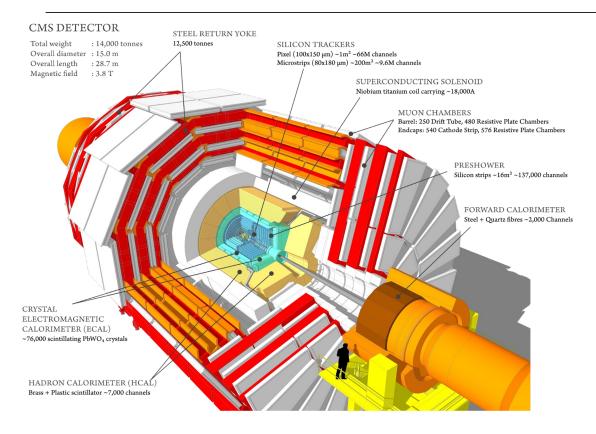


<u>Beauty 2023:</u> 21st International Conference on B-Physics at Frontier Machines

Clermont-Ferrand - July 6th, 2023

Rare decays at CMS

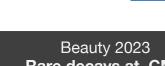

Luca Guzzi – INFN Milano-Bicocca

Overview

Results from rare decays and flavour anomalies searched in B-physics at CMS

- search for the LFV $\tau \rightarrow 3\mu$ decay in CMS in Run-2 data
- observation of the rare $\eta \rightarrow 4\mu$ decay at CMS in Run-2 scouting data
- search for the $B^{0}_{(s)} \rightarrow \mu^{+} \mu^{-}$ decay and effective lifetime mesurement in CMS Run-2 data

The CMS detector

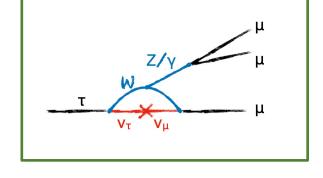


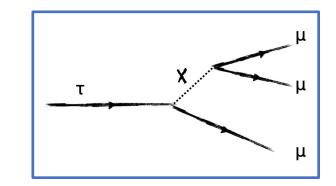
collected luminosity:

- Run1: 25 /fb pp @ 7 and 8 TeV
- Run2: 140 /fb pp @ 13 TeV
- Run3 ongoing, 37 /fb collected in 2022

- cylindric compact (15m x 21m) detector
- high granularity pixel + strip silicon tracker for excellent track, PV and SV measurements
- PbWO₄ crystal ECAL and brass+plastic HCAL to achieve hermeticity and jet+EG shower measurement
- 3.8T solenoid for pT measurement
- external muon chambers outside steel return yoke for a clean muon detection and pT measurement
- two level trigger system (hardware + software)

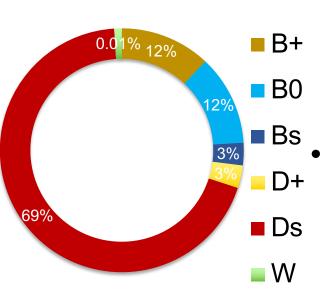
Lepton Flavour Violating (LFV) decays are


strongly suppressed in the Standard Model (SM)


- allowed by neutrino oscillations at lowest Branching Ratios (BR) 10.1140/epjc/s10052-020-8059-7
 - SM BR ($\tau \rightarrow 3\mu$) ~ 10⁻⁵⁵

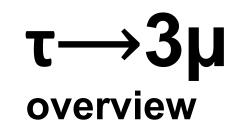
the physics case

- LFV decays are a good field for New Physics (NP) searches
 - predicted by some NP model at BR $\sim 10^{-9}$


10.1393/ncr/i2018-10144-0 10.1007/JHEP10(2018)148

$\tau {\longrightarrow} 3\mu$ sources of τ leptons

Two sources of τ leptons used for the Run-2 analysis: heavy flavours and W


- heavy flavour (HF) mesons are the most abundant source of tau leptons in pp collisions (~10¹¹ taus per /fb)
 - low-pT and high $|\eta| \rightarrow$ less efficient trigger selection
 - more sensitive to fake signal muons from $\pi\mbox{'s}$ and K's
- production in the W channel less abundant (~107 taus per /fb)
 - harder spectra and more central decay \rightarrow more efficient trigger selection
 - properties of $W \rightarrow \tau v$ bring additional handles for background suppression (large missing pT, low hadron activity, larger signal pT)

