Kaons CP violation & rare decays

Emmanuel Stamou

emmanuel.stamou@tu-dortmund.de

Beauty 2023 Clermont-Ferrand

Strangeness

$$K^{+} \sim u\bar{s} \qquad \qquad K^{-} \sim \bar{u}s$$
$$K^{0} \sim d\bar{s} \qquad \qquad \overline{K}^{0} \sim \bar{d}s$$

Differences to B physics

- Less phase-space → less decays X
- Stronger CKM suppression of top contribution \rightarrow less SM background \checkmark Kaons: $\lambda^5 \sim 0.0005$ B mesons: $\lambda^3 \sim 0.01$
- Charm can *potentially* contribute → care is needed!

Kaons: SM vs NP

SM loop induced, precision

Heavy NP virtual, indirect probe SUSY, Composite Higgs, Extra Dimensions, ...

Light NP decays to "invisible" Axions, Dark Photons, ...

light NP

K- vs B/D-physics probes of NP

Complementarity

comparison only possible within specific models/setup → search in all sectors

Acquired theoretical control in Kaon modes
 Large sensitivity to high-scale dynamics

Non-MFV models / no-alignment of NP FV with SM FV
 → typically Kaon constraints supersede B/D probes
 Even in models with alignment Kaons important

 ϵ_K "excludes" composite-Higgs models partial compositeness and anarchic Yukawas

Kaons in the era of the LHC

- If the LHC continues to reduce the parameter-space for TeV-scale NP
- the phenomenological **need** for flavour alignment is lifted (MFV, flavour symmetries, partial compositeness,...)
- ➔ "importance" of Kaon observables as probes of NP increases

There is a strong, ongoing and planned experimental program in place to take advantage of Kaon modes [recent review of Kaon community: Goudzovski et al., 2201.07805]

• situation similar for probes of light NPs (e.g., the QCD axion)

Kaons and light-NP – example QCD Axion

$$\Gamma_K^{\rm tot} \sim M_K^5/M_W^4 \qquad \qquad \Gamma_B^{\rm tot} \sim M_B^5/M_W^4$$

• Dimension-5 QCD axion couplings: $\frac{\partial^{\mu}a}{f_a} \bar{q}_i \gamma_{\mu}(\gamma_5) q_j$

[from R. Ziegler @ La Thuille]

Observables

• CP violation in $K - \overline{K}$ mixing

- ϵ_K : indirect CP violation
- ϵ'/ϵ : direct CP violation (hadronic uncertainties \rightarrow lattice, not today)

Rare FCNC decays

- $K \to \pi \nu \nu$ (the Kaon "golden" modes)
- $K_S
 ightarrow \mu^+ \mu^-$ (NP sensitivity from time-dependent rates)
- $K_L
 ightarrow \pi^0 \ell^+ \ell^-$ (sensitivity to tensors [Mescia, Smith, Trine 06], not today)
- non-FCNC decays, ...

ϵ_K - disentagling long-distance charm contributions

- among the most stringent constraints of BSM with new FV (feeds back into predictions of clean BSM-sensitive rare decays) $(K_L \rightarrow \pi \nu \nu$ [Buchalla, Buras 96;] $K_S \rightarrow \mu \mu$ [Brod, ES 23])
- but prediction had reached an impasse

 ϵ_K seemed to be plagued by non-perturbative uncertainties associated to charm impeding further progress

 → solution "simple" (ct vs ut unitarity) modifying CKM-unitarity relation used decouples charm in ε_K
 → opens path to permille-level accuracy [Brod, Gorbahn, ES 19)]

 $\lambda_u = -\lambda_t - \lambda_c$ ct-unitarity (old computation, 3 imaginary parts) $\lambda_c = -\lambda_t - \lambda_u$ ut-unitarity (new computation, 2 imaginary parts)

- Beyond LO different conditions correspond to a rearrangement/reshuffling of the perturbative expansion (A priori it is not clear that results can be trivially translated into one another)
- It is always possible (phase-convention independent) to transparetly separate the long-distance charm contributions entering ΔM_K from ϵ_K

[Brod, Gorbahn, ES 19]

Phase-(in)dependent Hamiltonian

• Make convention-independence of ϵ_K explicit (**Trick:** factor out $1/(\lambda_u^*)^2$)

$$\mathcal{H}^{\Delta S=2} = \frac{G_F^2 M_W^2}{4\pi^2} \frac{1}{(\lambda_u^*)^2} Q_{S2} \Big\{ f_1 \, \mathcal{C}_1 + i J \, [f_2 \, \mathcal{C}_2 + f_3 \, \mathcal{C}_3] \Big\} + \text{h.c.} + \dots$$

