Muon *g*-2 experiment at Fermilab and muons at large

E. Bottalico Beauty 2023 6 July 2023

UNIVERSITY OF LEVERHULME LIVERPOOL TRUST

The history of Muon g-2

The history of the Muon g-2 experiments finds its roots in the series of experiment at CERN

What is the Muon g-2?

The intrinsic magnetic moment of a particle with spin is:

The g-factor (gyromagnetic) defines the coupling between the spin and the magnetic field: $QED_{\gamma} \notin \label{eq:QED}$

- *g* = 1 classic theory;
- *g* = 2 Dirac quantum theory;
- g = 2.00233... quantum field theory.

How such precision is possible?

- 4 nature gifts allow to reach this very high precision:
 - 1. Muons strongly polarized (95%):
 - It is possible thanks to the weak pion decay
 - 2. Precession frequency proportional to (g-2)

$$\succ \quad \overrightarrow{\omega}_a = \overrightarrow{\omega}_S - \overrightarrow{\omega}_c = \left(\frac{g-2}{2}\right) \cdot \frac{e\overline{B}}{m}$$

3. Magic momentum $P_{\mu} = 3.094 \text{ Gev/c:} \gamma = \sqrt{1 + \frac{1}{a_{\mu}}} \sim 29.3$

$$\succ \quad \vec{\omega}_a = \frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \left(\vec{\beta} \times \vec{E} \right) \right]$$

4. Positron emitted preferably in direction of the muon spin

g-2 short recap: The Ring

24 electromagnetic calorimeters:

- 54 PbF2 crystals read by 54 SIPMs.
- Crystal length 14 cm, 15 X_0 .
- Cherenkov light faster then showers (signal width ~nanoseconds).
- Laser calibration system, allows the energy and time calibration of the calorimeters
- Two straw tubes trackers.
 - 32 planes of drift tubes filled with a 50:50 mixture of Ar/Ethane.

ω_a measurement

 The simplest function which describes the number of emitted positron from muon decay is:

$$N(t) = N_0 \cdot e^{-\frac{t}{\tau}} \cdot (1 + A \cdot \cos(\omega_a \cdot t + \varphi))$$

 From the Fast Fourier Transform (FFT) of the fit's residual many frequency peaks arise due to beam dynamics effect didn't account from the previous function

ω_a measurement

Taking into account for the beam motion, the fit function gets more

complicated up to contain **<u>22 parameters</u>**.

- The magnetic field is measured by:
 - **<u>378 fixed probes</u>** around the ring;
 - <u>17 NMR probes</u> moved around the ring via a trolley.
 - The tracker measures the muon distribution around the ring.
 - The magnetic field map is <u>weighted with</u>
 <u>the muon distribution</u> to obtain the effective field experienced by muons.

For the measurement of a_{μ} the measured ω_a and ω_p need to be corrected by:

Beam dynamics corrections $R'_{\mu} \approx \frac{f_{clock}\omega_{a}^{m}(1+C_{e}+C_{p}+C_{ml}+C_{pa})}{f_{calib} < \omega'_{p}(x, y, \phi) \times M(x, y, \phi) > (1+B_{k}+B_{q})}$ Transient field corrections

These corrections have been obtained during Run1 analysis. C_{pa} , B_k , B_q corrections included in systematic error in E821.

Run-1 result

- On 7th April 2021 the Run-1 result has been revealed showing 4.2 σ from SM estimate.
- In **2021** the **BMW group** published a lattice calculation of a_{μ}^{HVP} , with a comparable error w.r.t WP2021 result, reducing the discrepancy with g-2 experiment up to 1.5σ .
- In 2023 CMD-3 presented a result that is in agreement with BMW calculation and experimental results. F. Ignatov – Recent $e^+e^- \rightarrow \pi^+\pi^-$ measurement with the CMD-3 detector

Run2/3 analysis

During Run2 and Run3 (late 18 - early 20) different

upgrades have been done:

- Fixing damaged resistors (Run2);
- Main magnet Thermal coating (Run2);
- Conditioning system for the experimental hall (Run3);
- Improving of the kickers voltage (second part of Run3 – Run3b).
- Run2/3 analysis is ongoing, the expected statistical uncertainty is ~200ppb, with a syst. unc. O(100ppb), halving the Run1 uncertainty.

Run2/3 analysis

During Run2 and Run3 (late 18 - early 20) different

upgrades have been done:

- Fixing damaged resistors (Run2);
- Main magnet Thermal coating (Run2);
- Conditioning system for the experimental hall (Run3);
- Improving of the kickers voltage (second part of Run3 – Run3b).
- Run2/3 analysis is ongoing, the expected statistical uncertainty is ~200ppb, with a syst. unc. O(100ppb), halving the Run1 uncertainty.