STATE OF THE ART AND 2016 CMS RESULT

Observed upper limits (x10⁻⁸ @90% CL)

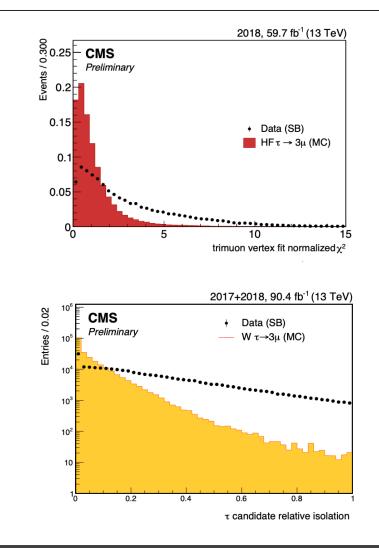
• Belle 782 fb ⁻¹	$\mathcal{B}(\tau \longrightarrow \Im \mu) < 2.1$	$e^+e^- \rightarrow \tau^+\tau^-$	<u>10.1016/j.physletb.2010.03.037</u>
• BaBar 468 fb ⁻¹	$\mathcal{B}(\tau \longrightarrow \Im \mu) < \Im.\Im$	$e^+e^- \rightarrow \tau^+\tau^-$	<u>10.1103/PhysRevD.81.111101</u>
• LHCb 2 fb ⁻¹	$\mathcal{B}(\tau \longrightarrow \Im \mu) < 4.6$	HF→ T	<u>10.1007/JHEP02(2015)121</u>
• ATLAS 20.3 fb ⁻¹	$\mathcal{B}(\tau \longrightarrow \Im \mu) < \Im \Im$	$W \rightarrow \tau$	<u>10.1140/epjc/s10052-016-4041-9</u>
• CMS 33.2 fb ⁻¹ (partial Run-2)	$\mathcal{B}(\tau \longrightarrow \Im \mu) < 8.0$	HF+₩→ τ	<u>10.1007/JHEP01(2021)163</u>

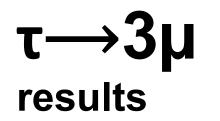
CMS 2016 (partial Run-2) result has proven that the experiment can investigate both the HF and W production channels with a good sensitivity \rightarrow analysis extended to Run-2 (this presentation)

pp collision @13 TeV 131 /fb

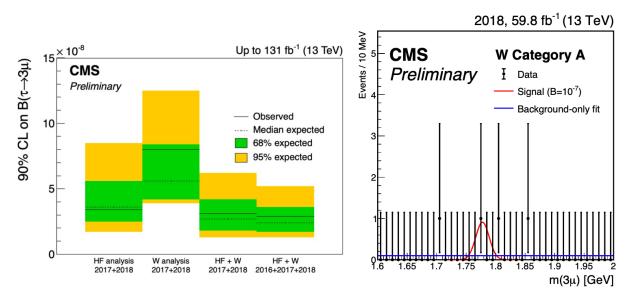
- 2016 data analysis already public <u>doi.org/10.1007/JHEP01(2021)163</u>
- extend to full Run2 era

event selection


- dedicated HLT paths selects signal events
 - W: three isolated muons
 - HF: two muons and one track (2017) or three muons (2018)
- signal candidate composed of charge-one three muons events selected by the analysis trigger
- **categorize** events based on their invariant mass resolution
 - three categories per year per production channel
- figure of merit: **three-muon invariant mass** distribution \rightarrow simulataneous fit the signal strength on each category


background rejection

- kinematically closed decays of **D mesons**
 - veto $\phi \rightarrow \mu \mu$ and $\omega \rightarrow \mu \mu$ resonances
 - muon ID by track quality to suppress pion and kaon fakes (ad-hoc MVA ID for HF channel)
- semileptonic decays of D mesons
 - involves non-reconstructed particles → mass below signal region
 - further suppression by an MVA discriminator
- **combinatorial** \rightarrow suppressed by MVA discriminator
- electroweak W→µv+FSR decays: 3µ+large MET prompt background survives the MVA selection, removed by cutting on the displacement significance from the interaction point