[Brod, Gorbahn, ES 19]

- C_1, C_2, C_3 : real Wilson coefficients
- J, f_1, f_2, f_3 real, phase-convention invariant CKM structures
- Real part of $f_1 = |\lambda_u|^4$ is unique, splitting of f_2 and f_3 is not
- → One contribition to real part $\propto C_1$ (relevant for ΔM_K)
- → Only two independent imaginary pieces $\propto Jf_1$ and Jf_2

(relevant for ϵ_K)

Uncertainty estimates – ϵ_K without ΔM_K pollution

"Old" / ct-unitarity

$$|\epsilon_K| \propto |V_{cb}|^2 (1-\bar{\rho}) \hat{C}_{\mathrm{S2}}^{tt} + \hat{C}_{\mathrm{S2}}^{ct} - \hat{C}_{\mathrm{S2}}^{cc}$$

■ Do we vary scales indepedently? → large uncertainties

"New" / ut-unitarity

$$|\epsilon_K| \propto |V_{cb}|^2 (1-\bar{
ho}) \widehat{\mathscr{C}}_{\mathrm{S2}}^{tt} + \widehat{\mathscr{C}}_{\mathrm{S2}}^{ut}$$

● No ambiguity any more → clean/clear uncertainty estimation

$$|\epsilon_K| = \kappa_\epsilon C_\epsilon \widehat{B}_K |V_{cb}|^2 \lambda^2 ar\eta \Big(|V_{cb}|^2 (1-ar
ho) \eta_{tt} S(x_t) - \eta_{ut} S(x_c,x_t) \Big)$$

- $\hat{B}_K = 0.7625(97)$ [FLAG19, 1902.08191]
- $\eta_{ut} = 0.402(5)$ [Brod, Gorbahn, ES 19]

•
$$|\epsilon_K|^{\text{SM}} = 2.16(18) \times 10^{-3}$$

•
$$|\epsilon_K|^{\exp} = 2.228(11) \times 10^{-3}$$

ϵ_K - disentagling charm contributions

- reshuffling the perturbative expansion $\rightarrow \epsilon_K$ without ΔM_K pollution
- opens path to permille level precision

E. Stamou

Rare K decays

Rare K decays: CKM structure in SM

With respect to CKM:

- CP conserving modes: potential top/charm competition X
- CP violating modes: free from long-distance up-quark (Λ_{QCD}) contributions, suppressed, and dominated by short-distance dynamics ✓

Rare K decays: GIM structure

➔ If photonic penguins contribute, long-distance "pollution"

→ Z penguins quadratically sensitive to x – hard quadratic GIM

A tricky opportunity

$$K_S \to (\mu^+ \mu^-)_{\ell=0}$$

$$K_S o (\mu^+\mu^-)_{\ell=0}$$

CP structure depends on dimuon angular momentum, ℓ

- K_L : long-distance dominated due to two-photon penguin BR $(K_L \rightarrow \mu \mu) = 6.84(11) \times 10^{-9}$
- $K_S: \ell = 0$ component, CP violating and top-quark dominated BR $(K_S \to \mu \mu) < 2.1 \times 10^{-10}$

Challenges: tag K_S (small lifetime) and access the $(\mu\mu)_{\ell=0}$ state

$\mathsf{BR}(K_S o \mu \mu)_{\ell=0}$ from time-dependent rate

Leverage intereference in **time-dependent** rate to access the short-distance dominated $(\mu\mu)_{\ell=0}$ state [D'Ambrosio, Kitahara 17]

$$\frac{d\Gamma[K(t) \to (\mu\mu)_{\ell}]}{dt} \propto C_L^{\ell} e^{-\Gamma_L t} + C_S^{\ell} e^{-\Gamma_S t} + 2[C_{\sin}^{\ell} \sin(\Delta M t) - C_{\cos}^{\ell} \cos(\Delta M t)] e^{-\Gamma t}$$

$$\frac{\mathrm{BR}[K_S \to (\mu\mu)_{\ell=0}]}{\mathrm{BR}[K_L \to \mu\mu]} = \frac{\tau_S}{\tau_L} \left(\frac{C_{\mathrm{int}}}{C_L}\right)^2$$

[Dery et al 21]

[plot from J. Brod @ LPCP]

