

Prospects of the Upgrade-II of LHCb

Alessandro Minotti Università di Milano Bicocca & INFN

on behalf of the LHCb Collaboration

Highlights of LHCb

- Upcoming plans and upgrades build on the achievements of LHCb Run 1 and 2, many of which we obtained in pursue for BSM physics
 - Rare decay physics

• Strong constraints on CKM

• Exotic hadrons

• Tests of lepton universality

• Electroweak physics

A lot of which you've learned from Pellian Li, Martin Tat, Irene Bachiller, Sara Celani, Davide Fazzini, Liming Zhang, Dominik Mitzel, Jike Wang, Federica Oliva

The Physics Case for Upgrade 2

- Absence of evidence for NP implies that it is either very heavy or highly complex
- Flavor physics can probe NP before it is observed directly, by looking at indirect effects in already accessible energy scale processes (e.g., B decays)
- LHCb has a unique chance to find new physics by doing precision flavor physics, testing lepton universality, measuring CPV in the charm sector, etc..

• For all these efforts, we need huge statistics (high L), low systematics (very well-characterized detectors) and precise SM predictions

A Detector to exploit Upgrade 2

- With High Luminosity LHC (HL-LHC), providing ~50 fb⁻¹/year, and by retaining similar performances to current LHCb, we can achieve all that
 Upgrade 1
 Upgrade 2
- Upgrade 1
 - L_{peak} = 2 X 10³³ cm⁻²s⁻¹
 - L_{int} = 50 fb⁻¹ (Run 3 & 4)
 - Sinergy w/ Belle II
- Upgrade 2
 - L_{peak} = 1.5 X 10³⁴ cm⁻²s⁻¹
 - L_{int} = 300 fb⁻¹ (Run 5 & 6)
 - Potentially the only general flavor physics facility at this timescale
- Upgrade 1 Run 2 Run 3 Run 4 Run 5 Run 1 Run 6 Inst. luminosity $[10^{33} \text{ cm}^{-2}\text{s}^{-1}]$ 16 ╞╴ 350 14 LS2 LS3 LS4 S1 12 Int. luminosity 10 200 150 100 50 0 **–** 2010 2020 2030 2040 Year
- Main challenges: high radiation (materials), event complexity (detector granularity & timing capabilities), data rate (fast decisions and data processing)
- These are the premises on which the success of Upgrade 2 is based on

What is LHCb Upgrade 2

- Same structure, with major refurbishment of all LHCb subdetector
- Maintain same performances, with a factor 7 pileup wrt Run 3!
- Key ingredients for each subdetector
 - Granularity
 - Fast timing
 - Radiation hardness
- Intensive R&Ds ongoing

What is LHCb Upgrade 2

- Same structure, with major refurbishment of all LHCb subdetector
- Maintain same performances, with a factor 7 pileup wrt Run 3!
- Key ingredients for each subdetector:
 - Granularity
 - Fast timing
 - Radiation hardness
- Intensive R&Ds ongoing

BEAUTY 2023 – Clermont Ferrand – 3-7 Jul 2023

Vertex Locator (VELO)

- L_{peak} = 1.5 X 10³⁴ cm²s⁻¹ → ~42 interactions/crossing or ≈2k charged particles in VELO acceptance
- By adding timestamp similar performances as for Upgrade 1 are achieved
 - 50 ps per hit timestamp (i.e. 20 ps/track)
 - ASIC bandwidth > 250 Gb/s
 - X 6 radiation hardness wrt U1

 Alternatively, we can reduce pixel size (40 μm), increase distance from the beam, and further optimize material budget (VELO mechanics, vacuum, cooling system)

VELO R&D

- Explored technologies to achieve full 4D reconstruction include LGADs, 3D-trench silicon sensors, ultra-fast planar silicon sensors
- FE electronics (ASIC) should match per-hit time measurement and pixel pitch of VELO
 - TIMESPOT demonstrator chips implemented in 28 nm CMOS to evaluate performances \rightarrow excellent timing resolution (σ_{eff} = 10.3 ps @ 150 V) after irradiating w/ 2.5 X 10¹⁶ n_{eq}/cm²
 - PicoPix design on track, similar pixel and chip size and can achieve 20-50 ps resolution

First 28 nm ASIC in HEP

Hybridized Timespot1 ASIC, 32x32 pixels, $55\mu m$ pitch

VeloPix ASIC

Upstream (UT) & Mighty Tracker (MT)