 $\tau {\longrightarrow} 3 \mu$ multivariate analysis

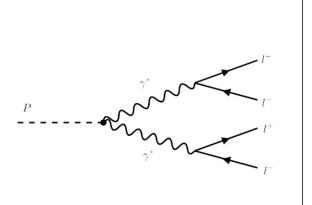
- using **Boosted Decision Tree** (BDT) discriminators to separate signal from background
- **background**: data events from signal sidebands
- O **signal**: MC τ→3µ signal samples
- scale factors applied to the MC signal to match the data efficiencies and spectra
- training information includes kinematic (momenta, missing energy) and topological (SV properties, isolation properties) of the decay, specific of each channel
- BDT score thresholds are defined to tag signal candidates

- Signal strength extracted with UML fit to the three-muon invariant mass distribution
 - HF: gaussian+crystalball + exponential
 - W: gaussian + flat polynomial
 - mass resolution categories combined via simultaneous fit of the signal strength
 - no signal evidence in data → upper limit set on the τ→3µ branching fraction
- extend the analysis with the 2016 analysis (<u>doi.org/10.1007/JHEP01(2021)163</u>) to the full Run2 dataset

observed (expected) upper limit @ 90% of CL

B(**T**→3µ) < 2.9 (2.4) x 10⁻⁸

observed (expected) upper limit @ 95% of CL

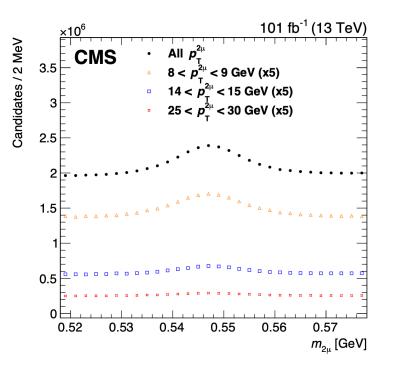


motivation

- η→4µ decay predicted with a very low branching fraction (3.9x10⁻⁹)
 - never observed so far: precision test of the Standard Model (SM)

result

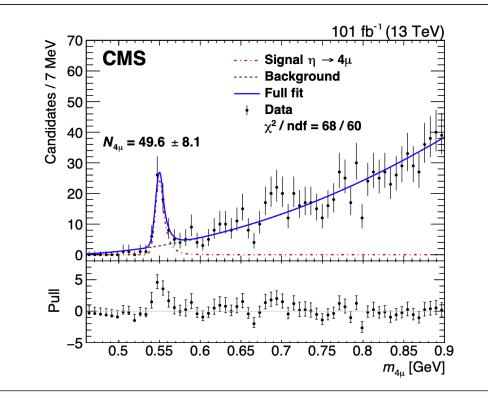
- first observation of the rare $\eta \rightarrow 4\mu$ decay
- sensitive to new physics scenarios <u>doi.org/10.1016/j.physreb.2021.11.001</u>


data scouting

- trigger thresholds limited by the computing power and bandwidth of the experiment
- reduce event size and fasten data acquisition
 - limit the amount of information to muon tracks
 - save HLT reconstruction and skip *prompt* event processing
 - event size reduced to ~kB (from ~MB)

 \rightarrow can use looser muon thresholds \rightarrow allow for low transverse momentum (pT) rare decays searches

$\begin{array}{l} \eta {\rightarrow} 4 \mu \\ \text{event selection} \end{array}$


- pp collisions @ 13 TeV 101 /fb collected in 2017 and 2018
- CMS trigger system
 - L1 trigger: di-muon patterns select low-pT collimated muons (pT>~4 GeV)
 - HLT trigger: di-muon pattern with mild pT selection (pT>3 GeV)
 - di-muon triggers select both 4μ (signal) and 2μ (control channel) η decays
- trigger scouting for low pT analysis
 - higher trigger rate possible (2 kHz vs. 30 Hz of standard di-muon triggers)
 - size reduction: 4 (8) kB per event in 2017 (2018)
 - 4.5 M of $\eta \rightarrow 2\mu$ events recorded \rightarrow several billions η mesons produced in the CMS acceptance
- further signal skimming: charge-zero 4µ events with common vertex

invariant mass of di-muon events in the eta range, collected by 2017 and 2018 CMS parking triggers