Muon g-2 Outlook

- Run 6 is currently ongoing, it will finish on 8th July 2023.
- We reached the <u>TDR goal of 21 BNL on 27th February 2023</u>.
- Run-2/3 publication soon. (I can't say more 🤐)
- Run-4/5/6 result is expected in 2025/2026.

Muons at large

MUonE Experiment at CERN

Letter of Intent: The MUonE Project, SPSC-I-252

Extraction of $\Delta \alpha_{had}$ from the shape of the $\mu e \rightarrow \mu e$ differential cross section:

Goal 0.3% statistical error and comparable systematic.

- Current schedule:
 - 3 weeks Test Run in Aug/Sept 2023:
 - Proof of concept of the experimental proposal using 2 tracking stations + calorimeter.
 - Towards the full experiment: 10 stations before LS3 (2025):
 - \circ Four months data taking: ~2% (stat) measurement of a_{μ}^{HLO}
 - Full apparatus (40 stations) after LS3 (2029).

Target and Solenoid (DS)

- Capture muons on Al target
- Measure momentum in tracker and energy in calorimeter
- Graded field "reflects" downstream conversion electrons emitted upstream (isotropic process)

The Mu2e experiment and the INFN contribution – Fermilab 2021 Summer Student School at LNF

The Mu2e experiment and the INFN contribution – Fermilab 2021 Summer Student School at LNF

Tracker: >20k straw tubes filled with Ar/CO2 mixture 36 planes, 6 panels per plane)eliverv R (2.5T)**1**T (4.6T)2T

The Mu2e experiment and the INFN contribution – Fermilab 2021 Summer Student School at LNF

Mu2e – Experimental Concept

• Searching for the neutrinoless conversion of $\mu \rightarrow e$ in the presence of a nucleus:

 $\mu^- + N \rightarrow e^- + N$

$$R_{\mu \to e} = \frac{\Gamma(\mu^- + N(Z, A) \to e^+ + N(Z, A))}{\Gamma(\mu^- + N(Z, A) \to \nu_{\mu} + N(Z - 1, A))} < 6 \times 10^{-17} (90\% CL)$$

- Practically forbidden in SM $\left(\sim 10^{54}
 ight)$
- The experiment workflow:
 - Muons are stopped in an aluminium target.
 - When stopped muons convert to electrons, the nucleus recoils and the electron is emitted at a specific energy.
 - Signal, $E_e = 104.9$ MeV is unambiguous sign of new physics.
 - Main intrinsic background is Decay In Orbit (DIO) events.
- To reach the required precision, $\sim 10^{18}$ stopped muons are needed.

From Tomo Miyashita Talk (Fermilab User Meeting-2018)

06/07/23

Mu2e – Experimental Concept

• Searching for the neutrinoless conversion of $\mu \rightarrow e$ in the presence of a nucleus:

- Current schedule:
 - Complete the project by the end of 2025
 - Commission and take data in 2026
 - Publish first results in 2027
 - Increase statistics by x10 after 2years long shutdown

Mu3e at PSI

- $BR(\mu^+ \rightarrow e^+ + \gamma) \sim O\left(\frac{m_\nu}{m_W}\right)^4 \sim 10^{-54}$
- Neutrino oscillations at weak interaction scales
- $(10^{-15}$ m) are practically zero
- There are theories Beyond the Standard Model (BSM) that predict lower values for CLFV processes
 like Mu3e. Any observation of CLFV would mean
 new physics BSM.
- Mu3e goals:
 - BR($\mu^+ \rightarrow e^+ e^-$)< 2×10⁻¹⁵ (10⁸ μ/s phase I)
 - BR($\mu^+ \rightarrow e^+ e^+ e^-$)< 10⁻¹⁶ (10⁹ μ/s phase II)

Detector:

- Ultra-light silicon pixel tracker for vertexing.
- Two timing detectors: scintillating fibres
 (250ps) and scintillating tiles (100ps) for charge
 reconstruction and background discrimination

Requirements:

- High rate capability (>10⁹ muon/s)
- Good vertex resolution (< 200 μm)
- Good time resolution (< 100 ps)
- Excellent momentum resolution (< 0.5 MeV/c)

The **time line** for the Mu3e experiment is currently the following:

- 2014-2022 Detector development
- 2023/24 Detector construction, installation and commissioning at PSI
- 2025+ Data taking at up to a few 10⁹ muons/s (Phase I)
- 2027+ Construction of a new muon beam line at PSI
- 2028++ Data taking at up to $2 \cdot 10^9$ muon/s (Phase II)

"The closer you look the more there is to see" F. Jegerlehner

BACK-UP

Kickers and Inflector

- The **inflector** cancels the storage ring field such that the muons are not deflected by the main **1.45 T** field.
- Superconducting, operational current ~2.6 kA.
- 3 Kickers are necessary to inject magic momentum muons along the magic radius (7.11 m) with a required kick at order of <u>10 mrad</u>.
- 4 kA current in 200 ns pulse.
- Design kick strength has been reached in Run-3 (\sim 160 kV).

