Recent results on hadronisation of beauty at the LHC

Jeremy Wilkinson (GSI, Darmstadt)

🕞 🚍 👖 👘 Motivation: Heavy-flavour baryon production

- Heavy quarks (c and b): $m_q >> \Lambda_{QCD} \Rightarrow$ production can be calculated using **perturbative QCD**
- Cross section of hadron production typically factorised to PDFs, partonic cross sections, and fragmentation functions (FF)
- Key assumption: fragmentation functions universally applicable for hadronisation between collision systems

→ Yield ratios, **especially baryon-to-meson ratios,** a sensitive probe to test this hypothesis BEAUTY 2023, 06/07/2023 J. Wilkinson

E S Motivation: Heavy-flavour meson-to-meson ratios

- Prompt and non-prompt D⁺/D⁰ production ratios: Flat as function of momentum in pp collisions at √ s = 5.02 TeV
- Both charm and beauty meson-tomeson ratios described well by FONLL pQCD calculations
 - Similar charm/beauty hadronisation, relative meson fragmentation consistent with e⁺e⁻

BEAUTY 2023, 06/07/2023

E = $\frac{1}{10}$ Motivation: Λ_c/D^0 ratios in pp collisions at the LHC

- Most recent measurements of A_c production at midrapidity in pp collisions by the ALICE and CMS Collaborations
- Charm baryon-to-meson ratio in e⁺e⁻ and e⁻p collisions Expected to be **independent of** *p*_T, at ~0.12
- Hadronic collision systems: Significantly higher than e⁺e⁻ expectation

BEAUTY 2023, 06/07/2023

E S Motivation: Λ_c/D^0 ratios in pp collisions at the LHC

- Most recent measurements of Λ_c production at midrapidity in pp collisions by the ALICE and CMS Collaborations
- Charm baryon-to-meson ratio in e⁺e⁻ and e⁻p collisions Expected to be **independent of** *p*_T, at ~0.12
- Hadronic collision systems: Significantly higher than e⁺e⁻ expectation
- Additional hadronisation processes must be considered to properly account for the pp results
 - **Collision system dependence** of charm hadronisation?
 - To what extent does this hold for the beauty sector?

BEAUTY 2023, 06/07/2023

B-meson production in pp collisions

- Direct CMS measurements of ground-state B mesons at 13 TeV:
 - → Non-strange B-meson ratio: No dependence on p_{T} or rapidity
 - → Average = 1.015±0.051, consistent with strong isospin symmetry
- B_s^0/B^+ yield ratio: No rapidity dependence, but increase towards lower p_T
- Consistent with measurements by LHCb at forward rapidity

Λ_b production in pp collisions

- At forward rapidity: B^- , Λ_b^0 measured by LHCb Collaboration at $\sqrt{s} = 7$ and 13 TeV
- Λ_b/B ratio in pp collisions is consistently above e⁺e⁻ values
- Both ratios described best by including feeddown from additional beauty-baryon states
 - → Similar picture in beauty sector as for charmbaryon hadronisation

$\Box = \pi \Lambda_b$ production in pp collisions

- Results from ALICE Collaboration for non-prompt (i.e. from beauty decays) Λ_c / non-prompt D⁰
 - \rightarrow a proxy for Λ_b/B ratio at mid-rapidity
- Results are consistent with those from LHCb → no significant rapidity dependence for beauty hadronisation effects
- To be examined with direct beauty measurements by ALICE starting from Run 3

Λ_b production in pp collisions

J. Wilkinson

- Significant $\overline{\Lambda}_b{}^0 / \Lambda_b{}^0$ asymmetry measured by LHCb Collaboration in pp collisions at 7 and 8 TeV
- No significant dependence of baryon asymmetry on $p_{\rm T}$
- Asymmetry strongly overpredicted at low $p_{\rm T}$ by Monash tune
- Heavy-quark recombination model and colour reconnection beyond leading colour describe the data well

G S Multiplicity dependence of charm production

 D_s⁺/D⁰ production ratio: flat as function of p_T at both low and high multiplicity, **no multiplicity dependence seen**

- Λ_c+/D⁰ ratio: Significant modification
 of *p*_T spectrum between low and high multiplicity
 - \rightarrow Monash tune: reproduces D_s^+ but not Λ_c^+
 - → CE-SH: predicts Λ_c^+ within uncertainties, but does not describe multiplicity (in)dependence for D_s^+

BEAUTY 2023, 06/07/2023

G S Multiplicity dependence of beauty production

- B_s⁰/B⁰ ratio measured by LHCb as function of multiplicity
- Contrast to D_s^+/D^0 ratio: significant multiplicity dependence at low p_T
- Consistent with quark coalescence picture for strange hadron production

