Characterising the QGP with heavy flavour hadrons with ALICE: state of the art and prospects

Marianna MAZZILLI on behalf of the ALICE Collaboration

BEAUTY 2023 - Clermont Ferrand 06/07/2023

Heavy quarks in heavy-ion collisions

Heavy quarks: ideal probes to characterise the QGP phase (and not only!)

0 fm/*c* Time:

< 1 fm/*c*

M. Mazzilli - BEAUTY 2023

Heavy quarks carry information of:

- Initial conditions
- QGP properties
- Hadronisation mechanisms
- Rescattering in hadronic phase

~10 fm/*c*

~10¹⁵ fm/*c*

Heavy quarks in heavy-ion collisions

Heavy quarks: ideal probes to characterise the QGP phase (and not only!)

M. Mazzilli - BEAUTY 2023

Heavy quarks carry information of:

- Initial conditions
- **QGP** properties
- Hadronisation mechanisms
- Rescattering in hadronic phase

How do we access QGP properties?

Ε - ΔΕ

Heavy quarks interact with QGP constituents

- Low $p_{\rm T}$: Elastic collision with medium constituents (diffusion) Brownian motion, possible thermalisation in the medium)
- High $p_{\rm T}$: Radiative energy loss (gluon emission)

Nuclear modification factor

$$R_{AA}(p_{T}) = \frac{1}{N_{coll}} \frac{dN_{AA}/dp_{T}}{dN_{pp}/dp_{T}}$$

How do we access QGP properties?

M. Mazzilli - BEAUTY 2023

Anisotropic flow

Sensitivity to initial geometry (elliptic flow coefficient v_2) and eventby-event fluctuations (triangular flow)

Quantified via Fourier expansion of $dN/d\phi$ distribution: $dN/d\phi \approx 1 + 2\sum_{n} v_n \cos[n(\phi - \Psi_n)]$

Non-central collisions: Initial **spatial anisotropy** → different pressure gradients → final **momentum anisotropy**

Elliptic flow (v_2)

Low $p_{\rm T}$: participation in collective motion and thermalisation of heavy quarks

High $p_{\rm T}$: path-length dependence of energy loss

Sensitive to the ratio of the **shear viscosity** to the **entropy density**, *η/s*

QGP with the nuclear modification factor

M. Mazzilli - BEAUTY 2023

Pb-Pb 60-80%: JHEP 10 (2018) 174 p-Pb: JHEP 12 (2019) 092

> Nuclear modification factor in different centrality classes in Pb-Pb collisions (0-10%, 30-50%, 60-80%) + p-Pb collisions

Suppression increasing with collision centrality due to increasing density, size, and lifetime of the medium

Azimuthal anisotropies to access HQ thermalisation (and not only!)

M. Mazzilli - BEAUTY 2023

Positive v_2 for open/hidden charm and e+b

- $p_{\mathrm{T}} < 3 \, \mathrm{GeV/c}$: thermalisation of charm quarks • $v_2(\Upsilon) \leq v_2(\mathrm{e} \leftarrow \mathrm{b}) \approx v_2(J/\psi) < v_2(\mathrm{D}) < v_2(\pi)$
- 3 < p_T < 6 GeV/c : contribution from hadronisation via coalescence with flowing light quarks
 - $\Rightarrow v_2(J/\psi) < v_2(\mathsf{D}) \approx v_2(\pi)$
 - ⇒ $v_2(\Upsilon) < v_2(e \leftarrow b)$
- *p*_T > 6 GeV/*c* : path-length dependence of inmedium energy loss

 $\Rightarrow v_2(J/\psi) \approx v_2(\mathsf{D}) \approx v_2(\pi)$

Bottomonium v_2 compatible with zero

▲LICE Prompt D: PLB 813 (2021) 136054
▲LICE π: JHEP 1809 (2018) 006
▲LICE b→e: PRL 126 (2021) 16200
▲LICE γ(1S): PRL 123 (2019) 192301
▲LICE J/Psi: JHEP 10 (2020) 141

ALI-PREL-502687

collisions

• Lower than prompt D^0 and compatible with e+b elliptic flow results indicates lower degree of thermalisation for beauty quarks M. Mazzilli - BEAUTY 2023

