Mixing and CP violation in charm decays

Maria Laura Piscopo

CPPS, Theoretische Physik 1, Universität Siegen

BEAUTY 2023

Clermont-Ferrand, 05 July 2023

Motivation

The peculiarities of charm physics

- $\diamond~$ Many challenges . . .
 - * The charm quark is not that heavy $\alpha_s(m_c) \sim 0.33 \qquad \frac{\Lambda_{\rm QCD}}{m_c} \sim 0.30$
 - $\star\,$ CP violation effects are small due to CKM
 - * There are pronounced GIM cancellations $m_b, m_s, m_d \ll m_W$
- $\diamond \ \ldots$ which are also opportunities
 - * Great possibility to test our understanding of QCD
 - * High sensitivity to NP effects see talk by H. Gisbert
- $\diamond\,$ Also, only system to study mixing in the up-sector

Complementarity to K- and B-mixing

see talks by E. Stamou and E. Malami

The experimental progress

y (%) 0.8 CPV allowed 0.7 ♦ Experimental precision significantly improving 0.6 0.5 Theoretical predictions \diamond 0.4 not yet competitive 0.3 1σ 2 σ Many more data expected 0.2 \diamond 3 σ HFI AV σ LHCb, Belle II, BESIII 5σ 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.7 x (%)

Need equal progress in theory to exploit the many experimental results

Theory of mixing

Meson mixing

◊ Neutral mesons mix with their antiparticles via box diagrams

 $\diamond\,$ Evolution described by 2×2 Hamiltonian matrix

$$i\frac{d}{dt}\binom{|\mathcal{M}^{0}(t)\rangle}{|\overline{\mathcal{M}}^{0}(t)\rangle} = \left(\hat{M} - i\frac{\hat{\Gamma}}{2}\right)\binom{|\mathcal{M}^{0}(t)\rangle}{|\overline{\mathcal{M}}^{0}(t)\rangle} \implies \begin{cases} |\mathcal{M}_{L}\rangle = p\,|\mathcal{M}^{0}\rangle + q\,|\overline{\mathcal{M}}^{0}\rangle\\ |\mathcal{M}_{H}\rangle = p\,|\mathcal{M}^{0}\rangle - q\,|\overline{\mathcal{M}}^{0}\rangle \end{cases}$$

◊ Define mixing observables

$$\Delta M = M_H - M_L \qquad \Delta \Gamma = \Gamma_L - \Gamma_H$$

◊ And the dimensionless ratios

 $x = \Delta M/\Gamma$ $y = \Delta \Gamma/2\Gamma$ with $\Gamma = (\Gamma_H + \Gamma_L)/2$

Maria Laura Piscopo

Meson mixing

♦ Theoretically, determine mixing observables as

see e.g. reviews [Artuso, Borissov, Lenz '15; Lenz, Wilkinson '20]

$$\Delta M \approx 2|M_{12}|$$
 $\Delta \Gamma \approx 2|\Gamma_{12}|$ $\phi_{12} = \arg(-M_{12}/\Gamma_{12})$

Expanding in the small parameters $|\Gamma_{12}|/|M_{12}|$ and/or ϕ_{12}

- ♦ M_{12} corresponds to dispersive part of $\mathcal{M}^0 \to \overline{\mathcal{M}}^0$ amplitude Directly sensitive to heavy NP particles
- $\diamond \ \Gamma_{12} \text{ corresponds to absorptive part of } \mathcal{M}^0 \to \overline{\mathcal{M}}^0 \text{ amplitude}$

Directly sensitive to light NP particles

 \diamond CP violation in mixing encoded in parameter $a_{\rm fs}$

$$\left|\frac{q}{p}\right| \approx 1 - \frac{a_{\rm fs}}{2} \qquad a_{\rm fs} = \left|\frac{\Gamma_{12}}{M_{12}}\right| \sin \phi_{12}$$

Maria Laura Piscopo

B-mixing

◊ Off-shell contributions to box diagrams

 $M_{12} = \lambda_u^2 \left(M_{cc} - 2M_{uc} + M_{uu} \right) + 2\lambda_u \lambda_t \left(M_{cc} - M_{uc} + M_{ut} - M_{ct} \right) + \lambda_t^2 \left(M_{cc} - 2M_{ct} + M_{tt} \right)$

