Measurements of $|V_{cb}|$ and $|V_{ub}|$ from Belle (II)

Lu Cao

(for the Belle & Belle II Collaboration)

BEAUTY 2023 @ Clermont-Ferrand

rand

Content

Measurements covered in this talk:

Exclusive |V_{cb}|:

- Had. tagged $B^0 \to D^* \ell \nu$
- Had. tagged $B \rightarrow D^* \ell \nu$ and shapes of key kinematic variables

Exclusive |V_{ub}|:

• Untagged $B^0 \to \pi^- \ell \nu$

Inclusive |V_{ub}|:

• Partial & differential branching fractions of $B \rightarrow X_{\mu} \ell \nu$

Combined measurements:

- Excl. |V_{ub}| / incl. |V_{ub}|
- Incl. $|V_{ub}|$ / incl. $|V_{cb}|$

Exclusive

V_{cb}

Exclusive

Branching Fraction of $B^0 \rightarrow D^* \ell \nu$ and V_{cb}

- Data set of 189.3 fb⁻¹ with untagged strategy (higher efficiency than tagged)
- Decay chain: $\mathbf{B}^0 \rightarrow \mathbf{D}^{*+} \ell \nu$, $\mathbf{D}^{*+} \rightarrow \mathbf{D}^0 \pi^+_{slow}$, $\mathbf{D}^0 \rightarrow \mathbf{K}^- \pi^+$
- 2D fit on $(\cos\theta_{BY}, \Delta M = M(D^{*+}) M(D^0))$ for each bin of w, $\cos\theta_{\ell}, \cos\theta_{\nu}, \chi$
- Unfold signal yields and correct efficiency & acceptance
- Full experimental correlations derived for all measured decay rates

Branching fraction extracted by the total rate summing over partial decay rates and averaging all kin. variables

Preliminary

e mode: $\mathcal{B}(\overline{B}^0 \to D^{*+} e^- \bar{\nu}_e) = (4.94 \pm 0.03 \pm 0.22)\%$ $\mathcal{B}(\overline{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu}) = (4.94 \pm 0.03 \pm 0.24)\%$ μ mode: $\mathcal{B}(\overline{B}^0 \to D^{*+} \ell^- \bar{\nu}_\ell) = (4.94 \pm 0.02 \pm 0.22)\%$ Average:

Branching Fraction of $B^0 \rightarrow D^* \ell \nu$ and V_{cb}

- Fit differential shapes on w, $\cos\theta_{\ell}$, $\cos\theta_{\nu}$, χ with **Caprini-Lellouch-Neubert (CLN)** [Nucl. Phys. B530, 153] & **Boyd-**Grinstein-Lebed (BGL) parameterisations [Phys. Rev. D56, 6895)]
- BGL truncation based on nested hypothesis test[Phys. Rev. D100, 013005]
- Inclusion of LQCD constraint [Eur. Phys. J. C 82, 1141 (2022)] at beyond zero-recoil (w = [1.03, 1.10, 1.17]) in two scenarios

	BGI	Constraints or	Constraints on	Preliminary
		$h_{A_1}(w)$	$h_{A_1}(w), R_1(w), R_2(w)$	
	$a_0 \times 10^3$	21.7 ± 1.4	$25.7 \hspace{0.2cm} \pm 0.8 \hspace{0.2cm}$	
3	$b_0 imes 10^3$	13.20 ± 0.24	13.58 ± 0.23	
	$b_1 \times 10^3$	-7 ± 7	2 ± 6	
	$c_1 \times 10^3$	-1.1 ± 0.8	-0.5 ± 0.8	✓ IV _{cb} I shifts wh
	$ V_{cb} \times 10^3$	40.5 ± 1.2	38.6 ± 1.1	include full LC
at	χ^2/ndf	40/33	74/39	constraints
	p-value	0.18	0.001	

Similar tension seen in recent Belle (2023) measurement [arXiv:2301.07529]

 \Rightarrow Both found large disagreements wrt LQCD results on R₂

Branching Fraction of $B^0 \rightarrow D^* \ell \nu$ and $|V_{cb}|$

- Lepton-flavor-universality tested with separate results
- All in good agreement with SM expectations