Extending to beauty sector

Results described by predictions from models including hadronization via coalescence in addition to fragmentation

QGP transport properties

ALI-PUB-501952

Simultaneous description of R_{AA} and v_2 challenging for charm-quark transport models

Model-to-data comparison to understand relevant physics effects and estimate the charm-quark spatial diffusion coefficient D_s

- Radiative energy loss important to describe intermediate and high $p_{\rm T}$ small impact on low- $p_{\rm T}$ region
- Charm-quark hadronisation via recombination crucial to describe low and intermediate $p_{\rm T}$: D mesons acquire additional flow from charm-quark recombination with light quarks
- M. Mazzilli BEAUTY 2023

ETAMU: PRL 124, 042301 (2020) ELIDO: PRC 98 064901 (2018) PHSD: PRC 93, 034906 (2016) **E**LBT: PLB 777 (2018) 255-259 POWLANG: EPJC 75, 121 (2015) GR: EPJC, 80 7 (2020) 671 CATANIA: PRC 96, 044905 (2017) E DAB-MOD M&T: PRC 96 064903 (2017)

The low- $p_{\rm T}$ region provides insight into the heavy quark interactions with the medium

For $p_{\rm T}$ < 5 GeV/*c* sensitivity not only to charm-quark interaction with the medium

- shadowing
- bulk evolution of the medium

QGP transport properties

Estimate of spatial diffusion coefficient (related to the thermalisation time of charm quark) obtained considering the values used in transport models that reproduce the data:

• $1.5 < 2\pi D_s T_c < 4.5$ which correspond to a $3 < \tau_{charm} < 9 \text{ fm/c}$

The thermalisation of charm quark happens within the QGP lifetime

Looking at open charm hadrochemestry

- Hint of hadron-mass ordering $R_{AA}(\Lambda_c^+) > R_{AA}(D_s^+) > R_{AA}(D)$ for 4 GeV/c < p_T < 10 GeV/c (recombination region)
- Indication of flat $p_{\rm T}$ integrated $\Lambda_c^+/{\rm D}^0$ ratio with event multiplicity, from pp to Pb–Pb collisions baryons and mesons?

M. Mazzilli - BEAUTY 2023

 $R_{AA}(\Lambda_c^+) > R_{AA}(D)$ at intermediate p_T from interplay between recombination and radial flow? —> different p_T redistribution between

Flavour dependence of energy loss

- Heavy-flavour jets (tagged with D^o mesons): more direct access to the initial parton kinematics
 - The 4-momentum of the jet is a **proxy** for the 4momentum of the charm quark initiating the parton shower
- Higher R_{AA} of D⁰-jet compared to inclusive jets in PbPb?
 - Comparison is sensitive to:
 - difference between quarks and gluon energy loss (Casimir colour effect)
 - mass effects (dead-cone effect)

Flavour dependence of energy loss

Hint of R_{AA} (beauty hadron) > R_{AA} (charm hadron) at low and intermediate p_{T}

- Different shadowing or hadronisation via recombination
- Mass dependence of in-medium energy loss —> $\Delta E_b < \Delta E_c$

M. Mazzilli - BEAUTY 2023

JHEP 12 (2022) 126

Further insights testing different LGR model configuration (radiative+collisional energy loss, hadronisation via fragmentation+coalescence)

- **Prompt-D**⁰ formation via coalescence explains the minimum (2-3 GeV/c)
- Ratio closer to unity if using charm mass for b quarks for E-loss calculation
 —> Relevant role of dead-cone effect

ALICE detector in Run 3

M. Mazzilli - BEAUTY 2023

- Operation at much higher interaction rate
- Improved vertexing (central and forward) and tracking resolution at low p_T

ALI-PERF-542970

Good reconstruction performance with the latest calibrations

ALICE 2.1 (Run 4): ITS 3

A next-generation vertex detector will replace the inner barrel of ITS 2: ultra-light, truly cylindrical layers made of wafer scale 65 nm MAPS

