Charmless b-hadron decays

at LHCb

- Focus on 3/4-body CPV results
- A few rare decay results
- Selective
 - \Rightarrow <u>Publications</u>

Jike Wang (On behalf of the LHCb collaboration)

Wuhan University

Charmless hadronic decays

- Charmless hadronic decays are suppressed in the SM
- They proceed e.g. through $b \rightarrow u$ tree and $b \rightarrow s,d$ loop (penguin) transitions.
- New Physics could contribute to penguin loop as additional sources of CPV

- Three/four-body charmless b-hadron decays:
 - \Rightarrow Rich spectrum of resonant final states and large local CP asymmetries.

Direct CPV in $B^{\pm} \rightarrow h^{\pm}h'^{+}h'^{-}$ and $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$

- The role of short/long distance contributions to the generation of the strongphase differences:
 - \Rightarrow is long-standing debate
 - \Rightarrow for direct *CPV*, and three-body decays offer a way of answering
- With 5.9 fb⁻¹ 13 TeV pp collision data with the LHCb 2015-2018 \Rightarrow previously observed *CP* asymmetry in $B^{\pm} \rightarrow \pi^{\pm}K^{+}K^{-}$ decays is confirmed,
 - \Rightarrow *CP* asymmetries are observed with a significance of $> 5\sigma$ in
 - the $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ decays,
 - \Rightarrow while the *CP* asymmetry of $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$ is confirmed to be compatible with 0

arXiv:2206.07622

Direct CPV in $B^{\pm} \rightarrow h^{\pm}h'^{+}h'^{-}$ and $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$

Direct CPV in $B^{\pm} \rightarrow h^{\pm}h'^{+}h'^{-}$ and $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$

- Three-body decays can proceed through a number of intermediate two-body resonances.
- Large integrated CP asymmetries and a rich pattern of local CP asymmetries.

• Need further amplitude analyses to study the underlying dynamics.

arXiv:2206.07622

Search for Direct CPV in $B^{\pm} \rightarrow PV$

- Theoretical developments using different approaches have resulted in many predictions for CP asymmetries.
 - ⇒ Many of these are focused on charmless two-body and quasitwo-body B-meson decays, in particular those to two pseudoscalar mesons ($B \rightarrow PP$) and to a pseudoscalar and a vector meson ($B \rightarrow PV$)
- 5 different $B \rightarrow PV$ decays from 4 final states: $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}, B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}, B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}, B^{\pm} \rightarrow \pi^{\pm}K^{+}K^{-}$ $\Rightarrow B^{\pm} \rightarrow \rho(770)^{0}K^{\pm}, B^{\pm} \rightarrow \rho(770)^{0}\pi^{\pm}, B^{\pm} \rightarrow K^{*}(892)^{0}\pi^{\pm}, B^{\pm} \rightarrow K^{*}(892)^{0}K^{\pm}, B^{\pm} \rightarrow \phi(1020)K^{\pm}$
- With 5.9 fb⁻¹ 13 TeV pp data, recorded with the LHCb 2015-2018:

 $\Rightarrow A_{CP}(\mathbf{B}^{\pm} \rightarrow \rho(770)^{0}K^{\pm}) = +0.150 \pm 0.019 \pm 0.011$, first observation

 \Rightarrow For the other four decay channels, compatible with zero

Search for Direct CPV in $B^{\pm} \rightarrow PV$

3-7/July/2023

Beauty 2023, Clermont-Ferrand

Search for Direct CPV in $B^{\pm} \rightarrow PV$

• Summary of measurements for:

 $\boldsymbol{B}^{\pm} \to R(h_1^- h_1^+) h_3^{\pm}$

Decay channel	This work	Previous measurements
$B^{\pm} \rightarrow (\rho(770)^0 \rightarrow \pi^+\pi^-)\pi^{\pm}$	$-0.004 \pm 0.017 \pm 0.009$	$+0.007 \pm 0.011 \pm 0.016 \ (LHCb \ [20,21])$
$B^{\pm} \to (\rho(770)^0 \to \pi^+\pi^-)K^{\pm}$	$+0.150 \pm 0.019 \pm 0.011$	$+0.44 \pm 0.10 \pm 0.04$ (BaBar [28]) $+0.30 \pm 0.11 \pm 0.02$ (Belle [22])
$B^{\pm} \to (K^*(892)^0 \to K^{\pm}\pi^{\mp})\pi^{\pm}$	$-0.015 \pm 0.021 \pm 0.012$	$+0.032 \pm 0.052 \pm 0.011$ (BaBar [28]) $-0.149 \pm 0.064 \pm 0.020$ (Belle [22])
$B^{\pm} \to (K^*(892)^0 \to K^{\pm}\pi^{\mp})K^{\pm}$	$+0.007\pm0.054\pm0.032$	$+0.123 \pm 0.087 \pm 0.045 \text{ (LHCb [19])}$
$B^{\pm} \rightarrow (\phi(1020) \rightarrow K^+K^-)K^{\pm}$	$+0.004\pm0.014\pm0.007$	$+0.128 \pm 0.044 \pm 0.013$ (BaBar [26])
	The LHCb results	arXiv:2206.02038

