



# Recent results on spectroscopy with LHCb

(On behalf of the LHCb experiment)

## Liming Zhang (Tsinghua University)

## BEAUTY 2023 BEVOLA 5053

Clermont-Ferrand, 3-7 July 2023

## The LHC as a Beauty and Charm factory

Proton-Proton Collisions at  $\sqrt{s} = 13$  TeV ~ 20 000  $b\overline{b}$  pairs per second, x 20 of  $c\overline{c}$  pairs

THCh-

CERN Prévessin

ATLAS

SPS 7 km

High B-baryon production fraction

SUISSE

FRANCE

CMS

 $B^{+}: B^{0}: B^{0}_{s}: \Lambda^{0}_{b}$  $(u\overline{b}) (d\overline{b}) (s\overline{b}) (udb)$ 4: 4: 1: 2Unique dataset

LHC 27 km

## New particles in a glance

## 72 new hadrons discovered by LHC, 64 from LHCb!

https://www.nikhef.nl/~pkoppenb/particles.html



L. Zhang Exotic hadron naming convention: arXiv:2206.15233

## New particles in a glance

## 72 new hadrons discovered by LHC, 64 from LHCb!

https://www.nikhef.nl/~pkoppenb/particles.html



L. Zhang Exotic hadron naming convention: arXiv:2206.15233

## Contents

Conventional states
 Charm baryons: Ω<sub>c</sub><sup>\*\*</sup>
 Beauty baryons: Ξ<sub>b</sub><sup>\*\*</sup>

Exotic hadrons

 Tetraquark states:  $T^{a}_{c\bar{s}0}(2900)^{++/0}, T^{\theta}_{\psi s1}(4000)^{0}, X(3960),$  Pentaquark states:  $P^{\Lambda}_{\psi s}(4338)^{0}$ 

Full list: https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/Summary\_all.html

## Two methods for spectroscopy

- Direct production in *pp* collisions
  - Usually combine a heavy flavour hadron with one or more light particles
  - Pros: High statistics, in principle can study all states
  - Cons: Large combinatorial background, hard to determine J<sup>P</sup>



- Production by a heavier particle decay
  - Usually with amplitude analysis
  - Pros: Low background, Better determination of J<sup>P</sup>
  - Cons: Low cross-section, limited mass range



- LHCb observed 5 narrow states (+ a possible wide one) in 2017
- Belle confirmed the first four states [PRD 97 (2018) 051102]

C S



[PRL 118 (2017) 182001]

#### Mass (MeV) Γ (MeV) Yield Resonance $N_{\sigma}$ $4.5 \pm 0.6 \pm 0.3$ $1300 \pm 100 \pm 80$ 20.4 $3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$ $\Omega_{c}(3000)^{0}$ $\Omega_{c}(3050)^{0}$ $3050.2 \pm 0.1 \pm 0.1^{+0.3}_{-0.5}$ $0.8\pm0.2\pm0.1$ $970\pm60\pm20$ 20.4 <1.2 MeV, 95% C.L. $3.5 \pm 0.4 \pm 0.2$ $1740 \pm 100 \pm 50$ 23.9 $\Omega_{c}(3066)^{0}$ $3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$ $3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$ $8.7 \pm 1.0 \pm 0.8$ $2000 \pm 140 \pm 130$ 21.1 $\Omega_{c}(3090)^{0}$ $\Omega_{c}(3119)^{0}$ $3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$ $1.1 \pm 0.8 \pm 0.4$ $480\pm70\pm30$ 10.4 <2.6 MeV, 95% C.L. $\Omega_{c}(3188)^{0}$ $3188 \pm 5 \pm 13$ $60 \pm 15 \pm 11$ $1670 \pm 450 \pm 360$ $700 \pm 40 \pm 140$ $\Omega_{c}(3066)_{fd}^{0}$ $220\pm60\pm90$ $\Omega_{c}(3090)_{fd}^{0}$ $190\pm70\pm20$ $\Omega_{c}(3119)_{fd}^{0}$