- Improved DCA resolution ($\propto r_0 \cdot \sqrt{x/X_0}$)
 - reduced material budget: X/X₀ from 0.35% to 0.15%
 - innermost layer from 22 mm to 18 mm (closer radial distance to beam) pipe)
 - thinner and smaller beam pipe (from 700 µm to 500 µm and from 18) mm to 16 mm)

R=18, 24, 30 mm (beam pipe: 16 mm)

From 432 to 6 bent sensors

M. Mazzilli - BEAUTY 2023

DCA resolution improves of a factor 2 w.r.t. ITS 2

ALICE 2.1 (Run 4): ITS 3

Heavy flavour measurements will strongly benefit from ITS 3 upgrade

ALI-SIMUL-482042

- relative statistical uncertainties improve by ~2 at low $p_{\rm T}$ for non prompt Ds

M. Mazzilli - BEAUTY 2023

• better significance for heavy flavour hadrons w.r.t ITS 2 (factor ~4 for Ξ_c^+ and larger than factor ~2 for Λ_b)

ALICE 3: a next generation detector for the 2030s

M. Mazzilli - BEAUTY 2023

- High rate: 5x bigger luminosity, exploit LHC
- Momentum resolution of $\sigma_{p_{\rm T}}/p_{\rm T}$ ~ 1-2%
- 10% X₀ overall material budget

State-of-the-art particle identification

- Silicon based TOF and RICH
- Muon identification

Very high vertexing precision

- First layer at 5 mm from the interaction point
- Impact parameter resolution
 - ~10 μ m at $p_{\rm T}$ ~ 200 MeV/c
 - ~3 μ m at $p_{\rm T}$ > 1 GeV/c

Enables a rich physics programme —> Few highlights

Mùon absorber

Direct measurement of cc (de-)correlation in the medium

Angular correlations of $D\bar{D}$ directly probe $c\bar{c}$ pair decorrelation (degree of thermalisation) and energy loss

- Brownian motion of charm in the QGP
- Collisional vs radiative energy losses
- Signal strongest at low $p_{\rm T}$

In Pb-Pb: scatterings in the deconfined medium can decorrelate the pairs

Direct measurement of $c\bar{c}$ (de-)correlation in the medium

Angular correlations of $D\bar{D}$ directly probe $c\bar{c}$ pair decorrelation (degree of thermalisation) and energy loss

- Brownian motion of charm in the QGP
- Collisional vs radiative energy losses
- Signal strongest at low $p_{\rm T}$

In Pb-Pb: scatterings in the deconfined medium can decorrelate the pairs

Very challenging measurement:

- Need good purity, efficiency and η coverage
- Heavy-ion measurement only possible with ALICE 3

Multi-charm thermalisation

- Yields of multi-charm/single-charm hadrons predicted to be largely enhanced in A-A compared to pp collisions in SHM and coalescence models
 - Production in single hard scattering disfavoured

- ALICE 3 suited for strangeness tracking —> multicharm baryons
 - Layers very close to the interaction vertex significantly increase the efficiency to track weakly decaying hadrons prior to their decay compared to ALICE

Multi-charm thermalisation

- Yields of multi-charm/single-charm hadrons predicted to be largely enhanced in A-A compared to pp collisions in SHM and coalescence models
 - Production in single hard scattering disfavoured

M. Mazzilli - BEAUTY 2023

ALI-SIMUL-510946

- ALICE 3 suited for strangeness tracking —> multicharm baryons
 - Layers very close to the interaction vertex significantly increase the efficiency to track weakly decaying hadrons prior to their decay compared to ALICE

Di-leptons as a QGP thermometer in Run 5+6

ALICE 3 uniqueness:

High-precision tracking

• 1st layer at R = 5mm

Electron Identification

- Time-of-flight (TOF) via silicon
- Ring-imaging Cherenkov (RICH)
- Electromagnetic Calorimeter

Unprecedented HF rejection and low- p_T electron ID

- DCA_{ee}: separation of e⁺e⁻ pairs and HF daughters
 - Significant reduction of charm contribution and associated uncertainties
 - Sets the stage: the ultimate dielectron experiment

Di-leptons as a QGP thermometer in Run 5+6

ALICE 3 uniqueness:

High-precision tracking

• 1st layer at R = 5mm

Electron Identification

- Time-of-flight (TOF) via silicon
- Ring-imaging Cherenkov (RICH)
- Electromagnetic Calorimeter

Unprecedented HF rejection and low- p_T electron ID

- DCA_{ee}: separation of e⁺e⁻ pairs and HF daughters
 - Significant reduction of charm contribution and associated uncertainties
 - Sets the stage: the ultimate dielectron experiment

Di-leptons as a QGP thermometer in Run 5+6

Summary

State of the art...