* Described in terms of $\Delta B = 2$ effective Hamiltonian

◊ On-shell contributions to box diagrams

$$\Gamma_{12} = \lambda_u^2 \left(\Gamma_{cc} - 2\Gamma_{uc} + \Gamma_{uu} \right) + 2\lambda_u \lambda_t \left(\Gamma_{cc} - \Gamma_{uc} \right) + \lambda_t^2 \Gamma_{cc}$$

* Described by double insertion of $\Delta B = 1$ effective Hamiltonian Can be computed within the HQE

$$\lambda_u^d \sim \lambda_c^d \sim \lambda_t^d \qquad \lambda_u^s \ll \lambda_c^s \sim \lambda_t^s \qquad \lambda_x^q = V_{xb} V_{xq}^*$$

 $\diamond\,$ GIM and CKM suppressions go in the same direction

Maria Laura Piscopo

D-mixing

◊ Strong interplay of CKM and GIM suppression!

$$\lambda_d \sim \lambda_s \sim \lambda \gg \lambda_b \sim \lambda^5$$
 $\lambda_x = V_{cx} V_{ux}^*$

 $M_{12} = \lambda_s^2 \left(M_{ss} - 2M_{ds} + M_{dd} \right) + 2\lambda_s \lambda_b \left(M_{bs} - M_{bd} + M_{dd} - M_{sd} \right) + \lambda_b^2 \left(M_{bb} - 2M_{bd} + M_{dd} \right)$

$$\Gamma_{12} = -\lambda_s^2 \left(\Gamma_{ss} - 2\Gamma_{ds} + \Gamma_{dd} \right) + 2\lambda_s \lambda_b \left(\Gamma_{sd} - \Gamma_{dd} \right) - \lambda_b^2 \Gamma_{dd}$$

- * All terms are of similar size, pronounced cancellations
- * Dominated by double insertion of $\Delta C = 1$ effective Hamiltonian
 - $\star\,$ Can be computed within the HQE?

Maria Laura Piscopo

The HQE works for charm decays?

$The \ HQE$

◊ Powerful framework for inclusive decay widths of heavy hadrons

[Shifman, Voloshin '85]

$$\Gamma(H_Q) = \frac{1}{2m_{H_Q}} \operatorname{Im} \langle H_Q | i \int d^4 x \operatorname{T} \left\{ \mathcal{H}_{eff}(x) , \mathcal{H}_{eff}(0) \right\} | H_Q \rangle$$

♦ Obtain systematic expansion see also e.g. review [Lenz '14]

$$\Gamma(H_Q) = \underbrace{\Gamma_3}_{\Gamma(Q)} + \underbrace{\Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_Q^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_Q^3} + \ldots + 16\pi^2 \left[\widetilde{\Gamma}_6 \frac{\langle \tilde{\mathcal{O}}_6 \rangle}{m_Q^3} + \widetilde{\Gamma}_7 \frac{\langle \tilde{\mathcal{O}}_7 \rangle}{m_Q^4} + \ldots \right]}_{\delta \Gamma(H_Q)}$$

- \diamond Validity based on the assumption of $m_Q \gg \Lambda_{\rm QCD}$
- \diamond Successfully predicts beauty hadron lifetimes and *B*-mixing

[Lenz, MLP, Rusov '22; Gratrex, Lenz, Melić, Nišandžić, MLP, Rusov '23; Cheng, Liu '23]
[Lenz, Tetlalmatzi-Xolocotzi '19; Gerlach, Nierste, Shtabovenko, Steinhauser '22]

Maria Laura Piscopo

Charmed hadron lifetimes

- $\diamond~$ HQE can accomodate observed pattern in D-system
- $\diamond~$ Uncertainties still very large

Mainly due to charm mass and non-perturbative inputs

 $\diamond~$ Results confirmed by recent analyses, studied also baryons

[Gratrex, Melić, Nišandžić '22; Dulibič, Gratrex, Melić, Nišandžić '23]

Maria Laura Piscopo

Back to mixing in the charm sector

D-mixing

 \diamond Experimentally both x and y are measured quite precisely

[HFLAV '22]

 $x^{\text{exp.}} = (0.407 \pm 0.044)\%$ $y^{\text{exp.}} = (0.647 \pm 0.024)\%$

◊ Determine Γ₁₂ within the HQE

$$\Gamma_{12} = 16\pi^2 \left[\tilde{\Gamma}_6 \frac{\langle \tilde{Q}_6 \rangle}{m_c^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{Q}_7 \rangle}{m_c^4} + \ldots \right]$$