Mass splitting 20-50 MeV

## New $\Omega_c$ states in $\Xi_c^+ K^-$ final state

 $3327.1 \pm 1.2 \stackrel{-0.9}{_{-1.3}} \pm 0.2$ 

 $m \,({\rm MeV})$  $\Gamma$  (MeV) Resonance Search updated with full Run 1+2 data  $3000.44 \pm 0.07 \, {}^{+0.07}_{-0.13} \pm 0.23$  $3.83 \pm 0.23 \begin{array}{c} +1.59 \\ -0.29 \end{array}$  $\Omega_{c}(3000)^{0}$  $3050.18 \pm 0.04 \stackrel{+0.06}{_{-0.07}} \pm 0.23$  $0.67 \pm 0.17 \stackrel{+0.64}{_{-0.72}}$  $\Omega_{c}(3050)^{0}$ Five states confirmed  $< 1.8 \,\mathrm{MeV}, 95\%$  C.L.  $3.79 \pm 0.20 \begin{array}{c} +0.38 \\ -0.47 \end{array}$  $\begin{array}{c} 3065.63 \pm 0.06 \begin{array}{c} ^{+0.06}_{-0.06} \pm 0.23 \\ 3090.16 \pm 0.11 \begin{array}{c} ^{+0.06}_{-0.10} \pm 0.23 \\ 3118.98 \pm 0.12 \begin{array}{c} ^{+0.09}_{-0.23} \pm 0.23 \end{array}$ Two new states observed near  $\Xi D$ ,  $\Xi D^*$  $\Omega_{c}(3065)^{0}$  $8.48 \pm 0.44 \begin{array}{c} +0.61 \\ -1.62 \end{array}$  $\Omega_{c}(3090)^{0}$ thresholds  $\Omega_{c}(3119)^{0}$  $0.60 \pm 0.63 \begin{array}{c} +\bar{0.90} \\ -1.05 \end{array}$ new  $< 2.5 \,\mathrm{MeV}, 95\%$  C.L.  $50 \pm 7 \, {}^{+10}_{-20}$  $\Omega_{c}(3185)^{0}$  $3185.1 \pm 1.7 \ ^{+7.4}_{-0.9} \pm 0.2$ 

 $\Omega_{c}(3327)^{0}$ 



 $20 \pm 5 \, {}^{+\tilde{1}\tilde{3}}_{-1}$ 

# New $\mathcal{Z}_b^{**}$ baryons

- PRL 128 (2022) 162001
- Two new states observed in the combination of  $\Lambda_b^0 K^- \pi^+$
- Consistent with 1D *E<sub>b</sub>* doublets

$$\begin{split} m_{\Xi_b(6327)^0} &= 6327.28 \,{}^{+0.23}_{-0.21}(\text{stat}) \pm 0.12(\text{syst}) \pm 0.24(m_{\Lambda^0_b}) \,\,\text{MeV} \\ m_{\Xi_b(6333)^0} &= 6332.69 \,{}^{+0.17}_{-0.18}(\text{stat}) \pm 0.03(\text{syst}) \pm 0.22(m_{\Lambda^0_b}) \,\,\text{MeV} \\ \Delta m &\equiv m_{\Xi_b(6333)^0} - m_{\Xi_b(6327)^0} = 5.41 \,{}^{+0.26}_{-0.27}(\text{stat}) \pm 0.12(\text{syst}) \,\,\text{MeV} \\ \Gamma_{\Xi_b(6327)^0} &< 2.20 \,\,(2.56) \,\,\text{MeV} \,\,\text{at} \,\,90\% \,\,(95\%) \,\,\text{CL} \\ \Gamma_{\Xi_b(6333)^0} &< 1.60 \,\,(1.92) \,\,\text{MeV} \,\,\text{at} \,\,90\% \,\,(95\%) \,\,\text{CL} \end{split}$$





S

## New $\mathcal{Z}_b^{**}$ baryons

- Search for new  $\underline{Z}_{b}^{**-/0}(bsq)$  states in  $\underline{Z}_{b}^{-/0}\pi^{+}\pi^{-}$  final states
  - $\Box \quad \mathcal{Z}_b^{-/0} \to \mathcal{Z}_c^{0/+} \pi^- \text{ and } \mathcal{Z}_c^{0/+} \pi^- \pi^+ \pi^- \text{ (max. 9 tracks!)}$
- Observation of two new states:
  - $\Box \quad \Xi_b(6087)^0 \to \Xi_b^{\prime-}\pi^+ \to [\Xi_b^0\pi^-]\pi^+$
  - $\Box \quad \Xi_b(6095)^0 \to \Xi_b^{*-}\pi^+ \to [\Xi_b^0\pi^-]\pi^+$
- Confirmation of one state observed by CMS: PRL 126 (2021) 252003