η→4μ results

- $\eta \rightarrow 4\mu$ yield is normalized to the $\eta \rightarrow 2\mu$ yield
 - relatively precise normalization strategy (13.8% uncertainty)
- efficiency and acceptance corrections from MC samples
 - MC correction for 2μ - 4μ differences
- $\eta \rightarrow 4\mu$ yield fit with CB function + polynomial
 - ~50 η→4µ events observed: 5 sigma excess
 from background (estimated with LLR)
 - resonant backgrounds faking 4µ in the signal region excluded by MC studies (see backup)

$$\mathcal{B}(\eta
ightarrow 4\mu) = 5.0 \pm 0.8(stat) \pm 0.7(syst) \pm 0.7(\mathcal{B}) imes 10^{-9}$$

• in agreement with SM prediction $3.98 \pm 0.15 \times 10^{-9}$

$B^{0}(s) \rightarrow \mu^{+}\mu^{-}$

the physics case

motivations

- B⁰_(s)→µ⁺µ⁻ strongly suppressed in the SM (FCNC and helicity)
- connected to $b \rightarrow sl^+l^-$ transitions via the

EFT operators can help understand

b→s anomalies <u>doi.org/10.1140/epjc/s10052-021-</u> 09725-1

• probe SM though lifetime

measurements

• clear final state and

experimental signature at CMS

result

- pp @ 13 TeV Run2 data (2016-2018) 140 /fb
 - updates the published result on 2016
 data (30 /fb)
- 12.5 sigma observation of the B⁰_(s)→µ⁺µ⁻
 decay, upper limit on the B(B⁰→µ⁺µ⁻) and
 life time measurement of B⁰_(s)→µ⁺µ⁻

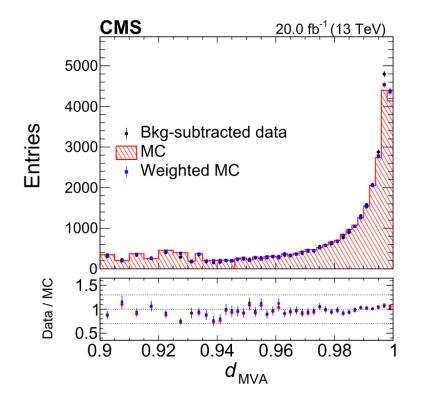
$B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$

event selection

Data collection

- trigger selection: di-muon triggers with tight quality tracks and a valid secondary vertex (SV)
- similar selection for the control channels $B \rightarrow J/\Psi K^+$ and $B \rightarrow J/\Psi \varphi$

signal selection


- two opposite-sign muons with pT > 4 GeV and |η|
 < 1.4
- decay vertex of B meson→ kinematic re-fit of the muon tracks with additional SV constraint
- 16 categories: 4 years x 2 BDT bins x 2 detector
 |η| regions

Background contamination

- combinatorial from $b\overline{b}$ events \rightarrow MVA reduction
- partially reconstructed semi-leptonic b \rightarrow hµv and b \rightarrow hhX decays \rightarrow MVA reduction
- charmless hadronic two-body decays $B \rightarrow hh \rightarrow negligible$ after tight muon track selection

B⁰_(s)→μ⁺μ⁻ MVA analysis

- exploit several weak discrimination variables with a BDT (XGBoost)
 - \circ features: pointing angles (2D and 3D) \rightarrow effective vs. all non-two-body backgrounds
 - \circ features: SV (quality and displacement) \rightarrow effective vs. combinatorial
 - features: isolation (sum of pT surrounding the signal)
 - \rightarrow effective vs. semi-leptonic decays
- trained on data from the signal mass sidebands and MC signal samples
 o validate on B⁺→J/Ψ K⁺ events

MVA score distribution for data (black dots), MC (bars) and re-weighted MC (blue dots) for 2016a $B^+ \rightarrow J/\Psi K^+$ events

$B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$

signal extraction

• 2D UML fit to the $\mu\mu$ mass x mass-resolution to extract the B $\rightarrow\mu\mu$ signal yields. Two strategies for B_s^0 normalization:

 \circ B⁺ \rightarrow J/ $\Psi(\rightarrow \mu^{+}\mu^{-})$ K⁺ normalization \rightarrow rely on the knowledge of fs / fu