- Upgrade 2 high track density requires the usage of active pixel detectors both upstream (Upstream tracker, UT) and downstream (Mighty Tracker, MT) of the magnet
 - σ_{res} of few ns, material budget < 1% X₀, 6 X 10¹⁴ n_{eq}/cm² fluence for MT (3 X 10¹⁵ for UT)
- DMAPS are a promising cost/effective option for large-area pixel detectors (also LGADs, etc..)
- MT design (30 m² per layer, 3 layers):
 - MAPS in inner region w/ HV-CMOS electrode (AtlasPix, MightyPix)
 - Scintillating fibers in outer region (SciFi) & SiPMs

BEAUTY 2023 – Clermont Ferrand – 3-7 Jul 2023

• UT design (4 planes):

Trackers R&D

- MAPS R&D aimed at improving σ_{res} up to 3 ns w/ radiation hardness and w/o increasing consumption
 - Building from experience of Mu3e, ATLAS, ALICE
 - First prototypes prepared; thermal testing ongoing
 - Several approaches for cooling are being studied
 - Different Pixel prototype sensors tested

- SciFI R&D are aimed at containing SiPM noise and improve overall radiation hardness & durability
 - SiPMs have high dark count rate (DCR)
 - Micro-lenses (focus light) \rightarrow improve light yield
 - Cooling to cryogenic T \rightarrow reduce noise
 - Reduction of cluster size \rightarrow same ϵ , less DCR
 - New NOL scintillator to reduce impact of radiation damage
 - Emits green-light, less susceptible to LY loss

Magnet Station (MS)

- Scintillator-based tracking system to measure position/direction of particles hitting the magnet inner walls
 - New subsystem for Upgrade 2!
 - Improves momentum resolution of upstream tracks (<1%)
 - Significant increase in acceptance for low-momentum tracks (e.g. X2 for prompt D^{*+} w/ slow π)
- Triangular scintillating bars w/ 1mm WLS fibers and SiPM light readout (outside the magnet)

RICH Detectors

- Baseline plan: re-design RICH system w/ similar footprint to RICH1 & 2
- Luminosity is a challenge: need high-resolution timing, better θ_{ch} resolution
 - Photon detectors w/ high radiation tolerance and good space & time resolution
 - Reduced tilt in mirrors to decrease chromatic abberration (flat placed within acceptance)
 - Better reconstruction software, fast and powerful readout
- Key specs: occupancy below 30%, single- $\gamma \sigma_{\theta} < 0.5$ mrad (also dependent on tracking)
- Foreseen resolution: 0.22 (0.13) mrad for RICH1(2)

RICH R&D

- Current MaPMT photosensors can be used only in regions of low occupancy
 - SiPMs are a highly attractive option for high-occupancy regions
 - Better PDE, 1 mm² pixel, lower V, don't need B shielding but..
 - ~100ps σ_t and DCR < 100 kHz/mm² are required (requires cryogenic cooling, n-shielding)
 - Micro-lensing & FE time gate can reduce DCR
 - Microchannel-plate (MCP) also attractive
 - Exceptional σ_t (30 ps) and low DCR but smaller lifetime (improvements foreseen)
 - New designed w/ pixelated anode made of CMOS ASIC under study
- Testing new gas mixtures to improve angular precision
- Investigation on using meta-materials as radiators
- Massive R&D, simulation, and reconstruction effort, as well as prototyping

TORCH

- ToF detector w/ quartz planes read by MCP-PMTs in front of the RICH2
 - New to Upgrade 2!
 - 10-15 ps time resolution per track
 - Provides p/K (improves π/K) separation below 10 (5) GeV
- Clear physics benefits of low-momentum PID
 - Increased ε and bkg suppression in many channels
 - Improved flavor tagging with soft kaons (20-50%)
 - Improved uniformity in PID acceptance

14

- R&D w/ prototype
 - Measured photon yields compared w/ MC
 - Time resolution approaching 70 ps / photon

Electromagnetic Calorimeter (ECAL)

- Current ECAL optimized for $\pi \& \gamma$ identification in few-100 GeV region (radiation hard up to 40 kGy)
- Requirements for Upgrade 2:
 - Sustain radiation up to 1 MGy while retaining current $\sigma(E)/E \approx 10\% \ VE + 1\%$
 - Pile-up mitigation via precise timing (O(10)ps) and increased granularity
- Occupancy map calls for a modular structure
 - SpaCal technology for the inner region
 - 40-200 kGy region modules (3x3 cm2 cells) w/ scintillating plastic fibers and Pb absorber
 - Innermost ≤1 MGy modules (1.5x1.5 cm2 cells) w/ scintillating crystals and tungsten absorber
 - Shashlik technology for outer region
 - 2k existing + 1.3k new modules
 - Timing w/ WLS fibers, double readout