$\mathsf{BR}(K_S o \mu \mu)_{\ell=0}$ SM prediction and NP sensitivity

- Top-quark dominated and $\mathcal{CP} \rightarrow \sim 1\%$ theory uncertainty
- Sizable 3% component from CP-conserving amplitude $imes \epsilon_K$
- → only rough estimate possible for relative strong phase [estimation from $K_L \rightarrow \mu\mu K_L \rightarrow \gamma\gamma$ data] BR $(K_S \rightarrow \mu\mu)_{\ell=0} = 1.70(2)(1)(19) \times 10^{-13}$ [Brod, ES 22]
- Presently no heavy-NP bounds; not clear whether exp. feasible $\mathcal{L}_{\text{NP}} = \frac{C_{\text{NP}}}{\Lambda^2} (\bar{s}_L \gamma^\nu d_L) (\bar{\mu}_L \gamma_\nu \mu_L) + \text{hc}$
- ightarrow Measurement at 10% would probe $\Lambda \sim 600~{
 m TeV}$ for Im $[C_{
 m NP}]$

The golden modes

 $K_L \to \pi^0 \nu \bar{\nu}$

 $K^+ \to \pi^+ \nu \bar{\nu}$

• Top: $\lambda_t oldsymbol{F}(oldsymbol{x_t}) \propto \lambda^5 m_t^2/M_W^2$

matching NLO@QCD [Misiak, Urban 99; Buchalla, Buras 99], NLO@EW [Brod, Gorbahn, ES 10], matching NNLO@QCD [in progress with Gorbahn, Yu]

- Charm: $\lambda_c F(x_c) \propto \lambda m_c^2 / M_W^2 \log(m_c/M_W)$ obtained via operator mixing in EFT running NNLO@QCD [Buras et al 06] NLO@EW [Brod, Gorbahn 08]
- Up: $\lambda_c F(x_u) \propto \lambda \Lambda_{QCD}^2 / M_W^2$ from χ PT and lattice small, 10% of total charm contribution

 $K_L
ightarrow \pi^0
u ar{
u}$ CP violating mode (1% from CP-conserving amplitude $imes \epsilon_K$)

→ only top-quark contribution: short-dist. uncertainty of $\mathcal{O}(2\%)$

$$\mathsf{BR}(K_L \to \pi^0 \nu \bar{\nu})^{\mathsf{SM}} = \kappa_L r_{\epsilon_K} \left(\frac{\mathrm{Im}\lambda_t}{\lambda^5} X_t\right)^2$$

$K^+ ightarrow \pi^+ u ar{ u}$ CP conserving mode

→ charm contributes: $\mathcal{O}(3\%)$ long-distance theory uncertainties

$$\begin{split} \mathsf{BR}(K^+ \to \pi^+ \nu \bar{\nu})^{\mathsf{SM}} &= \kappa_+ (1 + \Delta_{\mathsf{EM}}) \bigg[\bigg(\frac{\mathrm{Im}\lambda_t}{\lambda^5} X_t \bigg)^2 \\ &+ \bigg(\frac{\mathrm{Re}\lambda_c}{\lambda} (P_c + \delta P_{cu}) + \bigg(\frac{\mathrm{Re}\lambda_t}{\lambda^5} X_t \bigg) \bigg)^2 \bigg] \end{split}$$

[details in Brod, Gorbahn, ES from BEAUTY2020]

Top-contribution X_t at NNLO in QCD

Reduces uncertainty from $\pm 1\%$ (@NLO) down to $\pm 0.1\%$ (@NNLO)

E. Stamou

[in progress with Gorbahn, Yu]

SM prediction using PDG input

Preliminary numerics including X_t@NNLO

$$BR(K^+ \to \pi^+ \nu \bar{\nu})^{SM} = 8.25(11)_{SD}(25)_{LD}(57)_{para} \times 10^{-11}$$
$$BR(K_L \to \pi^0 \nu \bar{\nu})^{SM} = 2.83(1)_{SD}(2)_{LD}(30)_{para} \times 10^{-11}$$

NA62 and KOTO measuments

$$\begin{split} &\mathsf{BR}(K^+ \to \pi^+ \nu \bar{\nu})^{\mathsf{NA62}} = (10.6^{+3.4}_{-3.4}|_{\mathsf{stat}} \pm 0.9|_{\mathsf{sys}) \times 10^{-11}} \\ &\mathsf{BR}(K_L \to \pi^0 \nu \bar{\nu})^{\mathsf{KOTO}} < 3.0 \times 10^{-9} \\ & \text{@90\% CL} \end{split}$$

Ratios of rates as clean SM tests

[Buras, Venturini 21]

$$R_{S} = \frac{\text{BR}(K_{S} \to \mu\mu)_{\ell=0}}{\text{BR}(K_{L} \to \pi^{0}\nu\bar{\nu})} \sim 1.55 \times 10^{-2} \frac{Y(x_{t})}{X(x_{t})}$$

