Feasibility study of $B^0 \to K^{*0} \tau \tau$ at FCC-*ee*

Tristan Miralles - FCC Clermont group

Beauty Clermont-Ferrand: 4th of July

Analysis workflow

- Third generation couplings in quark transitions are the less-well known.
- Specific models addressing the Flavour problem(s) often provide $b \rightarrow \tau$ enhancements or modifications w.r.t. the SM $\Rightarrow b \rightarrow s\tau\tau \ (m_{\tau} \sim 20m_{\mu})$ is a must do to sort out the BSM models [1, 2]. Problem : measuring the ν 's.
- Study of the rare heavy-flavoured decay $B^0 \rightarrow K^* \tau^+ \tau^-$ [3]. SM prediction : BR= $\mathcal{O}(10^{-7}) \rightarrow$ not observed yet (present limit : $\mathcal{O}(10^{-3} - 10^{-4})$ [4]).
- Work focused on the 3-prongs τ decays $(\tau \rightarrow \pi \pi \pi \nu)$ for which the decay vertex can be reconstructed in order to solve fully the kinematics.
- 10 particles in the final state (K, 7π, ν, ν̄),
 3 decay vertices and 2 undetected neutrinos.

Figure – EW penguin quark-level transition and $B^0 \rightarrow K^{*0}\tau\tau$ with $\tau \rightarrow \pi\pi\pi\nu$ decay topology.

- The Future Circular Collider is a collider project at CERN as successor of HL-LHC.
- Circumference : about 91 km.
- FCC-*ee* is the first phase of the project with *ee* collision.
- 4 interaction points in the FCC-*ee* baseline and 4 data taking years at the Z pole $\rightarrow N_Z = 6 \times 10^{12}$.
- FCC-*ee* : combined clear experimental environment (like *B*-factories), boosted *b* hadrons (like *LHC*) and a high *Z* bosons statistic \Rightarrow it looks like the right place to reconstruct the ν 's and to study $B^0 \rightarrow K^{*0}\tau\tau$.

Figure – FCC plan and FCC-*ee* comparison in term of luminosity comparing to other projects.

Goal : explore the feasibility of the search for $B^0 \to K^* \tau^+ \tau^-$ at FCC-*ee* and give the corresponding detector requirements.

Analysis workflow ●○

Context

- $\bullet\,$ To fully reconstruct the kinematics of the decay \rightarrow neutrinos momenta must be resolved.
- Enough constraints are available in order to determine the missing coordinates.
- Energy momentum conservation at τ decay vertex \Rightarrow gives the neutrino momentum at the cost of a quadratic ambiguity :

$$\begin{cases} p_{\nu_{\tau}}^{\perp} = -p_{\pi_{t}}^{\perp} \\ p_{\nu_{\tau}}^{\parallel} = \frac{((m_{\tau}^{2} - m_{\pi_{t}}^{2}) - 2p_{\pi_{t}}^{\perp,2})}{2(p_{\pi_{t}}^{\perp,2} + m_{\pi_{t}}^{2})} . p_{\pi_{t}}^{\parallel} \pm \frac{\sqrt{(m_{\tau}^{2} - m_{\pi_{t}}^{2})^{2} - 4m_{\tau}^{2}p_{\pi_{t}}^{\perp,2}}}{2(p_{\pi_{t}}^{\perp,2} + m_{\pi_{t}}^{2})} . E_{\pi_{t}} \end{cases}$$

- A selection rule has to be build in order to solve the ambiguities.
- Practically energy-momentum conservation at the B decay vertex gives a condition between τ 's and K^* :

$$p_{\tau_{-}^{+}} = -\frac{\vec{p}_{K_{*}}^{\perp} \cdot \vec{e}_{\tau_{-}^{+}}}{1 - (\vec{e}_{\tau_{-}^{+}} \cdot \vec{e}_{B})^{2}} - p_{\tau_{+}^{-}} \cdot \frac{\vec{e}_{\tau_{-}^{+}} \cdot \vec{e}_{\tau_{+}^{-}} - (\vec{e}_{\tau_{-}^{+}} \cdot \vec{e}_{B})(\vec{e}_{\tau_{+}^{-}} \cdot \vec{e}_{B})}{1 - (\vec{e}_{\tau_{-}^{+}} \cdot \vec{e}_{B})^{2}}$$

• Method validated at MC truth level.