 $\Box \quad \mathcal{Z}_b(6100)^- \to \mathcal{Z}_b^{*0}\pi^- \to [\mathcal{Z}_b^-\pi^+]\pi^-$ 



|       |                       | Value [MeV]                                          |           |
|-------|-----------------------|------------------------------------------------------|-----------|
| $Q_0$ | $(\Xi_b^-(6100))$     | $23.60 \pm 0.11 \pm 0.02$                            | firmation |
| Г     | $(\Xi_b^-(6100))$     | $0.94 \pm 0.30 \pm 0.08$                             | ~~~~      |
| $m_0$ | $(\Xi_b^-(6100))$     | $6099.74 \pm 0.11 \pm 0.02 \ \pm 0.6 \ (\varXi_b^-)$ |           |
| $Q_0$ | $(\Xi_b^0(6087))$     | $16.20 \pm 0.20 \pm 0.06$                            |           |
| Г     | $(\Xi_b^0(6087))$     | $2.43 \pm 0.51 \pm 0.10$                             |           |
| $m_0$ | $(\Xi_b^0(6087))$     | $6087.24 \pm 0.20 \pm 0.06 \pm 0.5 \ (\Xi_b^0)$      |           |
| $Q_0$ | $(\Xi_b^0(6095))$     | $24.32 \pm 0.15 \pm 0.03$                            | Observe   |
| Г     | $(\Xi_{b}^{0}(6095))$ | $0.50 \pm 0.33 \pm 0.11$                             | Observ    |
| $m_0$ | $(\Xi_b^0(6095))$     | $6095.36 \pm 0.15 \pm 0.03 \ \pm 0.5 \ (\Xi_b^0)$    |           |
| $Q_0$ | $(\Xi_{b}^{*0})$      | $15.80 \pm 0.02 \pm 0.01$                            |           |
| Г     | $(\Xi_{b}^{*0})$      | $0.87 \pm 0.06 \pm 0.05$                             |           |
| $m_0$ | $(\Xi_{b}^{*0})$      | $5952.37 \pm 0.02 \pm 0.01 \pm 0.6 \ (\Xi_b^-)$      |           |
| $Q_0$ | $(\Xi_{b}^{\prime-})$ | $3.66 \pm 0.01 \pm 0.00$                             | ovements  |
| Г     | $(\Xi_b^{\prime-})$   | $0.03 \pm 0.01 \pm 0.03$                             | oveniento |
| $m_0$ | $(\Xi_b^{\prime-})$   | $5935.13 \pm 0.01 \pm 0.00 \pm 0.5 \ (\Xi_b^0)$      |           |
| $Q_0$ | $(\Xi_b^{*-})$        | $24.27 \pm 0.03 \pm 0.01$                            |           |
| Г     | $(\Xi_b^{*-})$        | $1.43 \pm 0.08 \pm 0.08$                             |           |
| $m_0$ | $(\Xi_{h}^{*-})$      | $5955.74 \pm 0.03 \pm 0.01 \pm 0.5 \ (\Xi_b^0)$      |           |

## **Open flavor tetraquark**

First discovery of open-charm tetraquark candidates with four different flavors  $[cs\overline{u}\overline{d}]$ 



## Study of $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \to D^- D_s^+ \pi^+$

#### [arXiv: 2212.02716]

■ Full 9 fb<sup>-1</sup> Run1+Run2 LHCb data

 $\Rightarrow$  4420  $B^0 \rightarrow \overline{D}{}^0 D_s^+ \pi^-$  candidates with signal purity of 90.7%

**3940**  $B^+ \rightarrow D^- D_s^+ \pi^+$  candidates with signal purity of **95.2%** 



✓ Faint horizontal band at  $M^2(D_s^+\pi) \approx 8.5 \text{ GeV}^2$  indicating  $T_{c\bar{s}}$  candidates