Essentially CKM-parameter free (up to $\mathcal{O}(3\%)$ correction)

E. Stamou

Heavy NP in $K \rightarrow \pi \nu \nu$

powerful probes of NP (for Vector "SM-like" NP)

$$\mathscr{L}_{\rm NP} = \frac{C_{L/R}^V}{\Lambda^2} (\bar{s}\gamma^\mu P_{L/R} d) (\bar{\nu}_L \gamma_\mu \nu_L) + hc$$

Lepton-Number-Violation in $K \rightarrow \pi \nu \nu$ distributions

• Lepton-number-violating (LNV) NP in $s \rightarrow d\nu\nu$

$$\mathscr{L}_{\mathrm{LNV}} = \frac{C_{L/R}^S}{\Lambda^2} \underbrace{(\bar{s}P_{L/R}d)(\nu_L^T \mathcal{C}\nu_L)}_{\mathrm{scalar}} + \frac{C^T}{\Lambda^2} \underbrace{(\bar{s}_R \sigma_{\mu\nu} d_L)(\nu_L^T \mathcal{C}\sigma^{\mu\nu}\nu_L)}_{\mathrm{tensor/only LFV}} + hc$$

■ Modified vv distributions → probing LNV at NA62

[in progress with Sieja, Tabet; SMEFT/scalar-case Deppisch et al 20]

E. Stamou

Lepton-Number-Violation in $K \rightarrow \pi \nu \nu$ distributions

$$\mathscr{L}_{\rm LNV} = \frac{C_{L/R}^S}{\Lambda^2} (\bar{s} P_{L/R} d) (\nu_L^T \mathcal{C} \nu_L) + \frac{C^T}{\Lambda^2} (\bar{s}_R \sigma_{\mu\nu} d_L) (\nu_L^T \mathcal{C} \sigma^{\mu\nu} \nu_L) + hc$$

• correlations/preliminary recast of NA62

- washout process, constrain Leptogenesis[Deppisch et al 15,18;Chun et al 17]
- Further options: sterile-ν signatures (K → πν_lν_h, πν_hν_h), SU(2) invariant models and LNV pheno, KOTO data, projections
 [in progress with Gorbahn and Moldanazarova]

Summary and conclusions

- Kaons remain at the frontier of searches for heavy NP and light NP
- Precision predictions necessary to disentagle NP effects
- → Recent and expected improvements targeting 0.1%-level accuracy ($\epsilon_K, K \to \pi \nu \bar{\nu}$)
- New ideas to maximize impact of data
- → e.g., time-dependeet rate in $K \rightarrow \mu\mu$ or $K \rightarrow \pi\nu\bar{\nu}$ distributions

backup

ϵ_K : indirect CP violation

• If CP is conserved $K_L \not\rightarrow \pi\pi$, but mixing allows it:

$$\epsilon_K \equiv rac{\langle (\pi\pi)_{I=0} | K_L
angle}{\langle (\pi\pi)_{I=0} | K_S
angle} = rac{1-\lambda_0}{1+\lambda_0}$$

• With
$$\lambda_0 = \frac{q}{p} \frac{\langle (\pi\pi)_{I=0} | \overline{K}^0 \rangle}{\langle (\pi\pi)_{I=0} | K^0 \rangle} = 1 - i\phi \underbrace{\frac{\Delta M_K}{\Delta M_K + i\Delta \Gamma_K/2}}_{\text{Take from experiment}}$$

• With the weak phase $\phi = arg(-M_{12}/\Gamma_{12})$

Compute [Nierste in Anikeev et al; hep-ph/0201071]

ϵ_K : indirect CP violation

In **PDG-phase convention** M_{12} and Γ_{12} nearly real

$$\epsilon_K = e^{i \phi_\epsilon} \sin \phi_\epsilon \left(rac{Im(M_{12})}{\Delta M_K} + \xi
ight)$$

• $\phi_{\epsilon} \equiv \arctan \frac{\Delta M_K}{\Delta \Gamma_K/2}$ and $\xi = -\frac{Im(\Gamma_{12})}{2Re(\Gamma_{12})}$ (non-perturbative / long-distance)

(Estimates from: ϵ'/ϵ [Nierste 02, Buras et al 08], ChPT [Buras et al 10], lattice [Blum et al 15, Bai et al 15])