Results

Analysis workflow ○●

Backgrounds

Context

- Main backgrounds (similar final state to the signal) have been considered.
- XGBoost [5] selection applied in order to discriminate the backgrounds.
- Precision on the BF measurement extracted for several vertexing performance emulations from a fit to the reconstructed B⁰ invariant mass.

Decay	BF (SM/meas.)	Intermediate decay	BF_had	Additional missing particles
Backgrounds $b \rightarrow c\bar{c}s$:	(0,			
$B^{0} \to K^{*0}D_{s}D_{s}$	$2.78 imes10^{-4}$	$D_s ightarrow au u$	$5.79 imes 10^{-10}$	2ν
		$D_s \to \tau \nu, \pi \pi \pi \pi^0$	6.52×10^{-10}	ν,π ⁰
		$D_s \rightarrow \pi \pi \pi \pi^0$	7.35×10^{-10}	2π ⁰ ,
		$D_s \rightarrow \tau \nu, \pi \pi \pi \pi^{0} \pi^{0}$	$5.47 imes10^{-9}$	ν,2π ⁰
		$D_s ightarrow \pi \pi \pi 2 \pi^{0}$	$5.17 imes10^{-8}$	4π ⁰ ,
$B^{0} \rightarrow K^{*0} D_s D_s^*$	8.78×10^{-4}	$D_s ightarrow au u$	$1.83 imes10^{-9}$	$2\nu, \gamma/\pi^0$
5		$D_s o \pi \pi \pi \pi^{0} \pi^{0}$	$1.63 imes10^{-7}$	$4\pi^{0}, \gamma/\pi^{0}$
Backgrounds $b ightarrow c au u$:				
$B^{0} \rightarrow K^{*0}D_{s}\tau\nu$	$9.17 imes10^{-6}$	$D_s ightarrow au u$	$3.59 imes 10^{-10}$	2ν
$B^{0} \rightarrow K^{*0} D_{s}^{*} \tau \nu$	$2.03 imes10^{-5}$	$D_s o \pi \pi \pi \pi^{0} \pi^{0}$	7.51×10^{-9}	$ u$, γ , $2\pi^{0}$

- Hint of the signal with the state-of-the-art vertex detector (IDEA[6]).
- Improvement of the Impact Parameters measurement or on luminosity can improve the picture.
- On the other hand, considering leptonic τ decays improve the statistic → requires other methods for the reconstruction.

To fully reconstruct the kinematics of the decay (*B* invariant-mass observable for instance) we need :

- Momentum of all final particles including not detected neutrinos.
- The decay lengths (6 constraints) together with the tau mass (2 constraints) can be used to determine the missing coordinates (6 degrees of freedom).
- We use energy-momentum conservation at tertiary (or τ decay) vertex with respect to τ directionⁱ.

Figure – The dotted lines represent the non-reconstructed particles. The plain lines are the particles that can be reconstructed in the detector.

$$egin{split} p_{
u_{ au}}^{\perp} &= -p_{\pi_t}^{\perp} \ p_{
u_{ au}}^{\parallel} &= rac{((m_{ au}^2 - m_{\pi_t}^2) - 2p_{\pi_t}^{\perp,2})}{2(p_{\pi_t}^{\perp,2} + m_{\pi_t}^2)}. p_{\pi_t}^{\parallel} \pm rac{\sqrt{(m_{ au}^2 - m_{\pi_t}^2)^2 - 4m_{ au}^2 p_{\pi_t}^{\perp,2}}}{2(p_{\pi_t}^{\perp,2} + m_{\pi_t}^2)}. E_{\pi_t} \end{split}$$

i. Another way to do this computation is given by [7].

There is a quadratic ambiguity on each neutrino momentum !