⇒ Joint amplitude analysis where amplitudes of the two decays are related through isospin symmetry

# **Observation of** $T^a_{c\overline{s}0}(2900)^{0/++}$



 $> T^a_{c\bar{s}0}(2900)^0 \rightarrow D^+_s \pi^- \& T^a_{c\bar{s}0}(2900)^{++} \rightarrow D^+_s \pi^+ \text{ significance} > 9\sigma$ 

First discovery of doubly-charged tetraquark candidate

 $F = 0^{+} \text{ favored over other spin-parity by more than } 7.5\sigma$  $M = 2.908 \pm 0.011 \pm 0.020 \text{ GeV}$  $\Gamma = 0.136 \pm 0.023 \pm 0.011 \text{ GeV}$ 

vs  $X_0(2900)$ : Similar mass, but different width and flavor contents

## **Observation of** $B^+ \rightarrow D_s^+ D_s^- K^+$

[arXiv: 2211.05034]

## • Full 9 fb<sup>-1</sup> Run1+Run2 LHCb data



## **Observation of** $X(3960) \rightarrow D_s^+ D_s^-$

[arXiv: 2210.15153]

- Baseline model well describes data
  - □  $0^{++}$ : X(3960) (14.3 $\sigma$ ), X<sub>0</sub>(4140) (3.9 $\sigma$ ), Non-resonant

### $\Box$ 1<sup>--</sup>: $\psi(4260), \psi(4660)$



L. Zhang

|                   | M [MeV]                     | Γ[MeV]         | J <sup>PC</sup> |
|-------------------|-----------------------------|----------------|-----------------|
| X(3960)           | 3955 <u>±</u> 6 <u>±</u> 12 | $48\pm17\pm10$ | 0++             |
| $\chi_{c0}(3930)$ | 3924 <u>+</u> 2             | 17 <u>+</u> 5  | U               |

## Same particle?

 $\mathcal{FF}$ : Fit fraction

 $\frac{\Gamma(X \to D^+ D^-)}{\Gamma(X \to D_s^+ D_s^-)} = \frac{\mathcal{B}(B^+ \to D^+ D^- K^+) \times \mathcal{FF}_{B^+ \to D^+ D^- K^+}^X}{\mathcal{B}(B^+ \to D_s^+ D_s^- K^+) \times \mathcal{FF}_{B^+ \to D_s^+ D_s^- K^+}^X} = 0.29 \pm 0.09 \pm 0.10 \pm 0.08$ 

- Creation of  $s\bar{s}$  from vacuum is suppressed wrt  $u\bar{u}$  or  $d\bar{d}$
- □  $X \to D_s^+ D_s^-$  has smaller phase-space factor than  $X \to D^+ D^-$
- $\Rightarrow$  X has an exotic nature! Candidate for  $c\bar{c}s\bar{s}$
- Different particles?
  - No obvious candidate within conventional charmonium multiplets for them; likely to be exotic

# $Z_{cs}$ [ $c\overline{c}u\overline{s}$ ] states



### $e^+e^- \to K^+(D_s^-D^{*0} + D_s^{*-}D^0)$

- Charged  $Z_{cs}$  states observed at BESIII and LHCb:  $Z_{cs}(3985)^{\pm}, Z_{cs}(4000)^{\pm}, Z_{cs}(4220)^{\pm}$
- Z<sub>cs</sub>(3985)<sup>±</sup>, Z<sub>cs</sub>(4000)<sup>±</sup> have similar mass but very different widths
- BESIII also find an evidence for the neutral isospin partner



| All $Z_{cs}(1^+)$ |          | Mass [MeV]                   | width [MeV]                    | $25 \pm 5^{+11}_{-12}$ |
|-------------------|----------|------------------------------|--------------------------------|------------------------|
| $Z_{cs}(4000)$    | 15(16)   | $4003 \pm 6 ^{+ 4}_{- 14}$   | $\boxed{131 \pm 15 \pm 26}$    | $9.4 \pm 2.1 \pm 3.$   |
| $Z_{cs}(4220)$    | 5.9(8.4) | $4216 \pm 24 {}^{+43}_{-30}$ | $233 \pm 52  {}^{+ 97}_{- 73}$ | $10 \pm 4^{+10}_{-7}$  |

