BEAUTY 2023 BEVALA 5053

Heavy Neutral Lepton and Dark-Sector-related searches at BABAR

Alberto Lusiani, for the BABAR collaboration orcid.org/0000-0002-6876-3288

The 21st International Conference on B-Physics at Frontier Machines, "BEAUTY 2023", Jul 3–7, 2023, Clermont-Ferrand, France

BABAR asymmetric B-factory at PEP-II, SLAC National Accelerator Laboratory

BABAR general purpose detector

focused on study of CP violation in B mesons, but good for several other measurements and searches

Search for Heavy Neutral Lepton at BABAR [PRD 107, 052009 (23 Mar 2023)]

Heavy neutral lepton searches motivations

Theory

- HNLs in several beyond Standard Model (BSM) theories to explain:
 - Neutrino oscillations and origins of their mass via seesaw models [Phys. Rev. D 23, 165]
 - Baryonic asymmetry of Universe [Phys. Rev. Lett. 81, 1359]
 - ► CPV in sterile neutrino → → lepton-antilepton asymmetry →
 - \rightarrow baryon-antybaryon asymmetry
 - Dark matter candidate
 [Phys. Lett. B 631, 151]
- ► HNLs can mix with tau neutrino → → fraction of tau decays will have HNL instead of tau neutrino

2019 experimental limits on tau-coupled HNL

Analysis method, selection

analysis method

- search for evidence of HNL from modification of kinematics of tau decays due to fraction of decays having a massive HVL instead of tau neutrino (following ALEPH [EPJC 2, 395 (1998)])
- quasi-model-independent, no detection of HNL
- search using $\tau \to 3\pi\nu$ events kinematics (in the following *h* sometimes used to denote the 3π hadronic system)
- ▶ total leptonic BR \sim 35%, $\mathcal{B}(au
 ightarrow 3\pi
 u) \simeq 9\%$

main selection requirements

- $e^+e^-
 ightarrow au^+ au^-$ in 1-3 charged tracks topology
- thrust > 0.85, $p_T > 0.9\%\sqrt{s}$, $p_{miss}^{CM} > 0.9\%\sqrt{s}$,
- 1-prong track id. as electron or muon, 3-prong tracks id. as pions
- accept neutrals in 1-prong side if compatible with Bremsstrahlung
- veto unassociated neutrals with E_{lab} > 1 GeV (electron), 0.5 GeV (muon), 0.2 GeV (3-prong)

[PRD 107, 052009]

Selected candidates compared to MC-simulated SM $au ightarrow 3\pi u$

MC simulated backgrounds, electron tag

MC simulated backgrounds, muon tag

ML fit of bin contents of 2D m_h/m_{τ} , $E_h^{CM}/(\sqrt{s}/2)$ data distribution

[slide from S.Middleton, Moriond EW 2023]

[PRD 107, 052009]

Systematics

Uncertainty	Yield Change (\pm)	
Luminosity $\sigma(ee o au au)$	0.44% 0.31%	
Branching Fractions (1 prong)	Branching Fractions (1 prong) e: 0.22% μ: 0.22%	
Branching Fractions (3 prong)	3π: 0.57%	
PID Efficiency	e: 2% μ: 1% π: 3%	
Bhabha Contamination qq̄ Contamination (data)	0.2% 0.1%	
Tracking Efficiency Detector Modeling	negligible negligible	
Beam Energy Tau Mass	negligible negligible	
hadronic tau decay simulation (conservatively varying mass and width of a_1 resonance)	1-2% (on mean of distributions)) $6-7\%$ (on RMS spread of distributions)	

[PRD 107, 052009]

95% CL upper limits

for each HNL mass, compute limits for coupling using likelihood-ratio test statistics function of coupling

- ▶ NOMAD [PLB 506, 27 (2001)]
- CHARM [PLB 550, 8 (2002)]
- DELPHI [Z.Phys.C 74, 57 (1997)]
- ArgoNeut [PRL 127, 121801 (2021)]

[PRD 107, 052009]

Search for *B* mesogenesis at *BABAR* [PRD 107, 092001 (May 2023)], [*BABAR* prelim. Moriond EW 2023]

