BEAUTY 2023

PER AD ARDUA ALTA

3-7 July 2023, Clermont-Ferrand, France

NA62 and KOTO: Status and Prospects

Angela Romano, University of Birmingham on behalf of the NA62 collaboration

Rare Kaon Decays

		St.		
-01	PER ARDUA	AD ALTA	5	

Decay	Г _{SD} /Г	Theory Error*	SM BR x10 ¹¹	EXP BR x 10 ¹¹	EXPERIMENT	YEAR
${\rm K_L} \rightarrow \pi^0 \nu \overline{\nu}$	>99%	2%	3.4 ± 0.6	< 300	КОТО	2019
$K^{\scriptscriptstyle +} \not \rightarrow \pi^{\scriptscriptstyle +} \nu \overline{\nu}$	90%	4%	8.4 ± 1.0	10.6 ± 4.0	NA62	2021
$K_L \rightarrow \pi^0 e^+ e^-$	40%	10%	3.2 ± 1.0	<28	KTeV	2004
${\rm K_L} \rightarrow \pi^0 \mu^+ \mu^-$	30%	15%	1.5 ± 0.3	<38	KTeV	2000
$K_{L} \not \rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$	10%	30%	79 ± 12 (SD)	684 ± 11	BNL-871	2000

(*) approximate error on LD-subtracted rate excluding parametric contributions

- FCNC processes dominated by Z-penguin and box diagrams
- SM rates determined by V_{CKM}, with minimal non-parametric "theory" uncertainties
- Theory errors are being reduced [see talk from E. Stamou]
- > The current focus is $K \rightarrow \pi v \overline{v}$: uniquely clean theoretically

$\textbf{K}{\rightarrow}\pi\nu\overline{\nu}$ in the Standard Model

Box & Penguin (one-loop) diagrams

- **FCNC** process forbidden at tree level
- $\label{eq:constraint} \begin{array}{l} \mbox{Highly CKM suppressed (BR ~ |V_{ts}*V_{td}|^2)} \\ \mbox{Extraction of V_{td} with minimal (few \%)} \end{array}$

non-parametric uncertainty

Theoretically very clean:

- $\checkmark\,$ dominant short-distance contribution
- ✓ hadronic matrix element extracted from precisely measured BR(K⁺ → $\pi^{o}e^{+}\nu$)

SM Predictions, error CKM parametric [Buras et al., JHEP 1511 (2015) 033]:

$$\begin{aligned} & \mathsf{BR}(\mathsf{K}^+ \to \pi^+ \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11} \\ & \mathsf{BR}(\mathsf{K}_{\mathrm{L}} \to \pi^0 \nu \bar{\nu}) = (3.4 \pm 0.6) \times 10^{-11} \\ & \mathcal{B}(\mathsf{K}^+ \to \pi^+ \nu \bar{\nu}) = (8.39 \pm 0.30) \times 10^{-11} \cdot \left[\frac{|V_{cb}|}{40.7 \times 10^{-3}}\right]^{2.8} \left[\frac{\gamma}{73.2^\circ}\right]^{0.74} \\ & \mathcal{B}(\mathsf{K}_{L} \to \pi^0 \nu \bar{\nu}) = (3.36 \pm 0.05) \times 10^{-11} \cdot \left[\frac{|V_{ub}|}{3.88 \times 10^{-3}}\right]^2 \left[\frac{|V_{cb}|}{40.7 \times 10^{-3}}\right]^2 \left[\frac{\sin(\gamma)}{\sin(73.2^\circ)}\right]^2 \end{aligned}$$

$K \rightarrow \pi v \overline{v}$ and New Physics

Indirect searches of NP with high precision studies of rare K decays

Measurement of charged $(K^+ \rightarrow \pi^+ \nu \overline{\nu})$ and neutral $(K_L \rightarrow \pi^0 \nu \overline{\nu})$ modes can **discriminate among different NP scenarios**

The NA62 experiment

High precision fixed-target Kaon experiment at CERN SPS

~300 members from 31 institutions

CMS LHC NA62 SPS LHC-b ALICE ATLAS West Area East Area Gran Sasso (I 730 km

NA62 Beam line & detectors

[PLB 791 (2019) 156, JHEP 11 (2020) 042, JHEP 06 (2021) 093]