BEAUTY 2023, 06/07/2023

Beauty production in p–Pb collisions

- ALICE measurement of non-prompt $D^0 R_{pPb}$ is consistent with B⁺ from CMS
- No significant cold nuclear matter effects on beauty at mid-rapidity
- Rapidity trend for non-prompt D⁰ / non-prompt J/ ψ / B⁺ described by modified nPDFs

🖬 🖬 👖 🛛 Non-prompt D-meson production in Pb–Pb

- Non-prompt D⁰ and D_s⁺ measured in Pb–Pb collisions, compared with prompt D_s⁺
- Central Pb–Pb collisions: non-prompt D_s^+ higher at low p_T than prompt D_s^+ and nonprompt D^0
 - → Consistent with mass-dependent energy loss for heavy & light quarks
 - → Indication of strangeness enhancement at low $p_{\rm T}$, similar to charm sector
- Semicentral Pb–Pb collisions: No separation observed between species
- Prompt+non-prompt D⁰ described by TAMU model, but D_s⁺ results overpredicted

BEAUTY 2023, 06/07/2023

Beauty-meson production in Pb–Pb collisions

14

GSI

B_c⁺ production in Pb–Pb collisions

- CMS measurements of B_c⁺ production in Pb–Pb collisions:
 - → Indication of a suppression at high $p_{\rm T}$, stronger recombination of $B_{\rm c}$ state at low $p_{\rm T}$
 - \rightarrow No significant dependence of yield on collision centrality
- Results are consistent with different recombination scenarios:
 - → Instantaneous Coalescence Model (ICM): accounts for unthermalised quark spectra
 - → Resonance Recombination Model (RRM): recovers equilibrium limit for heavy-quark spectra
 - → with space momentum correlations (SMC): enhanced recombination due to flow effects in medium

BEAUTY 2023, 06/07/2023

J. Wilkinson

[CMS: PRL 128 (2022) 252301] [Model comparison: arXiv:2302.11511

GSI

Beauty flow in Pb–Pb collisions

CMS + ALICE measurements of HF ν_2 in different centrality classes:

 \rightarrow Clear mass ordering of flow coefficients from b \rightarrow c \rightarrow LF

 \rightarrow Y(1S) v_2 compatible with 0 \rightarrow open-beauty v_2 may be driven by coalescence with light quarks in medium

Summary & Outlook

• Universal "vacuum" fragmentation assumption for HQ hadronisation significantly ruled out by results at the LHC

- ∧_b in pp collisions, B mesons in pp + Pb–Pb: Analogous features appearing as for charm sector → hadronisation appears to be affected by similar mechanisms across flavours.
- Hadronisation fractions for beauty a key target for future measurement
- Direct measurements of A_b production in Pb–Pb collisions in Run 3 and beyond will allow further investigation of hadronisation effects in beauty sector

17

Backup

G S Why open heavy flavours in heavy-ion collisions?

- Charm and beauty are unique probes of the QGP in heavy-ion collisions
- Produced at early times in hard partonic scatterings (high- Q^2)
 - → $\tau_{c/b}$ (≈0.01–0.1 fm/c) < QGP formation time (≈0.1–1fm/c) → experience full evolution of the system and interact with the medium
- Study multiple different systems at the LHC:
 - → pp collisions: Measure production cross sections, baseline for nuclear collisions, test for pQCD calculations.
 - → p-Pb collisions: Study cold nuclear matter effects to distinguish initial-state nuclear modifications from final-state in-medium effects
 - → Pb-Pb collisions: Study transport properties of quark-gluon plasma

BEAUTY 2023, 06/07/2023

E S Motivation: Heavy-flavour baryon-to-meson ratios

Additional hadronisation mechanisms included to predict Λ_c/D^0 ratio

 \rightarrow Described by models including:

- Enhanced colour reconnection beyond leading order (PYTHIA 8 CR, J. Christiansen & P. Skands, <u>JHEP 08(2015) 003</u>)

- Coalescence effects (Catania, V. Minissale et al., PLB 821 (2021), 136622)

- Stat. hadronisation with feed-down from unmeasured resonant states (SH+RQM, M. He & R. Rapp, <u>PLB 795 (2019), 117</u>)

A collision-system-dependent effect?

- \rightarrow To what extent does this extend into the beauty sector?
- \rightarrow What is the impact of collectivity in central Pb–Pb collisions?