Test on branching fraction ratio: $R_{e/\mu} = 1.001$

$$\begin{split} \textbf{Test on forward-backward asymmetry:} \\ \mathcal{A}_{FB} &= \frac{\int_{0}^{1} d\cos\theta_{\ell} d\Gamma/d\cos\theta_{\ell} - \int_{-1}^{0} d\cos\theta_{\ell} d\Gamma/d\cos\theta_{\ell}}{\int_{0}^{1} d\cos\theta_{\ell} d\Gamma/d\cos\theta_{\ell} + \int_{-1}^{0} d\cos\theta_{\ell} d\Gamma/d\cos\theta_{\ell}} \\ \mathcal{\Delta}\mathcal{A}_{FB} &= \mathcal{A}_{FB}^{\mu} - \mathcal{A}_{FB}^{e} \\ \end{split} \\ \end{split} \\ \begin{array}{l} \textbf{Preliminary} \\ \mathcal{A}_{FB}^{e} &= 0.219 \pm 0.011 \pm 0.020 \, , \\ \mathcal{A}_{FB}^{\mu} &= 0.215 \pm 0.011 \pm 0.022 \, , \\ \end{array} \\ \begin{split} \boldsymbol{\Delta}\mathcal{A}_{FB} &= (-4 \pm 16 \pm 18) \times 10^{-3} \end{split}$$

Preliminary

te on o 8 mu modo				
is on e- à mu-moue	SM prediction	PRD 106, 096015	EPJC 81, 984	
	$R_{e/\mu}$	1.0041 ± 0.0001	1.0026 ± 0.00	
	$\mathcal{A}^e_{\mathrm{FB}}$	$0.244 \ \pm 0.004$	0.204 ± 0.012	
	${\cal A}^{\mu}_{ m FB}$	0.239 ± 0.004	0.198 ± 0.012	
$\pm 0.009 \pm 0.021$	$\Delta {\cal A}_{ m FB} imes 10^3$	-5.7 ± 0.1	-5.33 ± 0.24	
Preliminary	$F_L^{m e}$	$0.516\ \pm 0.003$	0.541 ± 0.01	
	F_L^μ	$0.516\ \pm 0.003$	$0.542 \ \pm 0.012$	
	$\Delta F_L imes 10^4$	1.2 ± 0.1	5.43 ± 0.36	

Test on D* longitudinal polarization fraction:

$\frac{1}{\Gamma} \frac{1}{\mathrm{d} \mathrm{c}}$	$\frac{\mathrm{d}\Gamma}{\cos\theta_V} =$	$\frac{3}{2}\left(F_L\cos^2\theta_V + \frac{1}{2}\right)$	$\frac{-F_L}{2}\sin^2\theta_V \bigg)$
		$\Delta F_L = F_L^{\mu} - F_L^e$	

Preliminary

$$F_L^e = 0.521 \pm 0.005 \pm 0.007$$
$$F_L^\mu = 0.534 \pm 0.005 \pm 0.006$$
$$\Delta F_L = 0.013 \pm 0.007 \pm 0.007$$

V_{cb} & Differential Shapes of $B \rightarrow D^* \ell \nu$

- Full Belle data set of 711 fb⁻¹ for $B^{\pm,0}$, $\ell = e, \mu$
- Hadronic tagging using Belle II tool (Full Event Interpretation [Comp. Soft. Big Sci 3 (2019) 6])
- Background subtracted via fitting $M_{\rm miss}^2$ for bins of $w, \cos\theta_{\ell}, \cos\theta_{\rm v}, \chi$ in each decay mode independently

arXiv: 2301.07529

accepted by PRD

Combined all kin. shapes to extract |V_{cb}| in BGL/CLN with external constraints on branching fractions (HFLAV) and LQCD (FNAL/MILC)

Eur. Phys. J. C 82, 1141 (2022)

$|V_{cb}|$ & Differential Shapes of $B \rightarrow D^* \ell \nu$

- In |V_{cb}| extraction, tested different BGL truncations, LQCD constraining scenario (at or beyond zero-recoil)
- Forward-backward asymmetry A_{FB} and D* longitudinal polarization fraction F_L^{D*} and their differences between e, μ also derived. No significant LFUV found.

