

$$\mathcal{N}_{ij}=0 orall i,j$$
 $\epsilon\equiv\mathcal{H}_{ii}$; $-\mu\equiv\mathcal{H}_{ij}$ for adjacent i,j ; $\mathcal{H}_{ij}=0$ otherwise

$$\begin{pmatrix} \epsilon & -\mu & -\mu & -\mu \\ -\mu & \epsilon & -\mu & -\mu \\ -\mu & -\mu & \epsilon & -\mu \\ -\mu & -\mu & -\mu & \epsilon \end{pmatrix} \begin{pmatrix} f_1^i \\ f_2^i \\ f_3^i \\ f_4^i \end{pmatrix} = E_i \begin{pmatrix} f_1^i \\ f_2^i \\ f_3^i \\ f_4^i \end{pmatrix}$$

$$\psi_{1} = \frac{1}{2} (\phi_{1} + \phi_{2} + \phi_{3} + \phi_{4}) \quad E_{1} = \epsilon - 3\mu$$

$$\psi_{2} = \frac{1}{\sqrt{2}} (-\phi_{1} + \phi_{2}) \qquad E_{2} = \epsilon + \mu$$

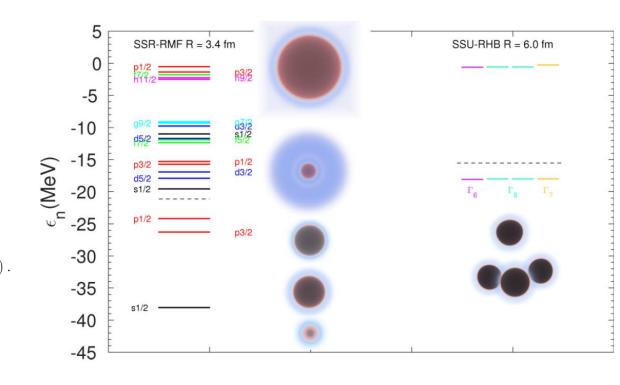
$$\psi_{3} = \frac{1}{\sqrt{2}} (-\phi_{1} + \phi_{3}) \qquad E_{3} = E_{2}$$

$$\psi_{4} = \frac{1}{\sqrt{2}} (-\phi_{1} + \phi_{4}) \qquad E_{4} = E_{3} = E_{2}$$

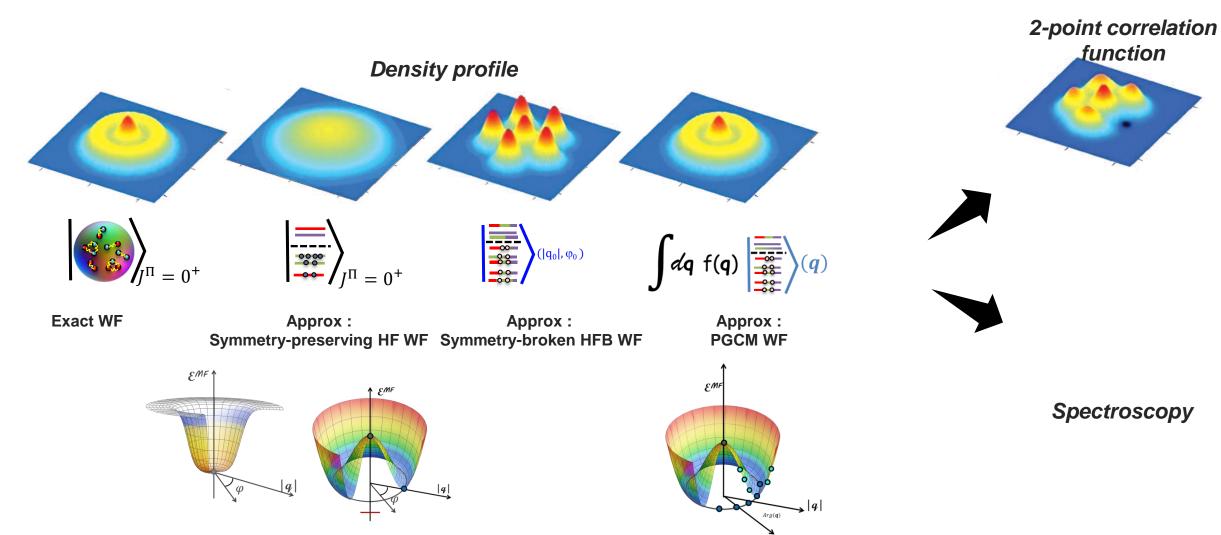
$$\psi'_{4} = \frac{1}{2} (-\phi_{1} + \phi_{2} - \phi_{3} + \phi_{4}), \qquad \phi''_{4} = \frac{1}{2} (-\phi_{1} + \phi_{2} - \phi_{3} + \phi_{4}).$$

$$\psi'_{4} = \frac{1}{2} (-\phi_{1} + \phi_{2} - \phi_{3} + \phi_{4}).$$

$$\psi'_{4} = \frac{1}{2} (-\phi_{1} + \phi_{2} - \phi_{3} + \phi_{4}).$$



Nuclear clustering & PGCM



Yannouleas & Landman, 2017

Nuclear clustering & PGCM