Charm hadronisation ratios in small systems

- Measurement of all ground-state charm-hadron species in pp and p–Pb collisions allows for new evaluation of hadronisation fractions
- With respect to e^+e^- and e^-p : significant depletion of D mesons and enhancement of Λ_c in hadronic collisions
 - ➔ Fragmentation fractions can no longer be assumed to apply universally between collision systems
- No significant difference between pp and p–Pb collisions within uncertainties

•

•

Strange-charmed baryon production

- Ξ_c/D^0 ratio measured in pp collisions at $\sqrt{s} = 5.02$ and 13 TeV in hadronic and semileptonic decay channels
- Production of $\Xi_c{}^0$ and $\Xi_c{}^+$ consistent with each other within uncertainties
- Discrepancy with e⁺e⁻ prediction / Monash tune: factor ~30.
 Universality of fragmentation significantly ruled out
- Comparison with models:

- → PYTHIA with enhanced colour reconnection, SHM + RQM : Able to describe Λ_c^+ production well, but significantly underestimate Ξ_c
- → Catania model with coalescence describes shape reasonably well down to $p_T = 2 \text{ GeV}/c$

BEAUTY 2023, 06/07/2023

E S \mathbf{I} **Doubly strange charmed baryons:** Ω_c^0

- Ω_c^0/D^0 and Ω_c^0/Ξ_c^0 ratio: first measurement in pp collisions at $\sqrt{s} = 13 \text{ TeV}$
- Branching ratio not experimentally known, calculated as 0.51±0.07% [Y. Hsiao et al., <u>EPJ.C. 80, 1066(2020)</u>]
- Both baryon-to-meson and baryon-to-baryon ratio show significant increase over most model predictions
- Catania model gives best description of baryon-to-baryon ratio for all p_{T}
 - \rightarrow Feed-down from additional resonances better describes data
- Previous assumption by Belle: $\Omega_c^0 / \Xi_c^0 = 0.1 [PRD 97, 072005 (2018)]$
- ALICE result: $\Omega_c^0 / \Xi_c^0 \approx 1$ (using predicted BR), implying ~7% fragmentation fraction
 - \rightarrow Contribution to σ_{cc} to be better understood once BR measured

BEAUTY 2023, 06/07/2023

Resonant charmed baryon states: Σ_c

- $\Sigma_{\rm c}$ / $D^{\rm 0}$ ratio significantly enhanced in pp collisions compared to e^+e^-
- Significant contribution of Σ_c to prompt Λ_c^+ cross section (0.38 ±0.06 (stat.) ± 0.06 (syst.))
- Σ_c production described well by Catania (frag. + coalescence), QCM (coalescence), SHM+RQM
- PYTHIA with Monash tune significantly underestimates all ratios; enhanced colour reconnection overestimates Σ_c contribution to Λ_c^+

BEAUTY 2023, 06/07/2023

Resonant charmed baryon states: Σ_{c}

- Σ_c : Isospin-1 partner of Λ_c^+ , decays 100% via strong interaction to $\Lambda_c^+\pi^\pm$
- Formed by combination of charm guark with spin-1 ud diquark: suppressed due to large mass
- Belle, e⁺e⁻ collisions at \sqrt{s} = 10.52 GeV: Production of Σ_c states **suppressed by factor 3-4** compared to Λ_c^+
- Measured in ALICE in pp collisions at $\sqrt{s} = 13$ TeV without topological selections, using Breit-Wigner/Gauss fit of $\Delta M = M(pK\pi\pi) - M(pK\pi)$

BEAUTY 2023, 06/07/2023

Data

Counts/0.5

1.4

1.2

$\Box = \frac{1}{2}$ Λ_c/D^0 ratios from low to high event activity

- Modification of mean $p_{\rm T}$ also seen for $\Lambda_{\rm c}$ in p–Pb collisions with respect to pp
- Shift in p_T distribution is predicted by QCM model between the two collision systems
- Possibly explained by radial flow effects at high multiplicities: charm quark hadronising with co-moving light diquark state

$\mathbf{I}_{\mathbf{G}} = \mathbf{I}_{\mathbf{M}} \qquad \text{Latest } \Lambda_{c} / D^{0} \text{ ratios between LHCb/ALICE/CMS}$

BEAUTY 2023, 06/07/2023

$\mathbf{G} = \frac{1}{2} \mathbf{n} + \frac{\Lambda_c}{D^0}$ ratios from low to high event activity

- LHCb measurement of Λ_c in p–Pb and peripheral Pb–Pb collisions: Similar p_T -dependent behaviour as measured by ALICE at midrapidity
- No significant difference between forward/backward rapidity in p–Pb collisions
- Model with additional resonant states from RQM tends to overpredict the data at forward rapidity
- Values are consistent with those measured at mid-rapidity within uncertainties

BEAUTY 2023, 06/07/2023

$\Box \Box \Box I$ Λ_c production in Pb–Pb collisions

• Λ_c^+/D^0 ratio at mid-rapidity: Peak in central collisions at ~4-8 GeV/c consistent with radial flow effect

 \clubsuit Indication that coalescence plays an important role in Λ_c formation

Results consistent between ALICE + CMS at high p_T

[CMS: CMS-PAS-HIN-21-004]

Strange-charm production in Pb–Pb collisions

D_s⁺/D⁰ ratios measured by ALICE Collaboration: No significant dependence on centrality between central / midcentral collisions

- Double ratio for Pb–Pb/pp collisions: Peak at intermediate *p*_T predicted by - LGR model (instantaneous coalescence at phase boundary)
 - TAMU (coalescence via resonant states)