Strong-phase results from quantum-correlated $D^0 \overline{D}^0 \text{ events}$

Alex Gilman

University of Oxford on behalf of the BESIII Collaboration

July 5th, 2023

BEAUTY 2023 Clermont-Ferrand, France

 $\begin{array}{ccc} \text{Introduction} & D^0 \to K^-\pi^+ \text{ and } D^0 \to K^0h^+h^- & D^0 \to \text{four-body decays} & \text{Current Impacts and Future Prospect} \\ 00000 & 0000 & 0000 \\ \end{array}$

Outline

Introduction

 $D^0 \to K^- \pi^+$ and $D^0 \to K^0 h^+ h^-$

 $D^0
ightarrow$ four-body decays

Current Impacts and Future Prospects

U. Oxford

A. Gilman D^0 Strong Phases @ BESIII BEAUTY 2023

|--|

Outline

Introduction

 $D^0 o K^- \pi^+$ and $D^0 o K^0 h^+ h^-$

 $D^0
ightarrow$ four-body decays

Current Impacts and Future Prospects

Motivations

- Strong phases between D⁰/D
 ⁰ decays to the same final state are essential inputs to determining
 - the CKM angle γ/ϕ_3 :

$$\mathcal{A}_{B \to DK, D \to X} = \mathcal{A}_{B \to DK, D \to X}(r_B^{DK}, \delta_B^{DK}, r_D^X, \delta_D^X, \gamma)$$

where r gives the ratio of decay amplitudes and δ gives the relative strong phase between the meson and antimeson

 \blacktriangleright Current projection from Upgrade I at LHCb estimates a statistical uncertainty on γ of $\sim 1^\circ$

 \Rightarrow current measurements of strong phase inputs will dominate γ uncertainty!

• CP violation/mixing in D^0

While models of D⁰ strong phases exist, systematic uncertainties are too large to use in CPV analyses ⇒ direct measurements are the only option

 $P^0 \rightarrow K^- \pi^+$ and $D^0 \rightarrow K^0 h^+ h$

 $D^0 \rightarrow \text{four-body decays}$

Current Impacts and Future Prospects

BESIII Experiment

Introduction $D^0 \to K^- \pi^+$ and $D^0 \to K^0 h^+ h^ D^0 \to K^0 h^+ h^-$

 $D^0 \rightarrow \text{four-body decays}$

Current Impacts and Future Prospects

BESIII Experiment BEPCII

- Two ring symmetric e^+e^- collider
- Circumference: 240 m
- Design Luminosity: 10³³ cm⁻²s⁻¹ Achieved Apr. 2016
- $\sqrt{s}: 2-5 \text{ GeV}$
- Beam Crossing Angle: 22 mrad

BESIII

- Hermiticity: 93% of 4π
- MDC: $\sigma_p/p = 0.5\%$ at 1 GeV
- ToF: σ = 80 ps
- EMC: $\sigma_E/E: 2.5\%$ at 1 GeV
- Superconducting Solenoid: 1T
- 9 layer RPC Muon System
- More detail in D.M. Asner *et al.*, Int. J. Mod. Phys. A 24, 1 (2009)

U. Oxford

A. Gilman

D⁰ Strong Phases @ BESIII BEAUTY 2023

Introduction

 $D^0 \rightarrow K^- \pi^+$ and $D^0 \rightarrow K^0 h^+ h^-$

 $\substack{D^0 \\ 000} \rightarrow \text{ four-body decays}$

Current Impacts and Future Prospects

Datasets

► CLEO-c: Data collected until 2008 - $D^{+(0)}$ 0.82 fb⁻¹ @ $E_{cm} = 3.77$ GeV.

► BESIII - $D^{+(0)}$ 2.93 fb⁻¹ @ $E_{cm} = 3.773$ GeV. Collected in 2011 Spoiler alert: More BESIII data being collected/analysed.

A. Gilman

- Production through virtual photon constrains DD state to be CP-odd
- BESIII has large sample at the DD threshold, so it is guaranteed that there are no other particles in the final state
- CP constraint correlates D and \overline{D} final states
- Can leverage this to measure D strong phases and CP-content of final states.