 $\circ B_s^0 \rightarrow J/\Psi(\rightarrow \mu^+\mu^-) \phi(\rightarrow K^+K^-)$ normalization \rightarrow higher systematic (additional kaon)

$$\begin{aligned} \mathscr{B}(B^{0}_{s} \to \mu\mu) &= \mathscr{B}(B^{+} \to J/\Psi K^{+}) \cdot \frac{N_{B^{0}_{s} \to \mu\mu}}{N_{B^{+} \to J/\Psi K^{+}}} \cdot \frac{\varepsilon_{B^{+} \to J/\Psi K^{+}}}{\varepsilon_{B^{0}_{s} \to \mu\mu}} \cdot \frac{f_{u}}{f_{s}} & \text{derived from} \\ \mathscr{B}(B^{0}_{s} \to \mu\mu) &= \mathscr{B}(B^{0}_{s} \to J/\Psi \Phi) \cdot \frac{N_{B^{0}_{s} \to \mu\mu}}{N_{B^{0}_{s} \to J/\Psi \Phi}} \cdot \frac{\varepsilon_{B^{0}_{s} \to J/\Psi \Phi}}{\varepsilon_{B^{0}_{s} \to \mu\mu}} & \text{derived from} \\ \mathscr{B}(B^{0} \to \mu\mu) &= \mathscr{B}(B^{+} \to J/\Psi K^{+}) \cdot \frac{N_{B^{0} \to \mu\mu}}{N_{B^{+} \to J/\Psi K^{+}}} \cdot \frac{\varepsilon_{B^{+} \to J/\Psi K^{+}}}{\varepsilon_{B^{0}_{s} \to \mu\mu}} \cdot \frac{f_{u}}{f_{d}} & \frac{doi.org/10.1103/PhysRe}{\nu D.104.032005} \end{aligned}$$

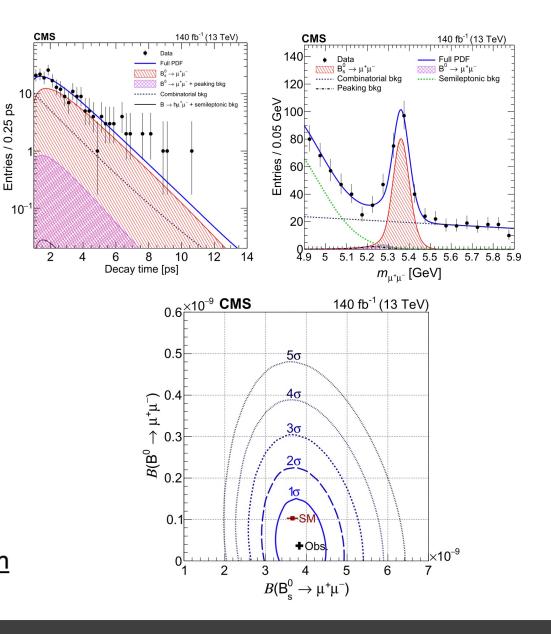
UML fit to the decay time to extract τ (3D fit: decay time, its uncertainty and μμ mass)

 $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$ results

```
\mathcal{B}(\mathbf{B}^{0}_{\mathbf{s}} \rightarrow \mu^{+}\mu^{-}) = 3.83^{+0.38}_{-0.36}(stat)^{+0.19}_{-0.16}(syst) \stackrel{+0.14}{_{-0.13}}(fs
```

/fu) x 10⁻⁹ (from J/ Ψ K⁺)

```
\mathcal{B}(\mathbf{B}_{\mathbf{s}}^{\mathbf{0}} \to \mu^{+}\mu^{-}) = 4.02^{+0.40}_{-0.38}(stat)^{+0.28}_{-0.23}(syst) \stackrel{+0.18}{_{-0.15}}(BF)
```


x 10⁻⁹ (from J/Ψφ)

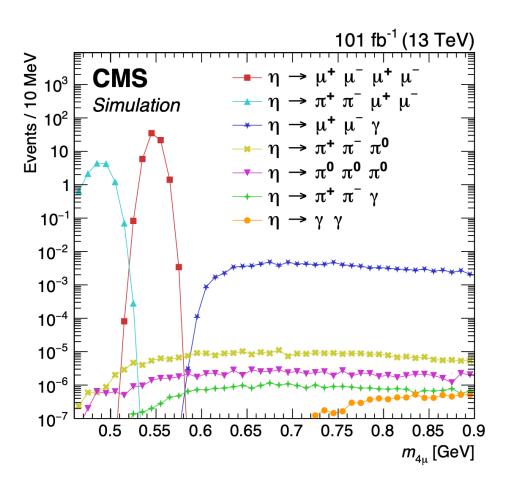
```
\mathcal{B}(B^0 \rightarrow \mu^+ \mu^-) < 1.5 \text{ x } 10^{-10} @ 90\% \text{ CL}
```