Angela Romano, BEAUTY 2023, 06-07-2023

NA62 🗛

NA62 Timeline & Datasets

2016 physics run: ~1.3 x 10^{12} ppp, 0.12 x 10^{12} K⁺ decays 2017 physics run: ~1.9 x 10^{12} ppp, 1.5 x 10^{12} K⁺ decays 2018 physics run: ~2.3 x 10^{12} ppp, 4 x 10^{12} K⁺ decays Run 1 (2016-2018): 2.2 x 10^{18} protons on target (T10) collected Run 2 (2021 -) in progress: ~3 x 10^{12} ppp, approved till LS3

NA 62

NA62 Timeline & Datasets

2016 physics run: ~1.3 x 10^{12} ppp, 0.12 x 10^{12} K⁺ decays 2017 physics run: ~1.9 x 10^{12} ppp, 1.5 x 10^{12} K⁺ decays 2018 physics run: ~2.3 x 10^{12} ppp, 4 x 10^{12} K⁺ decays Run 1 (2016-2018): 2.2 x 10^{18} protons on target (T10) collected Run 2 (2021 -) in progress: ~3 x 10^{12} ppp, approved till LS3

Decay channel	Data set		
$K^+ \to \pi^+ \mu^+ \mu^-$	NA62 Run 1	JHEP 11 (2022) 11	
$K^{\scriptscriptstyle +} \to \pi^0 {\textbf e}^{\scriptscriptstyle +} \nu \gamma$	NA62 Run 1	arXiv:2304.12271	
$K^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle +} \gamma \gamma$	NA62 Run 1	Preliminary	
$K^+ \to \pi^- \mu^+ \mu^+$	NA62 Run 1	PLB 797 (2019) 134794	
$K^+ \to \pi^- \mu^+ \textbf{e}^+$	NA62 Run 1	PRL 127(2021) 131802	
$K^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} e^{\scriptscriptstyle +}$	NA62 Run 1	PRL 127(2021) 131802	
$\pi^0 \rightarrow \mu^- e^+$	NA62 Run 1	PRL 127(2021) 131802	
$K^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle -} {\textbf e}^{\scriptscriptstyle +} {\textbf e}^{\scriptscriptstyle +}$	NA62 Run 1	PLB 830 (2022) 137172	
$K^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle -} \pi^0 \textbf{e}^{\scriptscriptstyle +} \textbf{e}^{\scriptscriptstyle +}$	NA62 Run 1	PLB 830 (2022) 137172	
$K^{\scriptscriptstyle +} \to \mu^{\scriptscriptstyle -} \nu e^{\scriptscriptstyle +} e^{\scriptscriptstyle +}$	NA62 Run 1	PLB 838 (2023) 137679	
Searches for hidden-sector mediator production in K ⁺ decays	NA62 Run 1	JHEP05(2019) 182 PLB 807(2020) 135599 PLB 816(2021) 136259 JHEP02(2021) 201 JHEP03(2021) 058	
$A' \to \mu^+ \mu^+$	NA62 2021 beam-dump	arXiv:2303.08666	

NA62 Timeline

Dec 2008 - Physics Approval

2009 - 2014: Detector R&D, Installation

2015 Commissioning 2016 - 2018: NA62 Run 1

2021 – LS3 NA62 Run 2

Broad physics programme beyond $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ Precision measurements Rare and forbidden decays: LN and LF violation Exotics searches: dark photon, heavy neutral leptons, axion-like particles

Background rejection relies on **Kinematics** (15GeV/c < P_{π} < 35GeV/c ; m²_{miss}) used in conjunction with **Particle ID**, **Veto systems** and **sub-ns timing**

- ➢ SPS protons on Be target (PoT): 400 GeV/c, ~10¹² PoT/sec , 3.5 sec/spill
- → Un-separated hadron beam: $\pi^+(70\%)/\frac{K^+(6\%)}{p(24\%)}$
- → K⁺: 75GeV/c (±1%), divergence < 100 μ rad, (60 x 30) mm² transverse size
- ➢ 750MHz nominal beam rate @GTK (~5MHz K⁺ decays in 60 m fiducial volume)
- ➢ 2016, 2017, 2018 beam rates in Run 1 [MHz]: ~300,~500,~600