A. Gilman

D⁰ Strong Phases @ BESIII BEAUTY 2023

$ \begin{array}{ccc} \text{Introduction} & D^0 \to K^- \pi^+ \text{ and } D^0 \to K^0 h^+ h^- & D^0 \\ \bullet \bullet \bullet \bullet \bullet \bullet & \bullet \\ \end{array} $	\rightarrow four-body decays C_{0}	urrent Impacts and Future Prosp 0000
---	--	---

Outline

Introduction

 $D^0 \to K^- \pi^+$ and $D^0 \to K^0 h^+ h^-$

 $D^0
ightarrow$ four-body decays

Current Impacts and Future Prospects

9/20

U. Oxford

A. Gilman D^0 Strong Phases @ BESIII BEAUTY 2023

A. Gilman

D⁰ Strong Phases @ BESIII BEAUTY 2023

Introduction 000000	$\begin{array}{c} D^0 \to K^- \pi^+ \text{ and } D^0 \to K^0 h^+ \ \circ \bullet \circ \circ \circ \end{array}$	$h^ D^0 \rightarrow \text{four-body decays}$	Current Impacts and Future Prospects
$D^0 \rightarrow$	$K^0_S \pi^+ \pi^-$		
 Mea amp Pha 	asurement of $D^0/\overline{D}^0 \rightarrow K^0 \pi$ plitude-weighted $\cos [\sin] \Delta \delta_D$ is space described by $m_{\pm} \equiv$	$^+\pi^-$ strong phase parameter in phase-space bin i $m\left(K^0\pi^\pm ight)$	eters $c_i \left[s_i ight] \equiv$
► In te	erms of fractional yields of fla	avour-tagged $K^0_S \pi^+ \pi^- \equiv$	K_i
\blacktriangleright K_S^0	$\pi^+\pi^-$ vs. CP tag: $M_i^\pm=h_0$	$_{CP}\left(K_{i}+K_{-i}-2c_{i}\sqrt{K_{i}}\right)$	(K_{-i})
$\blacktriangleright K_S^0$	$\pi^+\pi^-$ vs. $K^0_{S,L}\pi^+\pi^-$ tag:		
M_{ij}	$h_{i} = h_{DT} \left(K_i K_{-j} + K_{-i} K_j - K_j \right)$	$-\mp 2\sqrt{K_iK_{-j}K_{-i}K_j}\left(c_i\right)$	$c_j + s_i s_j) \big)$
	PRL 124, 2418	802 (2020) PRD 101, 112002, (202	20)

10/20

Introduction $D^0 \to K^- \pi^+$ and $D^0 \to 0^+ 0^-$	$K^0 h^+ h^ D^0 \rightarrow$ four-body decays	Current Impacts and Future Prospects
$D^{0} \to K^{0}_{S}\pi^{+}\pi^{-}$ • Measurement of $D^{0}/\overline{D}^{0} \to$ amplitude-weighted cos [sin	$K^0 \pi^+ \pi^-$ strong phase paramet] $\Delta \delta_D$ in phase-space bin <i>i</i>	ters $c_i \left[s_i ight] \equiv$
Phase space described by n	$i_{\pm} \equiv m \left(K^{\circ} \pi^{\pm} \right)$	
3.0 2.0 1.5 0.5 1.0 1.5 2.0 2.0 2.0 2.5 1.6 1.5 2.0 2.5		
Rinning scheme from CLEO PPD 92 1120	PRL 124, 241802 (2020)) BaBar and Bollo

PRD 101, 112002, (2020)

Binning scheme from CLEO PRD 82,112006 (2010)

BaBar and Belle, PRD 98, 110212(2018)

> 10/20 U. Oxford

Introduction 000000	$\stackrel{D^0}{\underset{\circ\circ\circ\circ\circ}{}} K^- \pi^+$ and $D^0 \rightarrow K^0 h^+ h^-$	$\stackrel{D}{_{ m OOO}}^{ m 0} ightarrow$ four-body decays	Current Impacts and Future Prospects
$D^0 \rightarrow$	$K^{-}\pi^{+}$		
•	Updated measurement of D^0/\overline{D}^0	$\to K^-\pi^+$ strong pha	se defined by
	$r_D^{K\pi} e^{-i\delta_D^{K\pi}} = \frac{\langle K^+\pi^- D^0 \rangle}{\langle K^+\pi^- \bar{D}^0 \rangle}$ from	PLB 734 (2014)227-2	33

• Many new tag modes included, including partially reconstructed K_L^0 modes

11/20

A. Gilman <u>D⁰ Strong</u> Phases @ BESIII BEAUTY 2023

Introduction 000000	$D^0 \rightarrow K^- \pi^+$ and $D^0 \rightarrow K^0 h^+ h^-$	$D^0 \rightarrow four-body decays_{000}$	Current Impacts and Future Prospects
$D^0 \rightarrow$	$K^{-}\pi^{+}$		
•	Updated measurement of D^0/\overline{D}^0 $r_D^{K\pi}e^{-i\delta_D^{K\pi}} = \frac{\langle K^+\pi^- D^0\rangle}{\langle K^+\pi^- \overline{D}^0\rangle}$ from	$\rightarrow K^- \pi^+$ strong pha PLB 734 (2014)227-2	se defined by 33