ℬ(B⁰→μ⁺μ⁻) < 1.9 x 10⁻¹⁰ @ 95% CL

 $\tau(\mathbf{B_s^0}) = 1.83^{+0.23}_{-0.20}(stat)^{+0.04}_{-0.04} (syst) \text{ ps}$

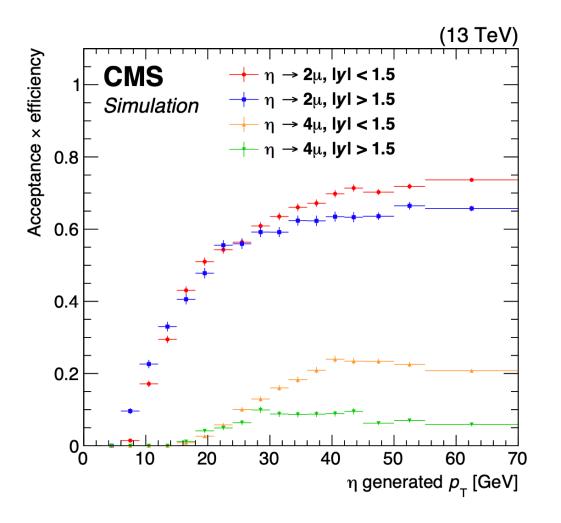
- All UML fit results are compatible with the SM prediction within 1 sigma
- most precise measurement of $B_s^0 \rightarrow \mu^+\mu^-$ branching fraction and lifetime to date

Summary of the talk

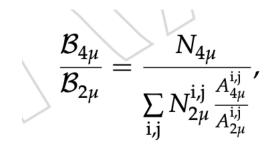

- $\tau \rightarrow 3\mu$ (W and D/B channels) at CMS in pp collisions @ 13 TeV (131 /fb)
 - \circ observed (expected) B(τ→3µ) < 2.9 (2.4) x 10⁻⁸ @ 90% CL
- First $\eta \rightarrow 4\mu$ observation in CMS Run2 scouting data @ 13 TeV (101 /fb)

○ $B(\eta \rightarrow 4\mu) = 5.0 \pm 0.8$ (stat) ± 0.7 (syst) ± 0.7 (B) · 10⁻⁹

- $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$ at CMS on pp collisions @ 13 TeV (140 /fb)
 - $B(B_{s}^{0} \rightarrow K^{0^{*}} \mu^{+} \mu^{-}) = 3.83^{+0.38}_{-0.36} \text{ (stat)} ^{+0.19}_{-0.16} \text{ (syst)} ^{+0.14}_{-0.13} \text{ (fs/fu)} \cdot 10^{-9} \text{ (*)}$
 - $B(B^0 \rightarrow \mu^+ \mu^-) < 1.5 (1.9) \cdot 10^{-10} @ 90\% (95\%) CL$
 - \circ $\tau(B_{s}^{0}) = 1.83^{+0.23}_{-0.20}(\text{stat})^{+0.04}_{-0.04} \text{ ps}^{(*)}$



$\eta {\rightarrow} 4 \mu \\ \text{resonsnat background contamination}$



- no peaking decay under the η peak
- note: unobserved decays are normalized to their upper limit

$\eta \rightarrow 4\mu$ acceptance correction

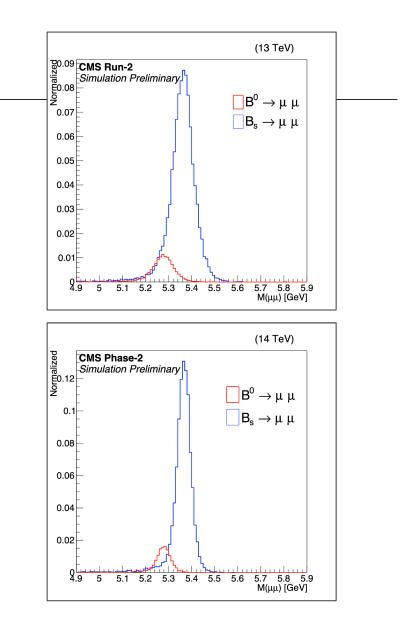
• 4µ and 2µ efficiencies in bins of pT and rapidity