|                  | Mass $(MeV/c^2)$               | Width (MeV)                  |
|------------------|--------------------------------|------------------------------|
| $Z_{cs}(3985)^0$ | $3992.2 \pm 1.7 \pm 1.6$       | $7.7^{+4.1}_{-3.8} \pm 4.3$  |
| $Z_{cs}(3985)^+$ | $3985.2^{+2.1}_{-2.0} \pm 1.7$ | $13.8^{+8.1}_{-5.2} \pm 4.9$ |





BESII

# $T^{\theta}_{\psi s1}(4000)^0$ in $B^0 \rightarrow J/\psi \phi K^0_S$

- Simultaneous fit to  $B^0 \rightarrow J/\psi \phi K_S$ and  $B^+ \rightarrow J/\psi \phi K^+$ , assuming isospin symmetry for all the intermediate states, except for the charged and neutral  $T^{\theta}_{\psi s1}(4000)$  states
- Consistent with being isospin  $\sqrt[5]{1}$ partners:  $\Delta m = -12.1^{+11.1+6.0}_{-10.2-4.2}$  MeV



Significance is  $4.0\sigma$  without isospin symmetry for  $T_{\psi s1}^{\theta}(4000)$ , while  $5.4\sigma$  with isospin symmetry constrain

| $Z_{cs}(4000)^+ = T_{\psi s1}^{\theta}(4000)^+$ |  |
|-------------------------------------------------|--|
| in the new naming convention                    |  |

|                                                               | J <sup>P</sup> | Mass (MeV/ $c^2$ )                | Width (MeV)                               | Fit fraction                |
|---------------------------------------------------------------|----------------|-----------------------------------|-------------------------------------------|-----------------------------|
| $T^{\theta}_{\psi s1}(4000)^0 \rightarrow J/\psi K^0_S$       | 1+             | $3991.3^{+11.7+8.5}_{-10.4-16.7}$ | $104.8^{+29.3}_{-25.3}{}^{+17.1}_{-23.3}$ | $7.9 \pm 2.5^{+3.0}_{-2.8}$ |
| $_{cs}^+/T_{\psi s1}^{\theta}(4000)^+ \rightarrow J/\psi K^+$ | 1+             | $4003 \pm 6^{+4}_{-14}$           | $131 \pm 15 \pm 26$                       | $9.4 \pm 2.1 \pm 3.4$       |

## Pentaquark study in $B^- \to J/\psi \Lambda \overline{p}$

- Search for pentaquark in  $J/\psi p \& J/\psi \Lambda$  arXiv: 2210.10346
- Run1+Run2 LHCb data,  $\mathcal{L} = 9 \text{ fb}^{-1}$
- Most precise single measurement of  $B^-$  mass:
  - **5279.44 \pm 0.05 \pm 0.07 MeV**





### Horizontal band at $m^2(J/\psi\Lambda) \sim 18.8 \text{GeV}^2$ Further confirmed by amplitude analysis

 $N_{\rm sig} = 4617 \pm 73$ Purity in signal region : 93%

## Pentaquark with strangeness arXiv: 2210.10346

- A new pentaquark with strangeness  $P^{\Lambda}_{\psi s}(4338)^0$  ( $c\bar{c}sud$ ) observed in
  - the  $B^- \rightarrow J/\psi \Lambda \bar{p}$  decay
  - At  $\mathcal{Z}_c^+ D^-$  threshold
  - $m = 4338.2 \pm 0.7 \pm 0.4 \text{ MeV}$
  - $\Box \quad \Gamma = 7.0 \pm 1.2 \pm 1.3 \text{ MeV}$
  - $J^{P} = (1/2)^{-} \text{ preferred, } J^{P} = \frac{1}{2}^{+} \text{ rejected under } 90\% CL_{s}$







## **Summary and prospects**

- LHCb keeps making important contributions to heavy hadron spectroscopy, both for conventional and exotic hadrons
- With the upgraded LHCb detector and an improved software-only trigger system in Run 3, more exciting results are to come!