• Many new tag modes included, including partially reconstructed K_L^0 modes

Eur. Phys. J. C 82, 1009 (2022)

- $\bullet \ \delta_D^{K\pi} = \left(187.6^{+8.9}_{-9.7} \, {}^{+5.4}_{-6.4}\right)^\circ$
- Most precise measurement from QC DD
- ▶ B factories have sensitivity, but as a nuisance parameter: $\delta_D^{K\pi} = (192.1^{+3.7}_{-4.0})$ from LHCb, Phys. Rev. D 105 (2022), 092013

Introduction 000000	$\begin{array}{c} D^0 \rightarrow K^- \pi^+ \ {\rm and} \ D^0 \rightarrow K^- \pi^+ \end{array}$	$\rightarrow K^0 h^+ h^-$	$D^0 \rightarrow \text{four-body decays}$	Current Impacts and Future Prospects
$D^0 \rightarrow L$	$K_L^0 \pi^+ \pi^-$			
• U -spin $D^0 \rightarrow$	breaking effects bet $K_L k_{CP}, k_{CP} \to \pi \pi$ $\Gamma \left(D^0 \to K_L^0 \left(\pi^+ \pi^- \right)^{-1} \right)$	ween $D^0 \to K$ quantified by ${}_{k_{CP}} \Big) / \Gamma \Big(D$	$ \begin{array}{l} \hat{\rho}_{L}^{0}\pi^{+}\pi^{-} \text{ and } D^{0} \rightarrow D^{0} \\ \hat{\rho}_{k_{CP}} \\ \hat{\rho}_{k_{CP}} \\ 0 \rightarrow K_{S}^{0} \left(\pi^{+}\pi^{-}\right)_{k_{CP}} \end{array} $	$K_S^0 \pi^+ \pi^-$ amplitudes where $_P ight) pprox 1 - 2 \tan^2 \theta_C \hat{\rho}_{k_{CP}}$
$\blacktriangleright \hat{\rho}_{k_{CP}}$ '	s determined for first	time in D^0 –	$ K^0_L \pi^+ \pi^-$ amplitud	le fit
×10 ³	arXiv:2212.09048	×10 ³		
Protocol Conversion	→ Data Model → K [*] ₁ π [*] x signal → K [*] ₂ π [*]	Resound on Vive		
$\Gamma_{22}^{\mu} = 0$	$\begin{array}{c} \mathbf{U}_{\mathbf{r}} \mathbf{U}_{\mathbf{r}}$	5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	1.6 1.8 2	
	-Data -Model 27/mf = 859.2 = 966 = 0.80		1	
$-\frac{1}{0.5}$ $\frac{1.5}{1}$ $\frac{2}{s_{k_{1}^{0}r^{2}}}$ [GeV ² /c ⁴]	$\frac{25}{0.5}$ $-\frac{5}{0.5}$ $\frac{15}{1.5}$ $\frac{2}{2.5}$ $\frac{2.5}{s_{k_{e}^{2}e}}$ [GeV ² /c ⁴]	-5 0 02 04 06 08 1 12 14 s _{rr} [GeV ² /c ⁴]	16 18 2	

A. Gilman D^0 Strong Phases @ BESIII BEAUTY 2023

12/20

Introduction 000000	$\begin{array}{c} D^0 \rightarrow K^- \pi^+ \text{ and } D^0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	$\rightarrow K^0 h^+ h^-$	$\begin{array}{c} D^{0} \rightarrow { m four-body} \\ 000 \end{array}$	v decays Current Impacts and Future Prospects
$D^0 \rightarrow$	$K_L^0 \pi^+ \pi^-$		-0 +	
► <i>U</i> -spi <i>D</i> ⁰ –	n breaking effects betw $K_L k_{CP}, k_{CP} \to \pi \pi$ $\Gamma \left(D^0 \to K_L^0 \left(\pi^+ \pi^- \right) \right)$	veen $D^0 \to K$ quantified by $_{k_{CP}}) / \Gamma (D$	$\hat{\rho}_L \pi^+ \pi^-$ and $\hat{\rho}_{k_{CP}}$: $0 \to K_S^0 \left(\pi^+\right)$	$D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$ amplitudes where $\pi^{-}_{k_{CP}} \approx 1 - 2 \tan^{2} \theta_{C} \hat{\rho}_{k_{CP}}$
$\blacktriangleright \hat{\rho}_{k_{CP}}$'s determined for first	time in D^0 –	$ ightarrow K_L^0 \pi^+ \pi^-$ a	amplitude fit
	arXiv:2212.09048	La construction of the second	►	Provides constraints of systematics on future strong phases measurements in $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ PRD 101, 112002, (2020)
	-Data -Model -Model -Model -Model -Model -Model -Model -Model -Model 			