Measurement Strategy

NA62 Performance keystones:

- ➢ O(100ps) Timing
- $\geq 10^3$ Kinematic bkg rejection $\frac{3}{5}$
- ≥ 10⁸ Muon suppression (from K⁺→ μ ⁺v)
- > $\geq 10^8 \pi^{0} \rightarrow \gamma \gamma$ suppression (from $\mathbf{K}^+ \rightarrow \pi^+ \pi^{0}$)

Signal selection:

K⁺ decays with 1 track in final state $_{-0.0}$ Definition of Region 1, Region 2 $_{-0.0}$ PID, photon and multi-track rejections

Signal and Control kinematic regions blinded during the analysis

 $m^2_{miss} = (P_K - P_\pi)^2$ m_π mass hypothesis

Selection optimized in bins of π^+ momentum

Angela Romano, BEAUTY 2023, 06-07-2023

NAUZ

Background expectations validated using control regions

Dominant background is not due to K⁺ decays in the vacuum tank Improvement of beam line layout and new upstream veto detectors installed after 2018 to bring the Run 2 measurement into a low-background regime

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4}|_{\text{stat}} \pm 0.9_{\text{syst}}) \times 10^{-11}$

3.4 significance, most precise measurement to date!

Implication of NA62 Result on New Physics

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4}|_{\text{stat}} \pm 0.9_{\text{syst}}) \times 10^{-11}$

Large BR($K^+ \rightarrow \pi^+ v \bar{v}$) values with respect to SM expectation start to be excluded: high precision measurement needed!

The KOTO Experiment

Study of $K_L \rightarrow \pi^0 v \overline{v}$ @ JPARC 30GeV Main Ring

Goal is to observe few SM events

Primary 30 GeV/c protons on gold target Intensity in 2021: 60 kW = 6.6 x 10^{13} p/5.2 s Secondary neutral beam (K_L, neutron, photons) beam angle ~16°, 8 µsr "pencil" beam <p(K_L)> = 2.1 GeV, 50% in [0.7-2.4] GeV/c range Fiducial decay region ~3 m

Arizona, Chicago, Chonbuk, Hanyang, Jeju, JINR, KEK, Kyoto, Michigan, NDA, NTU, Okayama, Osaka, Pusan, Saga & Yamagata

2015 physics run: 40 kW beam power, 3×10^{19} P.O.T BR(K_L $\rightarrow \pi^0 v \overline{v}$) < 3.0 × 10⁻⁹ (90% CL) [PRL 122 (2019) 021802]

2016-2018 physics runs: 50 kW beam power, 4×10^{19} P.O.T BR($K_L \rightarrow \pi^0 v \overline{v}$) < 4.9 × 10⁻⁹(90% CL) [PRL 126 (2021) 121801]

2019-21 physics runs: twice 2016-18 dataset, detector improvements, lower bkg

 $K_L \rightarrow \pi^0 \nu \overline{\nu} \; signature:$ 2ys + missing P_t + nothing else

Signal $K_L \to \pi^0 \nu \overline{\nu}$ in KOTO detector:

 $K_L \rightarrow \pi^0 \nu \bar{\nu}$ signature: 2ys + missing P_t + nothing else

Signal $K_L \to \pi^0 \nu \overline{\nu}$ in KOTO detector:

Background rejection relies on kinematics, photon and particle veto systems

KOTO Result: 2016-2018

Acceptance($K_L \rightarrow \pi^0 \nu \overline{\nu}$) from MC: Decay in FV: 3.3% Overall acceptance: 0.6%

$$K_L$$
 flux from $K_L \rightarrow \pi^0 \pi^0 = 6.8 \times 10^{12}$

Number of events Source $K_L \rightarrow 3\pi^0$ 0.01 ± 0.01 K_I $K_L \rightarrow 2\gamma$ (beam halo) 0.26 ± 0.07^{a} Other K_L decays 0.005 ± 0.005 K^{\pm} 0.87 ± 0.25^{a} Neutron Hadron cluster 0.017 ± 0.002 $CV \eta$ 0.03 ± 0.01 Upstream π^0 0.03 ± 0.03 Total 1.22 ± 0.26