- \rightarrow The ambiguities propagate to τ and B reconstructions
- \rightarrow 4 possibilities by taking all +/- combination for the two neutrinos
- \Rightarrow A selection rule is needed to choose the right possibility

 \longrightarrow From the energy-momentum conservation at the *B* decay vertex, we have a condition between the 2 taus and the *K** with respect to the *B* direction :

$$p_{\tau_{-}^{+}} = -\frac{\vec{p}_{K_{+}}^{\perp}.\vec{e}_{\tau_{-}^{+}}}{1 - (\vec{e}_{\tau_{-}^{+}}.\vec{e}_{B})^{2}} - p_{\tau_{+}^{-}}.\frac{\vec{e}_{\tau_{-}^{+}}.\vec{e}_{\tau_{+}^{-}} - (\vec{e}_{\tau_{-}^{+}}.\vec{e}_{B})(\vec{e}_{\tau_{+}^{-}}.\vec{e}_{B})}{1 - (\vec{e}_{\tau_{-}^{+}}.\vec{e}_{B})^{2}}$$

- Signal and dominant backgrounds generated with Pythia [8] and EvtGen [9].
- Reconstruction is performed with the FCC Analyses sw using Delphes [10] simulation featuring the IDEA [6] detector.
- Particles reconstruted with IDEA momentum resolution.
- To investigate vertexing detector requirements → secondary vertexing resolution working points emulated along longitudinal and transverse directions to the decaying particles w.r.t. expectations and IDEA baseline.
- XGBoost [5] selection applied in order to discriminate the backgrounds.
- Precision on the BF measurement extracted for each working point via a fit to the reconstructed B^0 mass.

Figure – Vertexing performances emulation and mass fit example.

- The relevant backgrounds are the ones with a similar final state than the signal $(K7\pi)$.
- Several possible modes in b → cc̄s and b → cτν transitionsⁱⁱ but often not observed to date ⇒ guesstimate of the branching fraction from phase space computation and use of analogies.
- Determination of the dominant backgrounds for the measurement by building per track efficiencies from already generated ones.

Decay	BF (SM/meas.)	Intermediate decay	BF_had	Additional missing particles
Signal : $B^{0} \to K^* \tau \tau$	$1.30 imes 10^{-7}$	$ au ightarrow \pi\pi\pi u$, $K^* ightarrow K\pi$	9.57×10^{-11}	
Backgrounds $b ightarrow c\bar{c}s$:				
$B^{0} \rightarrow K^{*0}D_sD_s$	$2.78 imes10^{-4}$	$D_s ightarrow au u$	$5.79 imes 10^{-10}$	2ν
		$D_s \rightarrow \tau \nu, \pi \pi \pi \pi^0$	6.52×10^{-10}	ν,π ⁰
		$D_s \to \pi \pi \pi \pi^0$	7.35×10^{-10}	2π ⁰ ,
		$D_s ightarrow au u, \pi \pi \pi^{0} \pi^{0}$	$5.47 imes10^{-9}$	$ u$, $2\pi^{m 0}$
		$D_s ightarrow \pi \pi \pi 2 \pi^{0}$	$5.17 imes10^{-8}$	4π ⁰ ,
$B^{0} \rightarrow K^{*0} D_s D_s^*$	8.78×10^{-4}	$D_s ightarrow au u$	$1.83 imes10^{-9}$	$2\nu, \gamma/\pi^{0}$
		$D_s o \pi \pi \pi \pi^{0} \pi^{0}$	$1.63 imes10^{-7}$	$4\pi^{0}$, γ/π^{0}
Backgrounds $b \rightarrow c \tau \nu$:				
$B^{0} \rightarrow K^{*0}D_{s}\tau\nu$	$9.17 imes10^{-6}$	$D_s ightarrow au u$	$3.59 imes 10^{-10}$	2ν
$B^{0} \rightarrow K^{*0}D_{s}^{*}\tau\nu$	$2.03 imes10^{-5}$	$D_s ightarrow \pi \pi \pi \pi^{f o} \pi^{f o}$	$7.51 imes 10^{-9}$	$ u$, γ , $2\pi^{0}$

ii. More details on backgrounds choices in appendix.