A. Gilman D^0 Strong Phases @ BESIII BEAUTY 2023

12/20 U. Oxford troduction $D^0 \to K^- \pi^+$ and $D^0 \to K^0 h^+ h^- \quad D^0_{\bullet 00}$

Outline

Introduction

 $D^0 \to K^- \pi^+$ and $D^0 \to K^0 h^+ h^-$

 $D^0 \rightarrow {\rm four-body}~{\rm decays}$

Current Impacts and Future Prospects

13/20

A. Gilman D^0 Strong Phases @ BESIII BEAUTY 2023

Introduction 000000	$D^0 \rightarrow K^- \pi^+$ and $D^0 \rightarrow K^0 h^+ h^-$ 0000	$\begin{array}{c} D^0 \to { m four-body\ decays} \\ \circ \bullet \circ \end{array}$	Current Impacts and Future Prospects

$$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$$

•Measurement of phase-space-averaged δ_D , coherence factors $R_{\rm r}$ and amplitude ratios r_D

4-bin binning scheme for $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$ from T. Evans *et al.*, PLB 802 (2020) 135188 significantly improves sensitivity to γ γ 0.8 0.7 0.8 0.8 0.7 0.8 0.8 0.8 0.7 0.8

Introduction 000000	$D^0 \rightarrow K^- \pi^+$ and $D^0 \rightarrow K^0 h^+ h^-$ 0000	$\begin{array}{c} D^0 \to { m four-body\ decays} \ \circ \bullet \circ \end{array}$	Current Impacts and Future Prospects

$$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$$

•Measurement of phase-space-averaged δ_D , coherence factors R, and amplitude ratios r_D JHEP 05 (2021) 164

A. Gilman

D⁰ Strong Phases @ BESIII BEAUTY 2023

A. Gillian

D⁰ Strong Phases @ BESIII BEAUTY 2023

00000 0000

Outline

Introduction

 $D^0 \to K^- \pi^+$ and $D^0 \to K^0 h^+ h^-$

 $D^0
ightarrow$ four-body decays

Current Impacts and Future Prospects

A. Gilman <u>D⁰ Strong</u> Phases @ BESIII BEAUTY 2023

 $D^0 \rightarrow \text{four-body decays}$

See talk from M. Tat

A. Gilman

D⁰ Strong Phases @ BESIII BEAUTY 2023

 $D^0 \rightarrow K^- \pi^+$ and $D^0 \rightarrow K^0 h^+ h^-$

U. Oxford

Current Impacts and Future Prospects

00000

Impacts on charm-sector CPV/Mixing Measurements

• LHCb average of $D \rightarrow K_S^0 \pi^+ \pi^-$ measurements from arXiv:2208.06512

$$\begin{split} \Delta \delta_D^{K_S^0 \pi^+ \pi^-} &\sim 50\% \text{ of total uncertainties on } x_{CP}, y_{CP} \\ \text{and} &\sim 15\% \text{ of total uncertainties on } \Delta x \text{ and } \Delta y \\ & \text{See talk from D. Mitzel} \end{split}$$

U. Oxford

A. Gilman

D⁰ Strong Phases @ BESIII BEAUTY 2023

Looking to the future...

- LHCb aims to reduce uncertainty on γ and charm CPV parameters by 4x, and Belle II is amassing luminosity
 - Uncertainties on $D^0 \rightarrow K^0_S h^+ h^-, K3\pi$, etc. strong phases need to reduce to not dominate uncertainties!
 - More quantum correlated $D\overline{D}$ data allows for refined analysis of $D^0 \rightarrow$ multibody decays (e.g. precision of $K3\pi$)
- ▶ New $\psi(3770)$ data sets at BESIII:
 - ~ 9fb⁻¹ taken at $\psi(3770)$ in 2022-2023.
 - ▶ ~ 21 fb⁻¹ at $\psi(3770)$ expected by the end of 2024.
- Super τ-Charm Factory (STCF) plans for ~ 100x the sample size of BESIII: see CDR at arXiv:2303.15790.

$D^0 \rightarrow \text{four-body decays}$ Introduction

Conclusions

- \blacktriangleright Model-independent measurements of D^0 strong phases are necessary inputs to beauty and charm *CPV* measurements
- \blacktriangleright D^0 inputs currently contribute sub-dominant uncertainties to γ and charm *CPV* parameters, but further precision is needed for LHCb's Run 3 and data from Belle II
- Significantly more data collection underway $@ \psi(3770)$ in the near future @ BESIII, which will provide necessary precision on previous results and prospects for novel CPV analyses of multibody D^0 decay modes
- More detail on future prospects in BESIII white paper: Chin. Phys. C 44, 040001 (2020)

Thanks for your attention!