constraining scenario (at or beyond zero-recoil) **polarization fraction** $\mathbf{F}_{\mathbf{r}}^{\mathbf{D}*}$ and their differences

$$\begin{split} A_{\rm FB} &= \frac{\int_{0}^{1} \mathrm{d} \cos_{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos_{\ell} - \int_{-1}^{0} \mathrm{d} \cos_{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos_{\ell}}{\int_{0}^{1} \mathrm{d} \cos_{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos_{\ell} + \int_{-1}^{0} \mathrm{d} \cos_{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos_{\ell}} \\ \hline & \overline{B}^{0} \to D^{*+} \ell \bar{\nu}_{\ell} & 0.062 \pm 0.044 \pm 0.011 \\ B^{-} \to D^{*0} \ell \bar{\nu}_{\ell} & -0.003 \pm 0.033 \pm 0.009 \\ B \to D^{*} \ell \bar{\nu}_{\ell} & 0.022 \pm 0.026 \pm 0.007 \\ \hline & \frac{1}{\Gamma} \frac{\mathrm{d} \Gamma}{\mathrm{d} \cos \theta_{V}} = \frac{3}{2} \left(F_{L} \cos^{2} \theta_{V} + \frac{1 - F_{L}}{2} \sin^{2} \theta_{V} \right) \\ \hline & \frac{\Delta F_{L}^{D^{*}}}{\bar{B}^{0} \to D^{*+} \ell \bar{\nu}_{\ell}} & 0.032 \pm 0.033 \pm 0.010 \\ B^{-} \to D^{*0} \ell \bar{\nu}_{\ell} & 0.025 \pm 0.035 \pm 0.010 \\ B \to D^{*} \ell \bar{\nu}_{\ell} & 0.034 \pm 0.024 \pm 0.007 \end{split}$$

Exclusive

V_{cb}

Exclusive

$|V_{ub}|$ in $B^0 \rightarrow \pi^- \ell^+ \nu$ Decay

- Data set of 189.3 fb⁻¹ with untagged analysis strategy
- Extract signal in beam-constrained mass M_{bc} and energy difference ΔE for each bin of q^2

 ΔE in GeV

 $\Delta E = E_B^* - E_{\text{beam}}^* = E_B^* - \frac{\sqrt{s}}{2}$

arXiv: 2210.04224

V_{II} fitted with Bourrely-Caprini-Lellouch (BCL) [Phys.Rev.D79, 013008] expansion including LQCD constraints (FNAL/MILC [Phys. Rev. D92, 014024])

$|V_{ub}|$ in $B^0 \rightarrow \pi^- \ell^+ \nu$ Decay

- Data set of 189.3 fb⁻¹ with untagged analysis strategy
- Extract signal in beam-constrained mass M_{bc} and energy difference ΔE for each bin of q^2

arXiv: 2210.04224

V_{II} | fitted with Bourrely-Caprini-Lellouch (BCL) [Phys.Rev.D79, 013008] expansion including LQCD constraints (FNAL/MILC [Phys. Rev. D92, 014024])

11

Recent Belle II Results on Exclusive V_{xb}

	V _{cb} × 10 ³
$B^0 \to D^{*-} \ell^+ \nu$, untagged	40.9 ± 1.2 (BGL)
$B^0 \rightarrow D^{*-} \ell^+ \nu$, tagged	37.9 ± 2.7 (CLN)
$B \to D\ell\nu$, untagged	38.28 ± 1.16 (BGL)
	V ub × 10 ³
$B \to \pi e \nu$, tagged	3.88 ± 0.45
$B \to \pi \ell \nu$, untagged	3.55 ± 0.25

References

To be submitted to PRD

arXiv:2301.04716

arXiv:2210.13143

References

arXiv:2206.08102

arXiv:2210.04224

HFLAV 2023

 $|V_{cb}|_{excl} = (39.10 \pm 0.50) \times 10^{-3}$ $|V_{ub}|_{excl} = (3.51 \pm 0.12) \times 10^{-3}$

Exclusive

V_{cb}

Exclusive

13

Inclusive $B \to X_{\mu} \ell \nu$ and V_{ub}

- Full Belle data set of 711 fb⁻¹ with **Hadronic tagging**
- Use machine learning (BDT) to suppress backgrounds with 11 training features, e.g. MM²,#K[±], #K_s, etc.