Search for CPV using \widehat{T} **-odd in** $B^0 \rightarrow p \overline{p} K^+ \pi^-$

- Great interest to further search *CPV* in **baryonic** *B* decays (besides the $B^+ \rightarrow p\bar{p}K^+$), up to ~20% are predicted
- search for *CP* and *P* violation based on triple-product asymmetries in the charmless region of the $B^0 \rightarrow p\bar{p}K^+\pi^-$, with 8.4 fb⁻¹ pp collision data at LHCb
- Define:

$$C_{\hat{T}} = \vec{p}_{K^+} \cdot (\vec{p}_{\pi^-} \times \vec{p}_p), \quad \bar{C}_{\hat{T}} = \vec{p}_{K^-} \cdot (\vec{p}_{\pi^+} \times \vec{p}_{\bar{p}}).$$

• The two \widehat{T} -odd triple product asymmetries are defined as:

$$A_{\hat{T}} = \frac{N(C_{\hat{T}} > 0) - N(C_{\hat{T}} < 0)}{N(C_{\hat{T}} > 0) + N(C_{\hat{T}} < 0)}, \quad \bar{A}_{\hat{T}} = \frac{\bar{N}(-\bar{C}_{\hat{T}} > 0) - \bar{N}(-\bar{C}_{\hat{T}} < 0)}{\bar{N}(-\bar{C}_{\hat{T}} > 0) + \bar{N}(-\bar{C}_{\hat{T}} < 0)},$$

• The *CP*- and *P*-violating observables are then constructed as:

$$a_{CP}^{\hat{T}\text{-odd}} = \frac{1}{2}(A_{\hat{T}} - \bar{A}_{\hat{T}}), \quad a_{P}^{\hat{T}\text{-odd}} = \frac{1}{2}(A_{\hat{T}} + \bar{A}_{\hat{T}}).$$

 \Rightarrow insensitive to particle-antiparticle production and detector-induced asymmetries

arXiv:2205.08973

3-7/July/2023

Search for CPV using \widehat{T} **-odd in** $B^0 \rightarrow p \overline{p} K^+ \pi^-$

• Regions chosen before examining the data to avoid biases. The phase space is divided into 24 regions

3-7/July/2023

Beauty 2023, Clermont-Ferrand

Page 10

Search for CPV using \widehat{T} **-odd in** $B^0 \rightarrow p \overline{p} K^+ \pi^-$

• The measured phase-space **integrated** asymmetries are:

$$a_P^{\hat{T}\text{-odd}} = (1.49 \pm 0.85 \pm 0.08)\%,$$

 $a_{CP}^{\hat{T}\text{-odd}} = (0.51 \pm 0.85 \pm 0.08)\%,$

- Both are consistent with *P* and *CP* conservation.
- Measurements in regions of the phase space the *CP*-symmetry: $\Rightarrow 1.1 \sigma$ deviation
- For *P*-symmetry \Rightarrow 5.8 σ deviation
- Significant *P*-asymmetries are observed in the region of low *pp* mass and near the *K**(892)⁰ resonance.

arXiv:2205.08973

Search for CPV in $\Xi_b^- \to pK^-K^-$

- Breaking of CP symmetry has not yet been observed in the properties of any baryon.
- In light of the large CPV observed in charmless decays of B mesons, it is of great interest to extend the range of searches in b-baryon decays.
- The first amplitude analysis of $\Xi_b^- \to pK^-K^-$ decays is reported. This is also the first amplitude analysis of any b-baryon decay mode allowing for CPV effects.

Phys. Rev. D 104, 052010

Search for CPV in $\Xi_b^- \to pK^-K^-$

• Distributions of pK^-K^- invariant mass for X_b^- candidates in (left) Run 1 and (right) Run 2 data; Also search for the previously unobserved $\Omega_b^- \to pK^-K^-$ decay.

Parameter	Run 1	Run 2
$\Xi_b^- \to p K^- K^-$ yield	193 ± 21	297 ± 23
$\Omega_b^- \to p K^- K^-$ yield	-4 ± 6	15 ± 9
Partially reconstructed background yield	231 ± 34	442 ± 36
Combinatorial background yield	721 ± 50	775 ± 51

Phys. Rev. D 104, 052010

Search for CPV in $\Xi_h^- \to pK^-K^-$

LHCb

5 fb⁻¹

Entries / (0.10 GeV)

80

70

60

50

40

30

20

40

35

30

25

20

15

10

Entries / (0.11 GeV

🕂 Data

--- A(1405)

···· A(1520)

····· A(1670)

.... $\Sigma(1915)$

 $\Sigma(1385)$

 $\Sigma(1775)$

Comb bkgd

Crsfd bkgd

- Fit

LHCb

5 fb⁻¹

🔶 Data

--- A(1405)

---- A(1520)

---- A(1670)

---- *Σ*(1385)

 $.... \Sigma(1775)$

···· Σ(1915)