Appendix ○○○○●○○○○○○○

Extended background table

Decay	BF (SM/meas)	Intermediate decay	BF_had	Additional
Signal : $B^0 \rightarrow K^* \tau \tau$	1.30×10^{-7}	$\tau \rightarrow \pi \pi \pi \eta K^* \rightarrow K \pi$	9.57×10^{-11}	
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	1.50×10	, , , , , , , , , , , , , , , , , , ,	5.57 × 10	
$B^{0} \rightarrow K^{*0} D_{s} D_{s}$	$2.78 imes10^{-4}$	$D_s \rightarrow \tau \nu$	5.79× 10 ⁻¹⁰	2ν
5.5		$D_s ightarrow au u, \pi \pi \pi \pi^0$ iii	6.52×10^{-10}	$ u$, $\pi^{m 0}$
		$D_s ightarrow \pi \pi \pi \pi^{0iii}$	7.35×10^{-10}	2π ⁰ ,
		$D_s o au u, \pi \pi \pi \pi^{0} \pi^{0}$	$5.47 imes10^{-9}$	$ u$, $2\pi^{m 0}$
		$D_s ightarrow \pi \pi \pi 2 \pi^{0 iii}$	$5.17 imes 10^{-8}$	4π ⁰ ,
$B^{0} ightarrow K^{*0} D_s D_s^*$	8.78×10^{-4}	$D_s ightarrow au u$	$1.83 imes10^{-9}$	$2\nu, \gamma/\pi^{0}$
		$D_s \rightarrow \tau \nu, \pi \pi \pi \pi^0$	$2.06 imes 10^{-9}$	ν , π^{0} , γ/π^{0}
		$D_s o \pi \pi \pi \pi^{0}$	$2.32 imes10^{-9}$	$2\pi^{0}, \gamma/\pi^{0}$
		$D_s o \pi \pi \pi \pi^{0} \pi^{0}$	$1.63 imes10^{-7}$	$4\pi^{0}, \gamma/\pi^{0}$
$B^{0} ightarrow K^{*0}D^*_sD^*_s$	$9.10 imes10^{-4}$	$D_s \to \tau \nu$	$1.90 imes10^{-9}$	2ν , $2\gamma/\pi^{0}$
		$D_s \to \tau \nu, \pi \pi \pi \pi^0$	$2.14 imes10^{-9}$	$ u$, $\pi^{f 0}$, $2\gamma/\pi^{f 0}$
		$D_s \to \pi \pi \pi \pi^0$	$2.41 imes10^{-9}$	$2\pi^{0}, 2\gamma/\pi^{0}$
Backgrounds $b ightarrow c au u$:				
$B_s \to K^{*0} D \tau \nu$	$7.27 imes10^{-5}$	$D o \pi \pi \pi \pi^{0}$	$1.65 imes10^{-9}$	ν, π ⁰
$B_s \to K^{*0} D^* \tau \nu$	$2.03 imes10^{-4}$	$D^* \rightarrow D^{0}\pi, D\pi^{0}$		
		$D ightarrow \pi \pi \pi \pi^{0}$	$1.12 imes 10^{-9}$	ν, 2π ⁰
		$D^{0} ightarrow 2\pi 2\pi \pi^{0}$	8.98×10^{-10}	$ u$, $2\pi^{0}$, $2\pi^{\pm}$
$B^{\sigma} \rightarrow \overline{K}^{*\sigma} \overline{D_s} \tau \overline{\nu}$	9.17×10^{-6}	$\bar{D}_s \rightarrow \tau \nu$	3.68×10^{-10}	$2\nu^{$
		$D_s \rightarrow \pi \pi \pi \pi^0$	$4.15 imes 10^{-10}$	ν, π ⁰
$B^{0} \rightarrow K^{*0}D_{s}^{*}\tau\nu$	$2.03 imes10^{-5}$	$D_s ightarrow au u$	$8.07 imes10^{-10}$	2ν , γ/π^{0}
		$D_s o \pi \pi \pi \pi^{0}$	$9.09 imes 10^{-10}$	$\nu, \pi^{0}, \gamma/\pi^{0}$
		$D_s ightarrow \pi \pi \pi \pi^{0} \pi^{0}$	$7.51 imes 10^{-9}$	$ u, \gamma, 2\pi^{0}$

iii. $D_s \rightarrow 3\pi n\pi^0$ modes involves η/ω intermediate states (see appendix).