• Partial BF and inclusive IV_{ub}I derived in various phase space regions

$$\Delta \mathscr{B}(E_{\ell}^{B} > 1 \text{GeV}) = (1.59 \pm 0.07 \pm 0.16) \times 10^{-3}$$

$$|V_{ub}| = \sqrt{\frac{\Delta \mathscr{B}(B \to X_u \ell \nu)}{\tau_B \cdot \Delta \Gamma(B \to X_u \ell \nu)}}$$

14

First Measurement of Differential Spectra of $B \rightarrow X_{\mu} \ell \nu$

- Inherit same analysis strategy in the partial BF measurement [PRD 104, 012008 (2021)]
- Background subtracted via M_X fit, further corrected for efficiency & acceptance effects (phase space: $E_{\ell}^{B} > 1$ GeV)
- Necessary input for future **model-independent** determinations of **V**_{ub} (e.g. <u>NNVub</u>, <u>SIMBA</u>)

<u>PRL 127, 261801 (2021)</u>

Exclusive

|V_{cb}|

Exclusive

16

First Simultaneous Determination of Incl. & Excl. Vub

- Inherit same analysis strategy in the partial BF measurement [PRD 104, 012008 (2021)]
- Extract signal in q^2 : $\mathbb{N}_{\pi^{\pm}}$ for $B \to \pi \ell \nu$ and $B \to X_{\mu} \ell \nu$ simultaneously
- Fitter corporates experimental observation of templates' normalisations and $B \to \pi \ell \nu$ form factor (q² shape)

Fit results provide all \mathscr{B} and $B \to \pi \ell \nu$ FF (decay rate) => derive exclusive and inclusive |V_{ub}| $\mathscr{B}(B \to X_{\mu}\ell\nu) = \mathscr{B}(B \to \pi^{0}\ell\nu) + \mathscr{B}(B \to \pi^{+}\ell\nu) + \mathscr{B}(B \to X_{\mu}^{\text{other}}\ell\nu)$ $\Delta \mathscr{B}(B \to X_{u} \ell \nu) = \mathscr{B}(B \to X_{u} \ell \nu) \cdot \epsilon_{\Delta \text{PS:E}^{B} > 1 \text{GeV}}$ $\frac{\Delta \mathscr{B}(B \to X_{u} \ell \nu)}{\tau_{R} \cdot \Delta \Gamma_{\text{GGOU}}}$ Theoretical decay rate based on GGOU prediction [Gambino-Giordano-Ossola-

Uraltsev, JHEP 10 (2007) 058]

First Simultaneous Determination of Incl. & Excl. Vub

- Various fit scenarios applied:
 - **Combined** or separate $B \to \pi^+ \ell \nu$, $B \to \pi^0 \ell \nu$ (iso-spin relation) \bullet
 - Input BCL constraint: LQCD + exp. or only LQCD [FLAG: Eur. Phys. J. C 82, 869 (2022)]

Preliminary

Excl.
$$(3.78 \pm 0.23_{stat} \pm 0.16_{syst} \pm 0.14_{theo})$$

Incl. $(3.90 \pm 0.20_{stat} \pm 0.32_{syst} \pm 0.09_{theo})$
Ratio 0.97 ± 0.12 ($\rho = 0.10$)

arXiv: 2303.17309

Exclusive

|V_{cb}|

Exclusive

19

Ratio of Inclusive $\Delta \mathscr{B}(B \to X_{\mu} \ell \nu)$ and $\Delta \mathscr{B}(B \to X_{c} \ell \nu)$

- Full Belle data set of 711 fb⁻¹ with **Hadronic tagging** using Belle II tool (Full Event Interpretation)
- **Modified** $B \rightarrow X_c \ell \nu$ **modeling** using sideband data
- $B \to X_{\mu} \ell \nu$ yields extracted in $q^2 : p_{\ell}^B$
- Measured partial phase space region of $p_{\ell}^B > 1 \text{ GeV}$ with fractions of $\epsilon_{\Lambda}^u = 86\%$, $\epsilon_{\Lambda}^c = 79\%$

Preliminary $\frac{\Delta \mathscr{B}(B \to X_u \ell \nu)}{\Delta \mathscr{B}(B \to X_c \ell \nu)} = 1.95(1 \pm 8.4\%_{\text{stat}} \pm 7.8\%_{\text{syst}}) \times 10^{-2}$