Introduction

- may explain both Dark Matter (DM) abundance and Baryon Asymmetry (BAU)
- ► Alonso-Álvarez, Elor, Escudero, PRD 99, 035031 (2019) (neutral *B*)
- Alonso-Álvarez, Elor, Escudero, PRD 104, 035028 (2021)
- Elahi, Elor, McGehee, PRD 105, 055024 (2022) (charged B^+ , B_c^+)

several B decays to baryon + DM anti-baryon possible

p

 ψ_{DM}

 \boldsymbol{V}

Experimental signatures in BABAR

B decay to baryon + invisible

Selection of events

- require one well reconstructed B
 - $\sqrt{E_{\text{beam}}^2 p_B^2} = m_{\text{ES}} > 5.20 \,\text{GeV}$
 - $\bullet |\dot{E}_B E_{\text{beam}}| = |\Delta E| < 0.12 \,\text{GeV}$
 - efficiency $\simeq 0.3\%$
- require just one baryon and nothing else
 - B^0 tag \Rightarrow reconstructed $\Lambda \rightarrow p\pi$
 - $\blacktriangleright B^- \mathsf{tag} \Rightarrow \mathsf{identified} \ p$
- $\psi_{\rm DM}$ 4-momentum = missing 4-momentum
- further bkg rejection with trained Boosted Decision Tree (BDT) classifier

[PRD 107, 092001 (May 2023)], [BABAR prelim. Moriond EW 2023]

Selected candidates vs. MC-simulated 2 GeV ψ_{DM}

[PRD 107, 092001 (May 2023)], [BABAR prelim. Moriond EW 2023]

- search for ψ_{DM} in 193 mass hypotheses from 1 to 4.2 GeV
- ▶ MC signal simulated for 8 masses between 1 and 4.2 GeV to interpolate, as function of ψ_{DM} mass, efficiency ([5.9 \rightarrow 2.1]·10⁻⁴) and ψ_{DM} mass resolution (90 \rightarrow 6 MeV)
- count candidates within $\pm 3 \times [\psi_{DM}]$ mass resolution]
- subtract background estimated from sidebands
- largest significance (Poisson statistics) 2.3 σ, comsistent with look-elsewhere effect (0.4 σ global)
- compute 90% CL upper limits with profile likelihood method

• efficiency modeled as Gaussian including all systematics (7.8% - 9.1%)

[PRD 107, 092001 (May 2023)], [BABAR prelim. Moriond EW 2023]

90% CL upper limits for B mesogenesis parameters

[PRD 107, 092001 (May 2023)], [BABAR prelim. Moriond EW 2023]

Other recently published BABAR searches

- Search for an Axion Like Particle (ALP), PhysRevLett.128.131802 (2022)
- Search for Darkonium, PhysRevLett.128.021802 (2022)

Conclusions

- e^+e^- B-factories at $\Upsilon(4s)$ provide very good basis for light new physics searches
- many searches published by BABAR in recent years provide valuable constraints for theory models

- end

• BABAR data continue to be useful, other searches on-going (e.g. $B^+ \to \Lambda_c^+ \psi_{\sf DM}$)

Backup Slides

Notes on likelihood-ratio-based upper limit calculation for HNL

- compute likelihood of observing in each bin of the 2D mass fraction vs. energy fraction distribution the selected candidates given the simulation-predicted signal and background expected events, this is a function of the expected number of events with HNL and proportional to its mixing parameter
- predictions are modeled with Poisson distribution convoluted with Gaussians with nuisance parameters corresponding to estimated systematic uncertainties [J. S. Conway, in PHYSTAT 2011 (CERN, Geneva, 2011), pp. 115–120]
- $\blacktriangleright \text{ likelihood-ratio test statistics } q = -2 \ln \left(\frac{\mathcal{L}_{H_0}(|U_{\tau 4}|^2_0; \hat{\theta}_0, \text{data})}{\mathcal{L}_{H_1}(|\hat{U}_{\tau 4}|^2; \hat{\theta}, \text{data})} \right) = -2 \ln(\Delta \mathcal{L}).$

 \mathcal{L} in both numerator and denominator describes the maximized likelihood, for two instances. The denominator is the maximized (unconditional) likelihood giving the maximum likelihood estimator of $|U_{\tau4}|^2$ and the set of nuisance parameters ($\hat{\theta}$); $\hat{\theta}$ is a vector of nuisance parameters which maximize the likelihood. In the numerator the nuisance parameters are maximized for a given value of $|U_{\tau4}|^2$ i.e. it is the conditional maximum-likelihood. The ratio, *LR*, is consequently a function of $|U_{\tau4}|^2$ through the numerator. It must be noted that the numerator denotes the hypothesis for any given value of $|U_{\tau4}|^2$ (including the background only case i.e. $|U_{\tau4}|^2 = 0$). More details in [G. Cowan, K. Cranmer, E. Gross, and O. Vitells, EPJC 71, 1554 (2011); 73, 2501(E) (2013)] • using Wilk's theorem [S. Algeri, J. Aalbers, K. Dundas Morå, and J. Conrad, Nat. Rev. Phys. 2, 245 (2020).],

q asymptotically approaches a χ^2 distribution under H_0 . To find a $100(1 - \alpha)\%$ confidence interval we move to the left and to the right of the minimum value of q to find the points where the function increases by the α percentile of a χ^2 distribution with a number degrees of freedom equal to the number of parameters