$\tilde{\Gamma}_{6}^{(2)^{\dagger}}$	Gerlach, Nierste, Stabovenko, Steinhauser '22 Asatrian, Hovhannisyan, Nierste, Yeghiazaryan '17	$\langle \tilde{Q}_6 \rangle$	1706.04622 ★ Kirk, Lenz, Rauh '17 ★
	Beneke, Buchalla, Greub, Lenz, Nierste '98	$\langle \tilde{Q}_7 \rangle$	VIA [‡]
$\tilde{\Gamma}^{(1)}$	Beneke, Buchalla, Lenz, Nierste '03	★ HQET SR ★ Fermilab/MILC	
¹ 6	Lenz, Nierste '06	[†] not yet included	
$\tilde{\Gamma}_{7}^{(0)}$	Beneke, Buchalla, Dunietz '96 Dighe, Hürth, Kim, Yoshikawa '01	^{\ddagger} see also HPQCD 1910.00970	

Maria Laura Piscopo

$A \ long-standing \ puzzle$

 $\diamond~$ Predictions of y based on the HQE are completely off

 $y^{\rm HQE} \sim 10^{-4}\,y^{\rm exp.}$

- ♦ Failure of HQE for charm mixing?
 - * Potential large impact of higher dimensional operators

[Georgi '92; Ohl et al. '93; Bigi, Uraltsev '00]

* Different renormalisation scale setting can lift GIM cancellations

[Lenz, MLP, Vlahos '20]

- ◊ Alternatively, use exclusive approach
 - * Estimate phase space effects for y, use dispersion relations for x

see e.g. [Falk et al. '01; Falk et al. '04]

- * Obtain values of x and y closer to experimental data
- $\diamond~$ First steps taken towards future insights from lattice QCD

[Hansen, Sharpe '12]

Alternative scale setting

♦ Consider the dependence of Γ_{12} on renormalisation scale $\mu_1^{q_1q_2}$

$$\Gamma_{12} = \sum_{q_1q_2 = ss, ds, dd} \tilde{\Gamma}_6^{q_1q_2} (\mu_1^{q_1q_2}, \mu_2^{q_1q_2}) \langle \tilde{Q}_6 \rangle (\mu_2^{q_1q_2}) \frac{1}{m_c^3} + \dots$$

- $\diamond \ \Gamma_{ss}, \Gamma_{dd}, \Gamma_{ds}$ contribute to different decay channels
 - * Rescattering effects can only relate Γ_{dd} and Γ_{ss}
- \diamond Compute Γ_{12} varying $\mu_1^{ss}, \mu_1^{dd}, \mu_1^{ds}$ independently

$$\Omega \equiv \frac{2 |\Gamma_{12}|^{\mathrm{HQE}}}{\Delta \Gamma_D^{\mathrm{exp.}}} \in \left[4.6 \times 10^{-5}, 1.3\right]$$

[Lenz, MLP, Vlahos '20]

Maria Laura Piscopo

CP violation in the charm sector

The experimental status

 $\diamond\,$ Discovery of CP violation in D^0 decays by LHCb $_{\rm [arXiv:1903.08726]}$

$$\Delta A_{\rm CP} \equiv A_{\rm CP} (K^- K^+) - A_{\rm CP} (\pi^- \pi^+) = (-15.4 \pm 2.9) \times 10^{-4}$$

$$\Delta a_{\rm CP}^{\rm dir.} = (-15.7 \pm 2.9) \times 10^{-4}$$

- \diamond New data by LHCb on $A_{\mathrm{CP}}(K^-K^+)$ see talk by D. Mitzel
 - * Combination with $\Delta A_{\rm CP}$ gives [arXiv: 2209.03179]

 $a_{\rm CP}^{\rm dir.}(K^-K^+) = (7.7 \pm 5.7) \times 10^{-4}$ $a_{\rm CP}^{\rm dir.}(\pi^-\pi^+) = (23.2 \pm 6.1) \times 10^{-4}$

* First evidence for direct CP violation in specific D^0 decay

Maria Laura Piscopo

The decay $D^0 \rightarrow \pi^- \pi^+$ (and similarly for $D^0 \rightarrow K^- K^+$)

◊ Theoretically very difficult, different topologies contribute

$$\mathcal{A}(D^0 \to \pi^- \pi^+) = \lambda_d (A_{tree} + A^d_{peng.}) + \lambda_s A^s_{peng.} + \lambda_b A^b_{peng.}$$