Some words about guesstimation of the BF for unseen modes

•
$$B^0 \to K^{*0} D_s D_s$$
 from analogy game :

$$BF(B^0 \rightarrow K^{*0}D_sD_s) = BF(B^0 \rightarrow DD_s) \times rac{BF(B^0 \rightarrow D_s\pi K^0)}{BF(B^0 \rightarrow D\pi)}$$

where $B^0 \rightarrow DD_s$ is the equivalent mode without $s\bar{s}$ from vaccum, $B^0 \rightarrow D\pi$ is the equivalent mode without $s\bar{s}$ from vaccum and with $W \rightarrow \bar{u}d$, $B^0 \rightarrow D_s\pi K^0$ is the equivalent mode with $W \rightarrow \bar{u}d$.

- $B^0 \to K^{*0}D_s^*D_s$ and $B^0 \to K^{*0}D_s^*D_s^*$ w.r.t. $B^0 \to K^{*0}D_sD_s$ from $B_s^0 \to D_s^{(*)}D_s^{(*)}$ hierarchy.
- $B^0 o K^{*0} D_s^{(*)} au
 u$ from analogy via phase space computation[7] :

$$BF(B^{0} \to K^{*0}D_{s}^{(*)}\tau\nu) = BF(B^{+} \to KD_{s}^{(*)}\ell\nu) \times \frac{PS(B^{0} \to K^{*0}D_{s}^{(*)}\tau\nu)}{PS(B^{+} \to KD_{s}^{(*)}\ell\nu)}$$

where PS denotes the Phase Space computed numerricaly (three body decay hypothesis used conservatively) and $B^+ \to KD_s^{(*)}\ell\nu$ is a reference mode with a known BF.

• $B^0 \to K^{*0}D_s\tau\nu$ and $B^0 \to K^{*0}D_s^*\tau\nu$ w.r.t $B^0 \to K^{*0}D_s^{(*)}\tau\nu$ from $B^0 \to D^{(*)}\ell\nu$ hierarchy.

• $B_s^0 \to K^{*0} D^{(*)} \tau \nu$ from analogy via phase space computation[7] :

$$BF(B_{s}^{0} \to K^{*0}D^{(*)}\tau\nu) = BF(B_{s}^{0} \to D_{s1}\mu\nu) \times \frac{PS(B_{s}^{0} \to K^{*0}D^{(*)}\tau\nu)}{PS(B_{s}^{0} \to D_{s1}\mu\nu)}$$

where PS denotes the Phase Space computed numerricaly (three body decay hypothesis used conservatively) and $B_s^0 \rightarrow D_{s1}\mu\nu$ is a reference mode with a known BF.

• $B_s^0 \to K^{*0} D \tau \nu$ and $B_s^0 \to K^{*0} D^* \tau \nu$ w.r.t. $B_s^0 \to K^{*0} D^{(*)} \tau \nu$ from $B^0 \to D^{(*)} \ell \nu$ hierarchy.

- $B^0 \to K^{*0}D_sD_s$ with the two D_s deacying as $D_s \to \tau\nu$, $D_s \to \pi\pi\pi\pi^0$ and $D_s \to \pi\pi\pi\pi^0\pi^0$ already generated.
- $B^0 \to K^{*0} D_s^* D_s$ with the two D_s deacying as $D_s \to \tau \nu$ already generated.
- $B^0 \to K^{*0}D_sD_s$ with both $D_s \to \tau\nu$ and $D_s \to \pi\pi\pi\pi^0$ already generated.
- Construction of a "per track" efficiency by taking the square root of the reconstruction efficiency of the four first modes $\Rightarrow \epsilon(D_s \rightarrow \tau \nu)$, $\epsilon(D_s^* \rightarrow \tau \nu)$, $\epsilon(D_s \rightarrow \pi \pi \pi \pi^0)$ and $\epsilon(D_s \rightarrow \pi \pi \pi \pi^0 \pi^0)$.
- Cross check : $\epsilon(D_s \to \tau \nu) \times \epsilon(D_s \to \pi \pi \pi \pi^0) \simeq \epsilon(B^0 \to K^{*0}D_sD_s, D_s \to \tau \nu, D_s \to \pi \pi \pi \pi^0).$
- Construction of an $\epsilon(*) = \epsilon(D_s^* \to \tau \nu)/\epsilon(D_s \to \tau \nu).$
- Computation of an estimated efficiency for the possible background from these per track efficiencies.
- Ranking of the backgrounds via $BF \times \epsilon$.
- Choice of the biggest one for each type of specific topology.