## BACKUP

## Study of charmonium $\rightarrow K_S^0 K \pi$ via B decays

•  $B^+ \to (K_S^0 K^{\mp} \pi^{\pm}) K^+$  decays are studied

- $K_S^0 K \pi$  invariant mass shows charmonium from  $\eta_c$ ,  $J/\psi$ ,  $\chi_{c1}$  and  $\eta_c(2S)$
- Dalitz plot analyses of  $\eta_c$  and  $\eta_c(2S)$  decays are performed



## The $B^- \to \Lambda_c^+ \overline{\Lambda}_c^- K^-$ decay

arXiv:2211.00812

- Interesting for conventional & exotic studies
  - $\Box \ \mathcal{Z}_c^{0**} \to \Lambda_c^+ K^-; \text{ exotic hadrons in } \Lambda_c^+ \overline{\Lambda}_c^- \text{ and } \overline{\Lambda}_c^- K^- ?$
- High-purity sample, with  $N_{sig} = 1365 \pm 42$



## $E_c$ baryon in *B* decay



S

## LHCb detector and performance



## LHCb collected luminosity



#### PRD 104 (2021) L091102

## $\Omega_c$ states from $\Omega_b^- \to \Xi_c^+ K^- \pi^-$

- J<sup>P</sup> is important to interpret these states
- ~ 240  $\Omega_b^-$  signals obtained
- First four  $\Omega_c$  states are observed
- Spin hypothesis are tested





### PRD 104 (2021) L091102

## $\Omega_c$ states from $\Omega_b^- \to \Xi_c^+ K^- \pi^-$

- J<sup>P</sup> is important to interpret these states
- ~ 240  $\Omega_b^-$  signals obtained
- First four  $\Omega_c$  states are observed
- Spin hypothesis are tested



### The order of J=1/2 1/2 3/2 3/2 are rejected at $3.5\sigma$

| State                  | Observable     | Measurement                                                        |  |  |
|------------------------|----------------|--------------------------------------------------------------------|--|--|
| 0-                     | m              | $6044.3 \pm 1.2 \pm 1.1 {}^{+0.19}_{-0.22}\mathrm{MeV}$            |  |  |
| 326                    | ${\mathcal R}$ | $1.35 \pm 0.11 \pm 0.05$                                           |  |  |
| Threshold<br>structure | Significance   | $4.3\sigma$                                                        |  |  |
|                        | Significance   | $6.2\sigma$                                                        |  |  |
|                        | $\Delta M$     | $37.6 \pm 0.9 \pm 0.9 \mathrm{MeV}$                                |  |  |
| $O(2000)^{0}$          | m              | $2999.2 \pm 0.9 \pm 0.9 \pm 0.9 {+0.19 \atop -0.22}  { m MeV}$     |  |  |
| $M_{c}(3000)^{2}$      | Г              | $4.8 \pm 2.1 \pm 2.5 \mathrm{MeV}$                                 |  |  |
|                        | ${\cal P}$     | $0.11 \pm 0.02 \pm 0.04$                                           |  |  |
|                        | J rejection    | $0.5 \sigma (J = 1/2), 0.8 \sigma (J = 3/2), 0.4 \sigma (J = 5/2)$ |  |  |
|                        | Significance   | $9.9\sigma$                                                        |  |  |
|                        | $\Delta M$     | $88.5 \pm 0.3 \pm 0.2 \mathrm{MeV}$                                |  |  |
| $O(2050)^{0}$          | m              | $3050.1 \pm 0.3 \pm 0.2  {}^{+0.19}_{-0.22}  { m MeV}$             |  |  |
| $32_{c}(3030)$         | Г              | $< 1.6 \mathrm{MeV}, 95\% \mathrm{CL}$                             |  |  |
|                        | ${\cal P}$     | $0.15 \pm 0.02 \pm 0.02$                                           |  |  |
|                        | J rejection    | $2.2 \sigma (J = 1/2), 0.1 \sigma (J = 3/2), 1.2 \sigma (J = 5/2)$ |  |  |
|                        | Significance   | $11.9\sigma$                                                       |  |  |
|                        | $\Delta M$     | $104.3 \pm 0.4 \pm 0.4 \mathrm{MeV}$                               |  |  |
| $O(2065)^{0}$          | m              | $3065.9 \pm 0.4 \pm 0.4 \pm 0.4 ^{+0.19}_{-0.22} \mathrm{MeV}$     |  |  |
| $12_{c}(5005)^{-1}$    | Г              | $1.7 \pm 1.0 \pm 0.5 \mathrm{MeV}$                                 |  |  |
|                        | ${\mathcal P}$ | $0.23 \pm 0.02 \pm 0.02$                                           |  |  |
|                        | J rejection    | $3.6 \sigma (J = 1/2), 0.6 \sigma (J = 3/2), 1.2 \sigma (J = 5/2)$ |  |  |
|                        | Significance   | $7.8\sigma$                                                        |  |  |
|                        | $\Delta M$     | $129.4 \pm 1.1 \pm 1.0 \mathrm{MeV}$                               |  |  |
| O(2000)0               | m              | $3091.0 \pm 1.1 \pm 1.0 {+0.19 \atop -0.22} \mathrm{MeV}$          |  |  |
| $M_{c}(3090)^{-1}$     | Г              | $7.4 \pm 3.1 \pm 2.8 \mathrm{MeV}$                                 |  |  |
|                        | ${\mathcal P}$ | $0.19 \pm 0.02 \pm 0.04$                                           |  |  |
|                        | J rejection    | $0.3 \sigma (J = 1/2), 0.8 \sigma (J = 3/2), 0.5 \sigma (J = 5/2)$ |  |  |
| $\Omega_{c}(3120)^{0}$ | $\mathcal{P}$  | < 0.03, 95% CL                                                     |  |  |