PRL 126 (2021) 121801

Background sources studied after looking inside the blind signal region

SES =
$$\frac{1}{A_{\text{sig}}N_{K_L}}$$
 = (7.20 ± 0.05_{stat} ± 0.66_{syst}) × 10⁻¹⁰

→ Expected: 0.04 signal + 1.22 background events
 Observed: 3 events in the signal box

 $BR(K_{L} \rightarrow \pi^{0} v \bar{v}) < 4.9 \times 10^{-9} (90\% CL)$

PER AD ARDUA ALTA

$K \rightarrow \pi v \overline{v}$ Experimental Status

Decay	Γ_{SD}/Γ	Theory Error*	SM BR x10 ¹¹	EXP BR x 10 ¹¹	EXPERIMENT	YEAR
${\rm K_L} \rightarrow \pi^0 \nu \overline{\nu}$	>99%	2%	3.4 ± 0.6	< 300	КОТО	2019
$K^{\scriptscriptstyle +} \not \rightarrow \pi^{\scriptscriptstyle +} \nu \overline{\nu}$	90%	4%	8.4 ± 1.0	10.6 ± 4.0	NA62	2021
$K_L \rightarrow \pi^0 e^+ e^-$	40%	10%	3.2 ± 1.0	<28	KTeV	2004
${\rm K_L} \rightarrow \pi^0 \mu^+ \mu^-$	30%	15%	1.5 ± 0.3	<38	KTeV	2000
$K_{L} \not \rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$	10%	30%	79 ± 12 (SD)	684 <u>+</u> 11	BNL-871	2000

(*) approximate error on LD-subtracted rate excluding parametric contributions

NA62

Strategy for reduction of most dominant background in 2016-2018 analysis:

- Additional 4th kaon beam tracker station (GTK-4)
- Rearrangement of beam line elements around GTK achromat
- New veto hodoscopes upstream of decay volume (Veto-counter, ANTIO)
- Additional veto counters around downstream beam pipe (HASC-2)

NA62 Short Term Prospects NA62

New detectors installed for NA62 Run2 (2021 – 2025)

- > The kaon decay-in-flight technique is firmly established
- Improved trigger: beam intensity increased by ~40% wrt Run 1
- > $K^+ \rightarrow \pi^+ v \overline{v}$ measurement in a low-background, high-acceptance regime
- Analysis of 2021-2022 combined datasets is ongoing

Expect to measure BR($K^+ \rightarrow \pi^+ \nu \nu$) at O(15%) precision by LS3

K. Shiomi @ KAON2022

Strategy for reduction of most dominant background sources in 2016-2018 analysis

Reduction of K^{\pm} background by 95%

Reduction of $K_L \rightarrow 2\gamma$ background by 94%

Reachable SES with 2021 data is $(6 \sim 8) \times 10^{-10} \rightarrow 2021$ data analysis in progress In 2023 beam power increased from $\sim 60 \rightarrow 80$ kW (later: 100 kW) Expect to approach SM SES O(10⁻¹¹) by 2025, operating in low-background regime

$\mathbf{K} \rightarrow \pi v \overline{v}$ Short Term Prospects

Decay	Γ _{sd} /Γ	Theory Error*	SM BR x10 ¹¹	EXP BR x 10 ¹¹	EXPERIMENT	YEAR
$K_L \rightarrow \pi^0 \nu \overline{\nu}$	>99%	2%	3.4 ± 0.6	~ SM SES	КОТО	~2025
$K^{\scriptscriptstyle +} \not \rightarrow \pi^{\scriptscriptstyle +} \nu \overline{\nu}$	90%	4%	8.4 ± 1.0	~10% precision	NA62	~2025
$K_L \rightarrow \pi^0 e^+ e^-$	40%	10%	3.2 ± 1.0	<28	KTeV	2004
${\rm K_L} \rightarrow \pi^0 \mu^+ \mu^-$	30%	15%	1.5 ± 0.3	<38	KTeV	2000
$K_{L} \not \rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$	10%	30%	79 ± 12 (SD)	684 <u>+</u> 11	BNL-871	2000