Comb bkgd

Crsfd bkgd

 $m_{\text{low}}(pK^{-})$ [GeV]

LHCb

5 fb⁻¹

— Fit

Entries / (0.10 GeV)

Entries / (0.11 GeV

80

70 E

60

50

40

30

20

35

30

25

20

15E

10

+ Data

--- A(1405)

= A(1520)

----- A(1670)

 $-\Sigma(1385)$

.... $\Sigma(1775)$

···· Σ(1915)

Comb bkgd

Crsfd bkgd

- Fit

- Studied many possible *pK*⁻ resonances, got 6
- Measured CPV asymmetry:
 - \Rightarrow all consistent with 0

Component	$A^{C\!P} \; (10^{-2})$
$\Sigma(1385)$	$-27 \pm 34 \; (\text{stat}) \pm 73 \; (\text{syst})$
$\Lambda(1405)$	$-1 \pm 24 \text{ (stat)} \pm 32 \text{ (syst)}$
$\Lambda(1520)$	$-5 \pm 9 \text{ (stat)} \pm 8 \text{ (syst)}$
$\Lambda(1670)$	$3 \pm 14 \text{ (stat)} \pm 10 \text{ (syst)}$
$\Sigma(1775)$	$-47 \pm 26 \text{ (stat)} \pm 14 \text{ (syst)}$
$\Sigma(1915)$	$11 \pm 26 \text{ (stat)} \pm 22 \text{ (syst)}$

• Measured BRs:

$$\mathcal{B}(\Xi_b^- \to RK^-) = \mathcal{B}(\Xi_b^- \to pK^-K^-) \times \mathcal{F}_i$$

The following two > 5 σ :

3-7/July/2023

Beauty 2023, Clermont-Ferrand

 $m_{\rm high}(\overline{p}K^+)$ [GeV]

🕂 Data

--· A(1405)

 $\Lambda(1520)$

 $\Lambda(1670)$

 $\Sigma(1385)$

 $\Sigma(1775)$

 $\Sigma(1915)$

Crsfd bkgd

 $m_{\text{low}}(\overline{p}K^+)$ [GeV]

LHCb

5 fb⁻¹

Comb bkgd

- Fit

The rare hadronic decay $B^0_{(s)} \rightarrow p\overline{p}p\overline{p}$

- No reliable prediction for $B^0_{(s)} \rightarrow p\overline{p}p\overline{p}$ for now, a first measurement of the corresponding BR would give better understand the underlying dynamics
- The BRs of multi-body baryonic decay modes may be significantly increased due to a threshold enhancement effect in the m(baryon-antibaryon), while two-body baryonic decays (such as

 $B^0_{(s)} \rightarrow p\overline{p}$) are suppressed

• B^0 / B_s^0 : significance of 9.3 σ and 4.0 σ

• Results: BR($B^0 \rightarrow p\overline{p}p\overline{p}$)= (2.2±0.4±0.1) ×10⁻⁸ and BR($B_s^0 \rightarrow p\overline{p}p\overline{p}$)= (2.2±1.0±0.2) ×10⁻⁸

arXiv:2211.08847

The rare hadronic decay $B^0 \rightarrow p\overline{p}$

• Two-body baryonic decays are suppressed, only few charmless two-body baryonic decays have been observed:

$$\Rightarrow B^+ \rightarrow p \overline{\Lambda}(1520)$$
, $B^+ \rightarrow p \overline{\Lambda}$ and $B^0 \rightarrow p \overline{p}$ modes.

- Run-I result: BR($B^0 \rightarrow p\overline{p}$) = (1.25±0.27±0.18) ×10⁻⁸
- Run-II result: BR($B^0 \rightarrow p\overline{p}$) = (1.27±0.15±0.05) ×10⁻⁸

Also see talk by Irene Bachiller about the $B_s^0 \rightarrow p\overline{p}$ search

arXiv:2206.06673

Summary

• LHCb provides ideal environment for charmless b-meson and b-baryon decays for studies of CP violation, hadronic effects and searches for new physics.

• More results are coming on the way; the upgraded LHCb detector will also bring more new exciting results soon.

Thanks for your

listening!

Search for CPV using \widehat{T} **-odd in** $B^0 \rightarrow p\bar{p}K^+\pi^-$

The phase space is divided into 40 regions

The rare hadronic decay $B^0_{(s)} \rightarrow p\overline{p}p\overline{p}$

- The branching fractions are measured relative to the topologically similar normalisation decays: $B^0 \rightarrow J/\psi(\rightarrow p\overline{p})K^{*0}(\rightarrow K\pi)$ and $B_s^0 \rightarrow J/\psi(\rightarrow p\overline{p})\phi(\rightarrow KK)$
- Results: BR($B^0 \rightarrow p\overline{p}p\overline{p}p\overline{p}$)= (2.2±0.4±0.1) ×10⁻⁸ and BR($B_s^0 \rightarrow p\overline{p}p\overline{p}p\overline{p}$)= (2.2±1.0±0.2) ×10⁻⁸

arXiv:2211.08847