Appendix 00000000●0000

Preselection

- Several kinematics variables has been save for each events (like momentum or intermediate mass).
- Among them several discriminatives variables have been found ^{iv}.
- The preselection has been built with these variables.
- The plot displays the result after preselection → the picture show a first improvement.
- The MVA can be trained against the backgrounds on the [5,5.6] GeV mass window.

iv. Example of discriminative variables in appendix.

Variable	Cut	
$m_{2\pi_{min}}^2 \& m_{2\pi_{max}}^2$	$< 0.3 \ \& < 0.5 \ GeV$	
PK*	$< 1 { m GeV}$	
$p_{3\pi}$	$< 1 { m GeV}$	
$p_{\pi_{max}}$	< 0.25GeV	
$p_{\pi_{min}}$	< 0.2GeV	
FD_B	< 0.3mm	
$FD_{ au}$	> 4mm	
$m_{3\pi}$	< 0.750GeV	
$m_{2\pi max}$	< 0.5GeV	
$m_{2\pi_{min}}$	$> 1 { m GeV}$	

- Training dataset generated with signal and the collection of available backgrounds.
- The backgrounds are considered in natural proportion (after the preselection).
- 50/50 split train/validation.
- Previous variables are given as inputs as well as the reconstructed *p_τ* of each *τ* candidate.
- XGB parameters optimised on AUC.
- Overtraining plot in order to check the validity of the training \rightarrow OK.
- Use of the MVA ^v to perform the selection (cut at 0.5 on the BDT output).

MVA

Paul Langacker. The physics of heavy z' gauge bosons. *Reviews of Modern Physics*, 81(3) :1199, 2009.

I Dorsner, S Fajfer, A Greljo, JF Kamenik, and N Kosnik. Physics of leptoquarks in precision experiments and at particle colliders.

Physics Reports, 641 :1-68, 2016.

JF Kamenik, S Monteil, A Semkiv, and L Vale Silva. Lepton polarization asymmetries in rare semi-tauonic b→ s b→ s exclusive decays at fcc-ee.

The European Physical Journal C, 77(10) :1–19, 2017.

BABAR Collaboration et al.

Search for b+-> k+ tau (+) tau (-) at the babar experiment. Physical Review Letters, 2017, vol. 118, num. 3, p. 031802, 2017.

Tiangi Chen and Carlos Guestrin.

Xgboost : A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794, 2016.

CERN.

2nd fcc-france workshop, jan 20-21, 2021. https:...Physics.pdf.

Lingfeng Li and Tao Liu.

 $b \rightarrow s\tau + \tau$ - physics at future z factories. Journal of High Energy Physics, 2021(6) :1–31, 2021.

Torbjörn Sjöstrand, Stefan Ask, Jesper R Christiansen, Richard Corke, Nishita Desai, Philip Ilten, Stephen Mrenna, Stefan Prestel, Christine O Rasmussen, and Peter Z Skands. An introduction to pythia 8.2.

Computer physics communications, 191 :159–177, 2015.

Anders Ryd, David Lange, Natalia Kuznetsova, Sophie Versille, Marcello Rotondo, DP Kirkby, FK Wuerthwein, and A Ishikawa. Evtgen : a monte carlo generator for b-physics. BAD, 522 :v6, 2005.

J De Favereau, Christophe Delaere, Pavel Demin, Andrea Giammanco, Vincent Lemaitre, Alexandre Mertens, Michele Selvaggi, Delphes 3 Collaboration, et al.

Delphes 3 : a modular framework for fast simulation of a generic collider experiment.

Journal of High Energy Physics, 2014(2) :57, 2014.