(*) approximate error on LD-subtracted rate excluding parametric contributions

PER AD ARDUA ALTA NA62 👌

Long Term Plan: High Intensity Kaon Experiments (HIKE) at CERN

Long-term kaon physics programme proposed at CERN SPS (after LS3)

Charged and Neutral rare K decay modes can give clear insight about NP flavour structure [arXiv:1408.0728]

Snowmass paper: arXiv:2204.13394; LoI: arXiv:2211.16586

Importance of kaon physics highlighted in the last European Strategy: findings of the last European Particle Physics Strategy Group in the deliberation document **CERN-ESU-014** "**Rare kaon decays at CERN** and KEK" mentioned in Section 4 as "**Other essential activities**"

Long Term Plan: High Intensity Kaon Experiments (HIKE) at CERN

A multi-purpose high-intensity kaon decay-in-flight experiment at CERN SPS

High-intensity beams at CERN North Area after LS3 with x 4 current NA62 nominal would allow for a kaon comprehensive programme

HIKE K⁺ and K_L phases share detectors and infrastructure of ECN3 experimental area Feasibility studies within CERN Physics Beyond Colliders initiative show that high-intensity facility is feasible for operation from Run4 from beam delivery point of view

KOTO Long Term Prospects

H. Nanjo @ KAON2022

KOTO Step-2:

- ✓ Upgrade to reach sensitivity $O(10^{-13})$
- ✓ Increase proton beam power \rightarrow 100 kW;
- ✓ New neutral beamline at 5° → larger K_L yield, <p(KL)> = 5.2 GeV/c;
- ✓ Increase fiducial decay volume from 2m to 12m;
- ✓ Complete rebuild of the detector;
- Require hadron hall extension: joint project with nuclear physics community;

$\mathbf{K} \rightarrow \pi v \overline{v} \mathbf{Long} \mathbf{Term} \mathbf{Prospects}$

Decay	Γ_{SD}/Γ	Theory Error*	SM BR x10 ¹¹	EXP BR x 10 ¹¹	EXPERIMENT	YEAR
$K_L \rightarrow \pi^0 \nu \overline{\nu}$	>99%	2%	3.4 ± 0.6	20% precision	KOTO-2	start ~2030
$K^{\scriptscriptstyle +} \not \rightarrow \pi^{\scriptscriptstyle +} \nu \overline{\nu}$	90%	4%	8.4 ± 1.0	5% precision	HIKE	start ~2030
$K_L \rightarrow \pi^0 e^+ e^-$	40%	10%	3.2 ± 1.0	<28	KTeV	2004
${\rm K_L} \twoheadrightarrow \pi^0 \mu^+ \mu^-$	30%	15%	1.5 ± 0.3	<38	KTeV	2000
$K_{L} \not \rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$	10%	30%	79 ± 12 (SD)	684 ± 11	BNL-871	2000

(*) approximate error on LD-subtracted rate excluding parametric contributions

PER AD ARDUA ALTA NA62 👌

Conclusions

NA62 and KOTO: current primary focus on $K \rightarrow \pi v \overline{v}$

Status:

 \succ Recent results from KOTO ($K_L \rightarrow \pi^0 v \overline{v}$) and NA62 ($K^+ \rightarrow \pi^+ v \overline{v}$) presented

 $BR(K_r \to \pi^0 v \bar{v}) < 4.9 \times 10^{-9} (90\% CL)$

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4 \text{ stat}} \pm 0.9_{\text{syst}}) \times 10^{-11}$

Prospects:

- > Short-term (< ~2025) clear strategy defined for $K \rightarrow \pi v \overline{v}$
- Reduce current main sources of background
- Run at higher beam intensity
- Expect KOTO to reach SM SES and NA62 to reach O(15%) precision
- Long-term (> ~2030) next-generation of kaon experiments
- ♦ J-PARC: Plans for KOTO-2 to measure BR($K_L \rightarrow \pi^0 v \bar{v}$)
- \Leftrightarrow CERN: Proposal for high-intensity K⁺ and K_L experiments