i, j = pT and rapidity bins

$\begin{array}{l} \eta {\rightarrow} 4 \mu \\ \text{systematic uncertainties} \end{array}$

track pT threshold uncertainty [9%]: imperfect modeling of turn-on

behaviour of single-muon reconstruction efficiency in simulated data


- **trigger pT threshold uncertainty [8.4%]**: imperfect modeling of turn-on behaviour of single-muon reconstruction efficiency at HLT in simulated data
- plateau efficiency uncertainty [3.2%]: mismodeling of trigger efficiency plateau
- fit bias: subdominant
- $\eta \rightarrow 2\mu$ branching fraction [13.8%]

cds.cern.ch/record/2650545

$B^{0}(s) \rightarrow \mu^{+}\mu^{-}$

perspectives at the HL-LHC

- CMS prediction for <u>HL-LHC (Phase 2) starting in 2029</u>
 - $\circ~$ 14 TeV pp collision \rightarrow ~ same b production
 - $\circ\,$ x5 collision rate (200 PU) $\,\rightarrow$ no large impact from 200PU is expected
 - $_{\odot}$ 3 /ab of luminosity \rightarrow x20 Run-2
- extrapolation via MC simulation (full Phase2 detector) + toys from Run-1 results
 - reasonable projection of most of the systematic uncertainties (x0.5)
- much better mass resolution following tracker upgrade
 - $_{\odot}\,$ less contamination from semi-leptonic fakes
 - $\,\circ\,$ better B^0_s B^0 hypothesis separation
- ➤ Time resolution on lifetime: 0.05 ps
- \succ observation of $B^0\!\!\rightarrow\mu\mu$ at more than 5 sigmas

CMS: $B^0_{(s)} \rightarrow \mu^+\mu^-$

SYSTEMATIC UNCERTAINTIES

Table 3

Summary of the systematic uncertainties for the $B^0_s \to \mu^+\mu^-$ and $B^0 \to \mu^+\mu^-$ branching fraction measurements.

Effect	$B_s^0 ightarrow \mu^+ \mu^-$	$B^0 \rightarrow \mu^+ \mu^-$	
$f_{\rm s}/f_{\rm u}$ ratio of the B meson production fractions	3.5%	_	
d _{MVA} correction	2–3%		
Tracking efficiency (per kaon)	2.3%		
Trigger efficiency	2.4-3.7%		
Fit bias	2.2%	4.5%	
Pileup	1%		
Vertex quality requirement	1%		
$B^+ \rightarrow J/\psi K^+$ shape uncertainty	1%		
$B^+ \rightarrow J/\psi K^+$ branching fraction	1.9%		

Table 4

Summary of the systematic uncertainties in the $B^0_s \to \mu^+ \mu^-$ effective lifetime measurement (in ps) in four data-taking periods.

	2017	2018
0.04	0.05	0.04
0.06	0.02	0.02
0.01		
0.01	1	
0.07	0.05	0.04
	0.07	0.07 0.05

- trigger: data-MC comparison of control channels
- pileup: by means of reweighing
- **vertex:** the control channel triggers require a tighter selection. Evaluated the difference of the two selections.
- **MVA:** difference between data and MC efficiencies evaluated after an MVA reweight of the control channel
- **tracking:** comparing $D^0 \rightarrow K\pi$ and $D^0 \rightarrow K\pi\pi\pi$ ratio with world average
- $B \rightarrow J/\Psi K$ shape: evaluating different shapes
- fit bias: with pseudo-experiments
- fs/fu: from external measurement
- lifetime fit bias: correlation of the BDT to the life-time. Measured by comparing the B→J/ΨK fit to the SM prediction after the BDT cut
- decay time distribution mismodeling: the lifetime distribution of simulated signal events is corrected using scale factors from B→J/ΨK events taken after BDT>.9 over BDT>.99. The fit difference introduced by data- or MCderived corrections is taken as uncertainty.
- efficiency modelling: evaluated using different efficiency functions
- **lifetime fit bias:** measured with pseudo-experiments with different lifetimes

$\tau{\rightarrow}3\mu$ at the HL-LHC

 Iuminosity-scaled projections based on the HF results place CMS sensitivity at 3.7 x 10⁻⁹ @ 90% CL

arXiv:1812.07638