Based on this, one could try the following two quick and naive conversions

$$|V_{ub}| = \sqrt{\frac{1}{\tau_B \Delta \Gamma(B \to X_u \ell \nu)}} \frac{\Delta \mathscr{B}(B \to X_u \ell \nu)}{\Delta \mathscr{B}(B \to X_c \ell \nu)} \frac{\Delta \mathscr{B}(B \to X_c \ell \nu)}{\mathsf{WA:} (8.55 \pm 0.13)\%}$$

Consistent with recent Belle result PRD 104, 012008 (2021)

Preliminary

Ratio of Inclusive $\Delta \mathscr{B}(B \to X_{\mu} \ell \nu)$ and $\Delta \mathscr{B}(B \to X_{c} \ell \nu)$

- Full Belle data set of 711 fb⁻¹ with **Hadronic tagging** using Belle II tool (Full Event Interpretation)
- **Modified** $B \rightarrow X_c \ell \nu$ **modeling** using sideband data
- $B \to X_{\mu} \ell \nu$ yields extracted in $q^2 : p_{\ell}^B$
- Measured partial phase space region of $p_{\ell}^B > 1 \text{ GeV}$ with fractions of $\epsilon_{\Lambda}^u = 86\%$, $\epsilon_{\Lambda}^c = 79\%$

Preliminary $\frac{\Delta \mathscr{B}(B \to X_u \ell \nu)}{\Delta \mathscr{B}(B \to X_c \ell \nu)} = 1.95(1 \pm 8.4\%_{\text{stat}} \pm 7.8\%_{\text{syst}}) \times 10^{-2}$

Based on this, one could try the following two quick and naive conversions

$$|V_{ub}| = \sqrt{\frac{1}{\tau_B \Delta \Gamma(B \to X_u \ell \nu)}} \frac{\Delta \mathscr{B}(B \to X_u \ell \nu)}{\Delta \mathscr{B}(B \to X_c \ell \nu)}} \frac{\Delta \mathscr{B}(B \to X_c \ell \nu)}{\mathsf{WA:} (8.55 \pm 0.13)\%}$$

$$|V_{ub}| = \sqrt{\frac{\Delta \mathscr{B}(B \to X_u \ell \nu)}{\Delta \mathscr{B}(B \to X_c \ell \nu)}} \frac{\Delta \mathscr{B}(B \to X_c \ell \nu)}{\Delta \mathscr{B}(B \to X_c \ell \nu)}} \frac{\Delta \mathscr{B}(B \to X_c \ell \nu)}{\mathsf{WA:} (8.55 \pm 0.13)\%}$$

$$\frac{|V_{cb}|}{|V_{cb}|} = \sqrt{\frac{\Delta \mathscr{B}(B \to X_c \ell \nu)}{\Delta \mathscr{F}(B \to X_u \ell \nu)}} \frac{\Delta \Gamma(B \to X_u \ell \nu)}{\Delta \Gamma(B \to X_u \ell \nu)}}$$
Theo. decay rates: $\Delta \Gamma^{\text{GGOU}}(B \to X_u \ell \nu) = 58.5 \pm 2.7 \text{ ps}^{-1}$

[PRD 107, 052008 (2023)]

 $\Delta\Gamma^{\rm Kin}(B \to X_c \ell \nu) = 29.9 \pm 1.2 \,\mathrm{ps}^{-1}$

 Many new results are me seared recently and will be very helpful to examine the long-standing [V_{xb}] puzzle

 Many new results are me seared recently and will be very helpful to examine the long-standing [V_{xb}] puzzle

 Many new results are me seared recently and will be very helpful to examine the long-standing [V_{xb}] puzzle

- Many new results are me seared recently and will be very helpful to examine the long-standing |V_{xb}| puzzle
- Continuous efforts from experiment and theory are still needed
 - Seen discrepancies in LQCD vs. Exp. for $B \to D^* \mathcal{C} \nu$ need to be investigated
 - BGL & CLN resulted in consistent |V_{cb}| (no dependence on parameterizations)

- Many new results are me seared recently and will be very helpful to examine the long-standing $|V_{xb}|$ puzzle
- Continuous efforts from experiment and theory \bullet are still needed
 - Seen discrepancies in LQCD vs. Exp. for $B \rightarrow D^* \ell \nu$ need to be investigated
 - BGL & CLN resulted in consistent |V_{cb}| (no dependence on parameterizations)