Quadrupoles

- The Electrostatic Quadrupoles (ESQ) system allows to strongly focus the beam vertically, four ESQ stations are symmetrically placed around the ring.
- The plates are raised from ground to operating voltage prior to each *fill* with RC charging time constants of $\sim 5 \ \mu s$.
- This procedure, known as scraping, initially displaces the beam vertically and horizontally with respect to the central closed orbit.

ω_a measurement – CBO oscillation

Given the restoring force by radial magnetic field, the beam oscillates radially (vertically too)

as the betatron frequency: $\omega_{BO} = \omega_c \sqrt{1-n}$, where **n** is the field-index.

- The beam is measured by detectors, calorimeters and trackers.
- The $\omega_{BO} < \omega_{C}$, so calorimeters see a different phase at each turn, measuring an oscillation

called <u>Coherent Betatron Oscillation</u> (CBO), given by $\omega_{CBO} = \omega_C - \omega_{BO}$

$$2\pi f_{CBO} = \omega_C - \omega_{BO} = \omega_C (1 - \sqrt{1 - n})$$

$$\omega_{CBO} = 2.34 \, rad/\mu s$$

Where $T_{C} \sim 0.149 \ ns$ and $n \sim 0.108$

The beam motion inside the ring

• What we observe by detectors is the spatial projection and many fill average of the previous representation.

ω_a measurement

 The simplest function which describes the number of emitted positron from muon decay (so called "<u>wiggle plot</u>") is:

$$N(t) = N_0 \cdot e^{-\frac{t}{\tau_{\mu}}} \cdot (1 + A \cdot \cos(\omega_a \cdot t + \varphi))$$

From the FFT of the fit's residual shows many frequency peaks due to <u>beam dynamics</u> effects^L
 that are not modeled by the previous function.

Beam dynamics correction to ω_{a} : C_{e}

Considering the extended expression of the spin precession frequency in a magnetic field:

$$\overrightarrow{\omega_{a}} = \frac{e}{m} \left[a_{\mu} \overrightarrow{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \left(\overrightarrow{\beta} \times \overrightarrow{E} \right) - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) \left(\overrightarrow{\beta} \cdot \overrightarrow{B} \right) \overrightarrow{\beta} \right]$$

This term introduces a bias on ω_a that needs

to be corrected by Electric Field correction:

$$C_e = 2n(1-n)\beta^2 \frac{\langle x_e^2 \rangle}{R_0^2}$$
 is proportional to the

equilibrium radius distribution x_e .

$$C_e \sim 489 \, ppb$$

Many systematics come from effects that <u>change</u> the <u>phase</u> of the detected positrons <u>over time</u> and introduce a bias on ω_a :

$$cos(\omega_a t + \phi(t)) = cos(\omega_a t + \phi_0 + \phi' t + ...)$$
$$= cos((\omega_a + \phi')t + \phi_0 + ...)$$

In general, anything that changes from <u>early-to-late</u> within each muon fill can be a cause of systematic error, as:

- Beam distortion
- Muon losses
- Varying lifetime
- Rate dependent reconstruction

- The measured *g*-2 phase of the muon is decay vertex position dependent.
- It is obtained as weighted average of the phases measured by each (x,y) pair

position.

Beam dynamics correction to $\boldsymbol{\omega}_{a}$: C_{pa}

 C_{pa} : it is a Phase Acceptance effect. It is due to:

- 1. Beam variation during the *fill;*
- 2. Phase measured as function of the decay

position. 1) 2)
$$\Delta \omega_a = \frac{d\varphi}{dt} = \frac{dY_{RMS}}{dt} \cdot \frac{d\varphi}{dY_{RMS}}$$

The effect was large in Run1 due to *broken resistors*

$$C_{pa} \sim 180 \ ppb$$

We expect a reduction in Run2/3 (~50ppb/~20ppb)