Long Term Plan at CERN SPS: The HIKE Detector

- Decay in flight technique, experience from NA62 and similar layout
- Essential K⁺ ID, momentum, space and time
- High-rate, precision particle tracking
- Minimize material
- Highly efficient PID for photons, pions, electrons and muon vetoes
- > Highly efficient and hermetic photon vetoes
- > High-performance EM calorimeter (energy resolution, time, granularity)

1.2 x 10¹³ protons on target per spill (4.8 sec)

Improved timing is the crucial element to be able to increase intensity 4 x NA62

Technological solutions exists for all detectors

Challenge: 20-40 ps time resolution for key detectors, while maintaining all other NA62 specs Technology challenges aligned with HL-LHC projects and future flavour/dark matter experiments

KOTO 2021 $K_L \rightarrow \pi^0 \nu \nu$ Analysis

K. Shiomi @ KAON2022

Breakdown of backgrounds

BG table

Single Event Sensitivity(S.E.S.):7.9×10-10

c.f. 2016-2018 analysis:7.2×10-10

Reachable S.E.S with the 2021 data is $(6 \sim 8) \times 10^{-10}$

KOTO $K_L \rightarrow \pi^0 \nu \nu$ Running Time

K. Shiomi @ KAON2022

Prospects for future run

KOTO Beam Line Upgrade

Time line H. Nanjo @ KAON2022

Early realization of extension of hall \rightarrow Start of KOTO step-2 in 2030s

Upstream Background

- Kaon decays in upstream region (e.g. interactions with GTK stations)
- $\succ \pi^+$ enters fiducial volume (FV) and scatters in first STRAW chamber
- ➢ Beam pileup particle (in GTK) generates a fake decay vertex inside the FV
- ➢ In 2018 collimator was replaced to remove early decays mechanism
- Data sample split in subsets S1 (OLD COL) and S2 (NEW COL)

Kaon decays upstream the FV \rightarrow only π^+ enters FV and scatters in first STRAW chamber In-time pileup beam particle (in GTK) generates a fake decay vertex inside the FV

Background from Kaon decays

Background	Subset S1	Subset S2
$\pi^+\pi^0$	0.23 ± 0.02	0.52 ± 0.05
$\mu^+ u$	0.19 ± 0.06	0.45 ± 0.06
$\pi^+\pi^-e^+\nu$	0.10 ± 0.03	0.41 ± 0.10
$\pi^+\pi^+\pi^-$	0.05 ± 0.02	0.17 ± 0.08
$\pi^+\gamma\gamma$	< 0.01	< 0.01
$\pi^0 l^+ \nu$	< 0.001	< 0.001
Upstream	$0.54\substack{+0.39 \\ -0.21}$	$2.76^{+0.90}_{-0.70}$
Total	$1.11_{-0.22}^{+0.40}$	$4.31_{-0.72}^{+0.91}$

Data Driven estimation

Number of events in $\pi^+\pi^0$ regions after π_{VV} selection $\bigwedge^{(N_{\pi\pi}^{exp})}(region) = N(\pi^+\pi^0) \cdot f^{kin}(region)$

Fraction of $\pi^+\pi^0$ events in signal region measured from control data

K physics: not only golden modes!

Production of on-shell BSM particles in K decays:

 $K^+ \rightarrow \pi^+ X, K^+ \rightarrow \ell^+ N$

+ peak searches in states with $\ell^+\ell^-$ pair

 $K^+ \longrightarrow \pi^+ \ell^+ \ell^-, \ K_{L,S} \longrightarrow \pi^0 \ell^+ \ell^-, \ K^+ \longrightarrow \ell_1^+ \upsilon \ell_2^- \ell_2^-, \ K_{L,S} \longrightarrow \ell_1^+ \ell_1^- \ell_2^+ \ell_2^-, \dots$

K physics: not only golden modes!

Lepton Number/Flavor Violation: many decay modes, forbidden in SM