26

- Many new results are me seared recently and will be very helpful to examine the long-standing $|V_{xb}|$ puzzle
- Continuous efforts from experiment and theory \bullet are still needed
 - Seen discrepancies in LQCD vs. Exp. for $B \to D^* \ell \nu$ need to be investigated
 - BGL & CLN resulted in consistent V_{cb} (no dependence) on parameterizations)

27

- Many new results are me seared recently and will be very helpful to examine the long-standing $|V_{xb}|$ puzzle
- Continuous efforts from experiment and theory \bullet are still needed
 - Seen discrepancies in LQCD vs. Exp. for $B \rightarrow D^* \ell \nu$ need to be investigated
 - BGL & CLN resulted in consistent V_{cb} (no dependence) on parameterizations)

- Many new results are me seared recently and will be very helpful to examine the long-standing $|V_{xb}|$ puzzle
- Continuous efforts from experiment and theory \bullet are still needed
 - Seen discrepancies in LQCD vs. Exp. for $B \rightarrow D^* \ell \nu$ need to be investigated
 - BGL & CLN resulted in consistent V_{cb} (no dependence) on parameterizations)

- Many new results are me seared recently and will be very helpful to examine the long-standing |V_{xb}| puzzle
- Continuous efforts from experiment and theory are still needed
 - Seen discrepancies in LQCD vs. Exp. for $B \to D^* \mathcal{C} \nu$ need to be investigated
 - BGL & CLN resulted in consistent |V_{cb}| (no dependence on parameterizations)
 - Higher precision expected at Belle II for simultaneous excl. & incl. $|V_{ub}|$ and inclusive $|V_{ub}|/|V_{cb}|$ ratio

- Many new results are me seared recently and will be very helpful to examine the long-standing $|V_{xb}|$ puzzle
- Continuous efforts from experiment and theory \bullet are still needed
 - Seen discrepancies in LQCD vs. Exp. for $B \to D^* \ell \nu$ need to be investigated
 - BGL & CLN resulted in consistent V_{cb} (no dependence) on parameterizations)
 - Higher precision expected at Belle II for simultaneous excl. & incl. $|V_{ub}|$ and inclusive $|V_{ub}|/|V_{cb}|$ ratio
- Beyond these important results, the accumulated knowledge on MC modeling, analysis techniques, etc. will be beneficial for future measurements by e.g. Belle II or LHCb

- Many new results are me seared recently and will be very helpful to examine the long-standing |V_{xb}| puzzle
- Continuous efforts from experiment and theory are still needed
 - Seen discrepancies in LQCD vs. Exp. for $B \to D^* \mathcal{C} \nu$ need to be investigated
 - BGL & CLN resulted in consistent |V_{cb}| (no dependence on parameterizations)
 - Higher precision expected at Belle II for simultaneous excl. & incl. |V_{ub}| and inclusive |V_{ub}|/|V_{cb}| ratio
- Beyond these important results, the accumulated knowledge on MC modeling, analysis techniques, etc. will be beneficial for future measurements by e.g.
 Belle II or LHCb

THANK YOU

Backup: Tagging vs. Untagging

Untagged

- Loose constraints on signal
- Very large statistics, but also very large background
- Efficiency $\epsilon \approx \mathcal{O}(100\%)$

Semileptonic tag

- Mid-range reconstruction efficiency
- Due to multiple neutrinos, less information about B_{tag}

Hadronic tag

- Cleaner sample
- Knowledge of p(B_{sig})
- Low tag-side efficiency $\epsilon \approx \mathcal{O}(0.1\%)$

Backup: Inclusive $B \rightarrow X_{\mu} \ell \nu$ and V_{ub}

Extract signal using binned likelihood in 3 phase space (PS) regions:

PRD 104, 012008 (2021)

 \rightarrow Fit either E_{e}^{B} , M_{x} , q^{2} or 2D (M_{x} : q^{2})

$$\Delta \mathcal{B}(B \to X_u \ell^+ \nu_\ell; \operatorname{Reg}) = \frac{\eta_{\operatorname{sig}} \cdot \epsilon_{\Delta \mathcal{B}(\ell)}}{4(\epsilon_{\operatorname{tag}} \cdot \epsilon_{\operatorname{sel}})}$$

 $\Delta \mathscr{B}(E_{\ell}^{B} > 1 \text{GeV}) = (1.59 \pm 0.07 \pm 0.16) \times 10^{-3}$

Measurements separate for e, μ modes

Backup: New Method of Extracting $|V_{ub}^{incl.}|$

- Allows direct extraction of coefficients for non-perturbative shape functions in a global fit and $|V_{ub}|$
- LO is universal
- Methods proposed by <u>SIMBA</u>, <u>NNVub</u>

What can we gain for incl. |V_{ub}|?