BEAUTY 2023 – Clermont Ferrand – 3-7 Jul 2023 Ra

ECAL R&D

- Upgrade strategy foresees gradual implementation of SpaCal modules during LS3 & 4
- R&D on SpaCal σ_t shows excellent results for W + crystal fibers & Pb + polystyrene fibers
- R&D on Shashlik w/ timing also shows excellent σ_t (single vs double readout explored)
- Need radiation hard materials
 - R&D on different crystals & organic scintillators
 - 3D printed tungsten absorber prototypes w/ smooth surfaces

Muon Station

- Novel MPGD detectors (muRWELL) for the inner region (144 chambers)
 - Can stand several MHz/cm²
- Keep present MWPCs chambers for outer region (880 reused + 80 new w/ higher granularity)
- Additional shielding (6 \rightarrow 10 $\lambda_{l})$ will be installed in lieu of the HCAL
 - Factor 2 reduction of rate while maintaining same trigger and hadron reconstruction capabilities
- R&D focused on ageing studies at GIF++, FE electronics under development

DLC sputtering machine for base material realization @CERN

Trigger and Data Acquisition

- Readout and DAQ should be reliable, scalable, cost-effective, flexible for heterogeneous compute elements (GPUs, CPUs, FPGAs, etc..)
- Architecture similar to Run 3: single-stage readout (single custom-made FPGA board) → event building (local network) → two-stage high-level trigger (HLT1 & HLT2)
- Full software trigger already implemented for Run3 (first time for a hadron collider)
 - HLT1 fully based on GPUs (~40 Tb/s of data processed)
- Upgrade 2 will upscale these numbers
 → need faster readout & improved algorithms
 - ~200 Tbits/s from detector
 - ~800 Gb/s on disk
 - Full event reconstruction (HLT1 & HLT2) based on GPUs
 - R&D investigating hybrid architecture (GPUs, FPGAs, ..)
- Testbed of new technologies in Run3 readout environment

Where we Stand Now

- After Expression of Interest (2017) & Physics Case (2018), Framework TDR approved in March 2022
- We need to complement it with more detailed plans / scoping scenarios, manpower and funds, before moving to sub-detector TDRs
- Target: produce the Scoping Document within 2024

Timeline, Collaboration & Resources

- Priority of LHCb in the coming years is to exploit all physics potential of Upgrade 1 detector
- Planning for Upgrade 2 within the time constraints
 - R&D efforts will continue throughout Run 3, before sub-detector TDRs
 - Infrastructure preparation and detector construction should begin in LS3
 - Ready for Upgrade 2 installation only in LS4
 - LS3 is an opportunity to increase LHCb performances and lay basis for U2
- The project presented in FTDR is very ambitious, a larger collaboration is needed!
- Strong interest from the community in our physics case (X2 collaboration in the last decade) more people are welcome to keep the growth going

Summary

- LHCb as a general-purpose detector in the forward region has produced a wide range of compelling physics results, and has a unique potential to explore new physics with HL-HLC
- The harsh conditions of HL-HLC call for an intelligent remodeling the detector, adapting individual subsystems to the HL conditions without worsening (and possibly improving) performances
- An intense and attractive R&D program is ongoing, that really pushes the limit of existing technologies in HEP and explores new uncharted scenarios
- First approval steps fulfilled, following a clear strategy laid by LHCC (next: Scoping Document 2024)
- A clever usage of all time slots (e.g. preparation of installation of Upgrade 2 during LS3) is important to stay on schedule
- Upgrade 2 will ultimately give us the unique opportunity to fully exploit the great physics potential of HL-HLC
- Upgrade 2 is an ambitious project, with excellent prospects for physics and for developing new technologies, new collaborators are welcome!

Summary

- LHCb as a general-purpose detector in the forward region has produced a wide range of compelling physics results, and has a unique potential to explore new physics with HL-HLC
- The harsh conditions of HL-HLC call for an intelligent remodeling the detector, adapting individual subsystems to the HL conditions without worsening (and possibly improving) performances
- An intense and attractive R&D program is ongoing, that really pushes the limit of existing technologies in HEP and explores new uncharted scenarios
- First approval steps fulfilled, following a clear strategy laid by LHCC (next: Scoping Document 2024)
- A clever usage of all time slots (e.g. preparation of installation of Upgrade 2 during LS3) is important to stay on schedule
- Upgrade 2 will ultimately give us the unique opportunity to fully exploit the great physics potential of HL-HLC
- Upgrade 2 is an ambitious project, with excellent prospects for physics and for developing new technologies, new collaborators are welcome!