Im(M₁₂): scale separation (EFT) factorizes computation

$$\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_{\mathsf{had}}) U(\mu_{\mathsf{had}}, \mu_c) U(\mu_c, \mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_{\mathsf{had}}) U(\mu_{\mathsf{had}}, \mu_c) U(\mu_c, \mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_{\mathsf{had}}) U(\mu_{\mathsf{had}}, \mu_c) U(\mu_c, \mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_{\mathsf{had}}) U(\mu_{\mathsf{had}}, \mu_c) U(\mu_c, \mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_{\mathsf{had}}) U(\mu_{\mathsf{had}}, \mu_c) U(\mu_c, \mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_{\mathsf{had}}) U(\mu_{\mathsf{had}}, \mu_c) U(\mu_c, \mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_{\mathsf{had}}) U(\mu_c, \mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_{\mathsf{had}}) U(\mu_{\mathsf{had}}, \mu_c) U(\mu_c, \mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_{\mathsf{had}}) U(\mu_c, \mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_{\mathsf{had}}) U(\mu_c, \mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_{\mathsf{had}}) U(\mu_c, \mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_{\mathsf{had}}) U(\mu_c, \mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_{\mathsf{had}}) U(\mu_c, \mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_W) C(\mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q^{\Delta S=2} \rangle (\mu_W) C(\mu_W)}_{\langle \mathcal{H}_{\mathsf{eff}} \rangle = \underbrace{\langle Q$$

hadronic matrix element, \hat{B}_K pertubative evolution of C

Traditional: ct-unitarity

$$\mathcal{H}^{\Delta \mathrm{S}=2} = rac{G_F^2 M_W^2}{4\pi^2} Q_{\mathrm{S}2} \Big\{ \lambda_t^2 C^{tt} + \lambda_c^2 C^{cc} + \lambda_c \lambda_t C^{ct} \Big\} + \mathsf{h.c.} + \dots$$

Match to phase-convention "independent" Hamiltonian

•
$$C^{cc} = C_1$$
 $C^{ct} = 2C_1 + C_3$ $C^{tt} = 2C_1 + C_2 + C_3$

• C_1 , controlling ΔM_K , enters all pieces

→ <u>Bad</u> news

- ΔM_K is long-distance dominated [Brod, Gorbahn 11]
- → We artificially included C_1 into the prediction of ϵ_K !

We can do better.

New: ut-unitarity

First proposed for a lattice computation [Christ et al 12, see also Barbieri 07]

$$\mathcal{H}^{\Delta \mathrm{S}=2} = rac{G_F^2 M_W^2}{4\pi^2} Q_{\mathrm{S}2} \Big\{ \lambda_t^2 C^{tt} + \lambda_u^2 C^{uu} + \lambda_u \lambda_t C^{ut} \Big\} + ext{h.c.}$$

Match to phase-convention "independent" Hamiltonian

•
$$C^{uu} = \mathcal{C}_1$$
 $C^{tt} = \mathcal{C}_2$ $C^{ut} = \mathcal{C}_3$

• Disentangled $Re(M_{12})$ and $Im(M_{12})$

→ <u>Good</u> news!, $Im(M_{12})$ without ΔM_K pollution

 It can be shown that Wilson coefficients and ADMs can be extracted from the "traditional" results

[Brod, Gorbahn, ES 19]

Comparison: ut VS ct

Residual theory uncertainties from scale variation (μ_t, μ_c)

Miserable convergence behaviour of ct-unitarity (right panel)

• Excellent convergence behaviour of ut-unitarity (left panel)

$$\eta_{ut} = 0.402 \pm 0.005$$
 @ NNLO[Brod, Gorbahn, ES 19]
 $\eta_{tt} = 0.55 \pm 0.02$ @ NLO [Buras et al 90 with our variation]

Comparison: ut VS ct

E. Stamou

• Residual theory uncertainties from scale variation (μ_t, μ_c)

Miserable convergence behaviour of ct-unitarity (right panel)

• Excellent convergence behaviour of ut-unitarity (left panel)

$$\eta_{ut} = 0.402 \pm 0.005$$
 @ NNLO[Brod, Gorbahn, ES 19]
 $\eta_{tt} = 0.55 \pm 0.02$ @ NLO [Buras et al 90 with our variation]

Towards permille-level accuracy in ϵ_K

 Charm no longer leading uncertainty

→ Reassessment of uncertainties

- Reduce top uncertainty by NNLO QCD matching
 [in progress with Brod, Gorbahn, and Hang]
- Residual EW/QED uncertainties 2%? [path analogous to Brod, Gorbahn, ES 10; Brod, Gorbahn 08, Bobeth, Gorbahn, ES 14; Gambino, Kwiatkowski, Pott 98]
- Lattice target: ME with dynamical charm. Will allow to fully compute ϵ_K
- Reassess contributions from lon-local insertions