Direct & more model-independent extraction

• Uncertainty can be further shrinked by including other inclusive B decays, e.g $B \rightarrow X_s \gamma$, $B \rightarrow X_c \ell v$ as the shape function in

Fightly collaborating with both theory groups to extract $|V_{ub}^{\text{incl.}}|$ (work in progress)

Backup: Simultaneous Determination of Incl. & Excl. Vub

Backup: Branching Fraction of $B^0 \rightarrow D^* \ell \nu$ and V_{cb}

- Select events with energetic lepton $p^{CM} > 1.2$ GeV, and $\Delta M = M(D^{*+}) - M(D^{0}) = [0.141, 0.156] \text{ GeV}, \cos \theta_{BY} = [-4, 2]$
- 2D binned linkelihood fit on $(\cos\theta_{BY}, \Delta M = M(D^{*+}) M(D^{0}))$ for each bin of kinematic variables: w, $\cos\theta_{\ell}$, $\cos\theta_{\nu}$, χ
- Systematic shape variations incorporated as bin-wise Nuisance para. for each fit template

integral projection

Backup: Branching Fraction of $B^0 \rightarrow D^* \ell \nu$ and V_{cb}

Nested hypothesis test included with LQCD beyond-recoil constraints

BGL₁₃₂

Preliminary

	Values	Correlations	
$ V_{cb} \times 10^3$	40.2 ± 1.2 1	-0.32 -0.58 -0.11 0	0.03 - 0.24
$a_{0} \times 10^{3}$	$22.6 \pm 1.2 \ -0.32$	1 0.31 0.1 -0	0.18 0.31
$b_0 imes 10^3$	$13.2\pm 0.2\ -0.58$	0.31 1 -0.17 0	0.14 - 0.12
$b_1 \times 10^3$	$7.1 \pm 14.1 {-} 0.11$	$0.1 \ -0.17 \ 1 \ -0$).89 0.57
b_2	-0.4 ± 0.4 0.03	-0.18 0.14 -0.89 1	-0.41
$c_1 \times 10^3$	$-0.7\pm 0.8\ -0.24$	$0.31 \ -0.12 \ 0.57 \ -0$).41 1

BGL₃₁₃

Preliminary

	Values			Correlations					
	$ V_{cb} \times 10^3$	39.8 ± 1.1	1	-0.16	0.02	-0.1	-0.61	-0.16	0.11
	$a_0 \times 10^3$	28.3 ± 1.0	-0.16	1	-0.09	-0.2	0.17	0.11	-0.03
	$a_1 \times 10^3$	-45.9 ± 65.7	0.02	-0.09	1	-0.85	-0.04	-0.09	0.14
	a_2	-4.8 ± 2.4	-0.1	-0.2	-0.85	1	0.12	0.13	-0.17
	$b_{0} \times 10^{3}$	13.3 ± 0.2 ·	-0.61	0.17	-0.04	0.12	1	0.11	-0.13
	$c_1 \times 10^3$	-3.2 ± 1.4	-0.16	0.11	-0.09	0.13	0.11	1	-0.91
,	$c_{2} \times 10^{3}$	59.1 ± 29.9	0.11	-0.03	0.14	-0.17	-0.13	-0.91	1

1.4 -1.2

(m) 1.0

0.8

0.6

0.4

Backup: $|V_{cb}|$ & Differential Shapes of $B \rightarrow D^* \ell \nu$

- Signal shapes corrected for resolution, reco. efficiency and acceptance effects
- Combined all kinematic shapes to extract |V_{cb}| in BGL/CLN with external constraints on branching fractions (HFLAV) and LQCD results (FNAL/MILC)

Corrected Shapes

arXiv: 2301.07529 accepted by PRD

Backup: $|V_{cb}| \& Differential Shapes of <math>B \to D^* \ell \nu$

Nested hypothesis test w/o & w/ LQCD beyond-recoil constraints

Fitted Shapes

arXiv: 2301.07529

 $R_1(w)$