	Those are the results for the RD			
	These are the results for the DD		Correction Factor [ppb]	Uncertainty [ppb]
		ω_a (stat.)	—	434
	corrections from Run-1, the phase	ω_a (syst.)	—	56
		f_b/f_0	—	2
		Ce	489	53
	acceptance (C _{pa}) correction was one	C_{p}	180	13
		C_{ml}	-11	5
		- C _{pa}	-158	75
	of the topic I addressed during my PhD.	$f_{calib}\left\langle \omega_{p}^{\prime}(x,y,\phi)\cdot M(x,y,\phi) ight angle$	_	56
		B_q	-17	92
		B_k	-27	37
•	Now analysis is ongoing to finalize the	$\mu_{p}'(34.7^{\circ}C)/\mu_{e}$ [PCK77]	_	10
		m_{μ}/m_{e} [LAMPF-99; CD-2018]	_	22
		g _e /2 [HFG08]	—	0
	Run-2/3 beam dynamics corrections,	Total Systematic		157
		Total Fundamental Factors	—	25
		Total	544	461
	atau tu a all			
	stay tuned!			

a_{μ} systematic sources

Many systematics come from effects that <u>change</u> the <u>phase</u> of the detected positrons <u>over time</u> and introduce a bias on ω_a :

$$cos(\omega_a t + \phi(t)) = cos(\omega_a t + \phi_0 + \phi' t + ...)$$
$$= cos((\omega_a + \phi')t + \phi_0 + ...)$$

In general, anything that changes from <u>early-to-late</u> within each muon fill can be a cause of systematic error, as:

- Beam distortion
- Muon losses
- Varying lifetime
- Rate dependent reconstruction

Considering the extended expression of the spin precession frequency in a magnetic field:

$$\overline{\omega_{a}} = \frac{e}{m} \left[a_{\mu} \overline{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) (\vec{\beta} \times \vec{E}) - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) (\vec{\beta} \cdot \vec{B}) \vec{\beta} \right]$$

$$C_{p} : \text{the pitch correction } C_{p} = n < A_{y}^{2} > /4R_{0}^{2} \text{ depends on amplitude vertical oscillation}$$

$$(A_{y}).$$

Beam dynamics correction to ω_a : C_{lm}

 C_{lm} : describes the motion introduced on ω_{a} phase due

to the loss of muon during the *fill*. It's explained by:

oss of muon during the *fill*. It's explained by: 1.

phase;

The number of loss muon change as function of 2.

momentum.

$$\Delta \omega_a = \frac{d\varphi}{dt} = \frac{d\varphi}{dp} \cdot \frac{dp}{dt}$$

$$C_{lm} < 20 \ ppb$$

Phase acceptance: Beam Motion Effects **VERTICAL** WIDTH VARIATION

E.Bottalico - (Beauty 2023)

- Searching for the neutrinoless conversion of $\mu \rightarrow e$ in the presence of a nucleus: $\mu^- + N \rightarrow e^- + N$
- Practically forbidden in SM (~10⁻⁵⁴)

$$R_{\mu \to e} = \frac{\Gamma(\mu^- + N(Z, A) \to e^+ + N(Z, A))}{\Gamma(\mu^- + N(Z, A) \to \nu_{\mu} + N(Z - 1, A))} < 6 \times 10^{-17} (90\% CL)$$

• **Signal**, $E_e = 104.9$ MeV is unambiguous sign of new physics

Liverpool contribution: Stopping Target Monitor (STM)

- Measure number of stopped muons (denominator) to 10%
- Muon stopped in AI target cause 3 characteristic γ emissions:
 - 347 keV from $2p \rightarrow 1s$ (prompt)
 - 1809 keV from nuclear capture (864 ns)
 - 844 keV from decay of metastable ²⁶Mg* capture product, 9.5 min
- High-purity Germanium (HPGe) detector (Liverpool) : high resolution (1-2 keV) for determination of closely spaced transitions
- LaBr detector : high rate capability
- HPGe tested at Liverpool and in test beam @ ELBE
- Currently being installed at FNAL

<u>g-2 omega_p measurement and Mu2e</u> - Saskia Charity (Particle Physics Annual Meeting Liverpool)

Mu3e Liverpool Group

The Liverpool group is responsible for the

construction of the outer layers of the pixel

detector, together with Oxford, assembling the outer modules of the pixel detector.

- The group is also working on software and analysis studies to characterise the track and vertex reconstruction efficiency.
- FOR MORE INFO:

- <u>https://www.physi.uni-heidelberg.de/Forschung/he/mu3e/</u>
- <u>https://www.psi.ch/en/mu3e/</u>

From <u>Mu3e</u> - Andrea Loreti (Particle Physics Annual Meeting Liverpool)