- Low-momentum heavy quarks participate in the collective motion of the QGP (positive v_2)
- diffusion coefficient D_{s}
 - Strong coupling of charm quark with QGP constituents at low momentum
- Mass-dependent energy loss: reduced for beauty with respect to charm quarks (dead-cone effect) and both radiative and collisional processes are necessary for the models to describe the data
- The assumption of coalescence from the QGP captures the main features of the data for charm and beauty hadrons

ALICE upgrades for **Run 3 (ongoing) and Run 4** will boost the core of HF physics program:

• Fully reconstructed beauty hadrons and more precise low momenta charm measurements

A bright heavy-ion programme with **ALICE 3** is under development for **Run 5 + 6**:

- Heavy flavour thermalisation and collectivity
- Heavy flavour correlations and diffusion
- (Multi-)charm and beauty yields down to zero p_{T}
- Differential QGP temperature measurements (HF subtraction is critical!)

M. Mazzilli - BEAUTY 2023

• Comparisons of open-charm hadron measurements with transport models —> estimation of the charm spatial-

Flavour dependence of energy loss

- Hint of larger R_{AA} for non-prompt D_s⁺ vs prompt D_s⁺ in $4 < p_T < 12$ GeV/c, for 0-10% collisions:
 - Dead-cone effect suppresses the beauty energy loss
- Similar hint for non-prompt D_s+ vs non-prompt D⁰ below
 6 GeV/c in central collisions:
 - Beauty-strange meson formation via quark coalescence in strangeness-rich environment
- TAMU qualitatively describes the $p_{\rm T}$ trends, though slightly over predicts non-prompt D_s+ $R_{\rm AA}$ values

Heavy flavour transport

Heavy quarks: access to quark transport at baryon level

Expect beauty thermalisation slower than charm — smaller v_2

Need ALICE 3 performance (pointing resolution, acceptance) for precision measurement of e.g. Λ_c and $\Lambda_b v_2$

 $\Lambda_c v_2$ performance

Flavour dependence of energy loss

- Similar R_{AA} for electrons from beauty and charm —> Points to strong interaction with medium
- Models with QGP phase generally describe measurements
- Different beauty hadron species have similar branching ratios to electrons

Triangular flow of heavy-flavour hadrons

M. Mazzilli - BEAUTY 2023

Positive v_3 for open/hidden charm

- *p*_T < 4 GeV/*c*: thermalisation of heavy quarks
 ➡ mass ordering observed
 - → $v_3(J/\psi) \approx v_3(D)$ → interplay of anisotropic and radial flow
- $4 < p_T < 8 \text{ GeV/}c$: heavy-quark hadronisation via coalescence with flowing light quarks
- $p_{\rm T}$ > 8 GeV/c: path-length dependence of inmedium energy loss

- Λ_c^+/D^0 ratio in central Pb-Pb and in pp:
 - For 4 < $p_{\rm T}$ < 8 GeV/c, 3.7 σ significance for Λ_c^+ enhancement in 0-10% collisions
 - Proper description by TAMU, qualitative agreement for Catania and SHMc
 - Explained by different effects of radial flow and coalescence on baryons and meson

Coalescence role on R_{AA} and v_2

Positive D-meson v_3 charm-quark participation in QGP collective expansion Positive D_s elliptic flow observed in 2 < p_T < 8 GeV/c with a significance of 6.4 σ in agreement with non-strange D-meson v_2 given current uncertainties

- Compatible with predictions from models including charm-quark coalescence with flowing strange quarks

Di-leptons as a QGP thermometer in Run5+6

M. Mazzilli - BEAUTY 2023