◊ From unitarity of CKM

$$\mathcal{A}(D^0 \to \pi^- \pi^+) = \frac{G_F}{2} \lambda_d T \left(1 + \frac{\lambda_b}{\lambda_d} \frac{P}{T} \right)$$

♦ Branching fraction mostly sensitive to T due to $\frac{\lambda_b}{\lambda_d} \sim \lambda^4 \ll 1$

Maria Laura Piscopo

Direct CP violation

◊ The direct CP asymmetry becomes

$$a_{\rm CP}^{\rm dir.}(\pi^-\pi^+) \equiv \frac{\Gamma(\overline{D}^0 \to \pi^+\pi^-) - \Gamma(D^0 \to \pi^-\pi^+)}{\Gamma(\overline{D}^0 \to \pi^+\pi^-) + \Gamma(D^0 \to \pi^-\pi^+)} \approx \underbrace{-13 \times 10^{-4}}_{-2|\lambda_b/\lambda_d|\sin\gamma} \left| \frac{P}{T} \right| \sin\phi$$

- * Sensitive to difference of weak and strong phases γ , ϕ , and to |P/T|
- ♦ Similarly for $a_{CP}^{dir.}(K^-K^+)$, but with opposite sign due to $\lambda_s \approx -\lambda_d$

$$\Delta a_{\rm CP}^{\rm dir.}\approx 13\times 10^{-4} \left(\left|\frac{P}{T}\right|_{K^-K^+} \sin\phi_{K^-K^+} + \left|\frac{P}{T}\right|_{\pi^-\pi^+} \sin\phi_{\pi^-\pi^+} \right)$$

 $\diamond~$ From naive estimates $|P/T|\sim 0.1$

$$|\Delta a_{\rm CP}^{\rm dir.}| \leq 2.6 \times 10^{-4}$$

Maria Laura Piscopo

No theory consensus yet

◊ Determinations within LCSRs confirm naive expectations

[Khodjamirian, Petrov '17]

* Triggered NP interpretations

e.g. [Chala, Lenz, Rusov, Scholtz '19; Dery, Nir '19; Bause, Gisbert, Golz, Hiller '20]

- $\diamond~$ Potential explanations of $\Delta A_{\rm CP}$ within the SM
 - * Using U-spin relations and $SU(3)_F$ symmetry e.g. [Grossman, Schacht '19]

However, opposite sign for CP asymmetries, "U-spin anomaly" e.g. [Bause, Gisbert, Hiller et al. '22; Schacht '23], see also talk by T. Höhne

- From analyses of topological amplitudes, or final state interactions
 e.g. [Li, Lü, Yu '19; Cheng, Chiang '19; Bediaga, Frederico, Megahlães '22]
- ◊ Recent study of rescattering effects using dispersive methods
 - $\star\,$ Predictions of CP violation still below the experimental values

[Pich, Solomonidi, Vale Silva '23]

Non-leptonic decays are challenging

- $\diamond~$ Tree-level decays like $\bar{B}_s \to D_s^+ \pi^-$ are theoretically "cleaner"
- ◊ Tensions between QCDF predictions and data ranging (2 7)σ
 [Bordone, Gubernari, Huber, Jung, van Dyk '20]
 - * QED corrections? Rescattering effects?

[Beneke, Böer, Finauri, Vos '21; Endo, Iguro, Mishima '21]

* Investigated potential BSM scenarios

e.g. [Iguro, Kithara '20; Cai, Deng, Li, Yang '21; Fleischer, Malami '21]

- * Interplay with collider constraints [Bordone, Greljo, Marzocca '21]
- ◊ Discrepancies might be due to underestimated hadronic effects
 - $\star\,$ Alternative determination entirely within LCSRs

[MLP, Rusov (to appear soon)]

Conclusions

- $\diamond~$ Charm physics is a vibrant field, high potential for NP searches
- ◊ Precise theoretical predictions are currently challenging
 - * Many tools are already available, improvements are doable!
- $\diamond~D$ -mixing puzzle still on-going
 - * New insights gained on how to improve HQE predictions

Higher order perturbative and power corrections needed!

- \diamond No theory consensus yet on interpretation of $\Delta A_{\rm CP}^{\rm dir.}$
 - * Less likely that new results on $a_{\rm CP}^{\rm dir.}$ can be accommodated in SM
- ♦ Experimental input fundamental to trigger interest

More, and more precise data crucial to guide the theory community

CHARM 2023 in Siegen, from 11-17 July

https://indico.tp.nt.uni-siegen.de/event/1/

Thanks for the attention