## **Doubly charmed tetraquark**

• A narrow resonance  $T_{cc}^+$  ( $cc\bar{u}\bar{d}$ ) discovered in prompt  $D^0D^0\pi^+$  spectrum, just below the  $D^{*+}D^0$  mass



Nature Physics 18 (2022) 751 Nature Comm. 13 (2022) 3351

## $E_b$ baryon spectroscopy

- Numbers of excited *b*-baryons have already been discovered
  - $\Box \ \mathcal{Z}_{h}^{*}(5945)^{0} \rightarrow \mathcal{Z}_{h}^{-}\pi^{+} \ [CMS'12]$
  - □  $\mathcal{E}'_{h}(5935)^{-}, \mathcal{E}^{*}_{h}(5955)^{-} \rightarrow \mathcal{E}^{0}_{h}\pi^{-}$  [LHCb'15]
  - $\Box \mathcal{Z}_{h}^{\prime 0}$  not yet observed



 $M(\Xi_{h}^{-}\pi^{+}) - M(\Xi_{h}^{-}) - M(\pi^{+})$  [MeV/c<sup>2</sup>]





10

20

30

 $M(J/\psi\Xi^{\dagger}\pi^{+}) - M(J/\psi\Xi^{-}) - M(\pi)$  [MeV]

40

50

°. [1]

S

## New $\mathcal{Z}_{c}^{**0}$ from LHCb

- Large statistics data shows Belle's *E<sub>c</sub>*(2930) is a composite of two narrow *E<sub>c</sub><sup>\*\*</sup>*'s
- A third peak is also seen
  - position close to kinematic limit of the B decay used by Belle



## Feynman diagrams

• Two decays considered:  $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ ,  $B^+ \to D^- D_s^+ \pi^+$  related by isospin symmetry



## **Open flavor tetraquark**

- D0 (16') claimed evidence for the X(5568) in decaying to  $B_s \pi^+$ , interpreted as tetraquark state  $[b\overline{s}u\overline{d}]$
- But not seen in other experiments

### First discovery of open-charm tetraquark candidates with four different flavors $[cs\overline{u}\overline{d}]$

■ Resonant structures observed in the  $D^-K^+$  system from an amplitude analysis of the  $B^+ \rightarrow D^+D^-K^+$  decay [PRL 125 (2020) 242001]  $m(D^+D^-) > 4 \text{ GeV}/c^2$ 



 $M^{\Delta}(B^0_c \pi^{\pm})$  [GeV]

CDF

LHCb  $p(B^{\circ}) > 5$  Ge