21st International Conference on B-Physics at Frontier Machines, July 3rd, 2023

SPECTROSCOPY & PRODUCTION OF DI-ONIA STATES

A SIALES ©CVS *Kai-Feng Chen (NTU)* On Behalf of the CMS Collaboration

HADRON SPECTROSCOPY: AN INTRODUCTION

outin

- \blacktriangleright A **RENAISSANCE** since the discovery of X(3872) in 2003!
- > >70 new conventional & exotic states have been discovered.
 - Exotic states are not yet fully explained by theoretical models!
- > Experimental studies and explorations are crucial to examine the nature of these states and extend our understanding of QCD.
- ➤ With the excellent tracking & muon identification, CMS is contributing too!

Observation of new structure in the J/ ψ mass spectrum in pp collisions at 13 TeV

Measurement of the Y(1S) pair production cross section and search for resonances decaying to $Y(1S)\mu^+\mu^-$

Ref. CMS arXiv:2306.07164, submitted to PRL

Ref. CMS PLB 808 (2020) 135578

CMS MUON RECONSTRUCTION

► CMS muon system:

- \circ 3 different devices, with a large coverage up to $|\eta| < 2.4$.
- Good dimuon mass resolution:
 ~0.6-1.5% (depending on |y|).
- > Reconstruction algorithms:
 - Standalone muon:

reconstructed in muon system only

- Global muon: standalone muon \Rightarrow inner track
- Tracker muon:
 inner track ⇒ muon system

CMS HEAVY FLAVOR TRIGGERS

CMS trigger system:

- Fast hardware trigger (L1) @ 100 kHz
- Software trigger with full tracking & vertex reconstruction (HLT) @ 1.5 kHz.
- Specific triggers were developed for various analyses, e.g. $J/\psi + \mu$ trigger.
- Trigger requirements tightened with increased luminosity.
- ~15% of bandwidth is given to flavor physics; "scouting" & "parking" streams for extended capabilities.

STRUCTURES IN THE J/ΨJ/Ψ MASS SPECTRUM

- ► In 2020 LHCb observed a significant structure near J/ ψ J/ ψ mass threshold.
- > A narrow structure at 6.9 GeV was found \Rightarrow X(6900), suggesting a very-charming cccc state!
 - Fitting model without interference cannot describe the **dip around 6.8 GeV**;
 - With interference between non-resonant single-parton scattering (NRSPS) & X(6900), resulting a satisfactory description.
 - The structure at the threshold, as modeled by a sum of 2 BW, is not yet understood.

J/WJ/W PROD CROSS SECTIONS

- CMS has already measured double J/ψ production cross sections in total and differentially with 7 TeV data.
- Covers a phase-space at higher p_T and central y (complementary to LHCb coverage!).

CMS JHEP 09 (2014) 094

Total cross section @ 7 TeV: $\sigma_{tot} = 1.49 \pm 0.07$ (stat) ± 0.13 (syst) nb

> Not yet enough to study the structure; need statistics!

MORE J/ΨJ/Ψ EVENTS AT 13 TEV

- CMS analyzed 135 fb⁻¹ of 13 TeV data recorded during LHC Run-2.
- > Trigger: 3μ with a J/ ψ mass window.
- Selection and reconstruction:
 - $p_T(\mu) > 2 \text{ GeV}, |\eta(\mu)| < 2.4;$ $p_T(J/\psi) > 3.5 \text{ GeV};$
 - 2μ & 4μ vertex fits;
 J/ψ mass constraint applied;
 - Resolving 4µ multiple combination by minimizing $(\Delta m_1/\sigma_{m_1})^2 + (\Delta m_2/\sigma_{m_2})^2$.

Very clear J/& J/& signals!

EXAMINATION OF J/ΨJ/Ψ MASS SPECTRUM

- The starting point: null model NRSPS + DPS
- Add potential structure(s)/peak(s) step-by-step:
 - Add new structure/peak and calculate the corresponding local significance; • Keep the new model if and only if the significance $>3\sigma$;

 - Repeat until no more $>3\sigma$ structures.

Bkg. model: NRSPS+DPS+BW₀

BW₀: BW at threshold, treated as background due to: \Rightarrow BW₀ parameters very sensitive to NRSPS and DPS models; → A region with feed-down from possible higher mass states;

NRSPS: non-resonant single parton scattering **DPS**: (non-resonant) double parton scattering

To better constrain SPS & DPS backgrounds, fit up to 15 GeV!

CMS BASELINE MODEL: FITTED PARAMETERS

- \blacktriangleright No correction of acceptance & trigger/selection efficiencies \Rightarrow systematics.

	BWI	BW ₂	BW
m [MeV]	$6552 \pm 10 \pm 12$	$6927 \pm 9 \pm 4$	7287^{+20}_{-18}
Γ [MeV]	$124^{+32}_{-26} \pm 33$	$122^{+24}_{-21}\pm 18$	95^{+59}_{-40} =
N	470^{+120}_{-110}	492^{+78}_{-73}	156^{+}_{-}
<pre>signif.(stat.)</pre>	6.5σ	9.4σ	4.10
(stat.+syst.)	5.7σ	9.4σ	4.10
	observation		Evider
CMS a	arXiv:2306.07164	v2 orah -	9%

\succ CMS baseline model = background(NRSPS+DPS+BW₀) + BW₁ + BW₂ + BW₃

► Model the signal structures by relativistic BW, convolved with resolution functions.

CMS MODEL WITH INTERFERENCE

- Interference among various
 combinations of BWs have been tested;
- Our pick-up three-way interfered BW1/BW2/BW3:
- $p \propto |r_1 \exp(i\phi_1) BW_1 + BW_2 + r_3 \exp(i\phi_3) BW_3|^2$
- This model significantly improves the fit quality, both dips are now described.
- Masses and widths of BWs are shifted w.r.t. the non-interference fit:

	BWI	BW ₂	BW
m [MeV]	6638^{+43+16}_{-38-31}	6847^{+44+48}_{-28-20}	7134^{+4}_{-2}
Γ [MeV]	$440\substack{+230+110\\-200-240}$	191_{-49-17}^{+66+25}	97^{+40}_{-29}

ALTERNATIVE FITS WITH LHCB MODELS

► In order to make a direct comparison to the results from LHCb, we also used LHCb models (I and II) to fit the CMS data.

		M _{BW1}	Γ _{BW1}	M _{X(690}
Model I	LHCb			$6905\pm$
	CMS	6550 ± 10	112 ± 27	$6927 \pm$
Model II	LHCb	6741 ± 6	288±16	6886±
	CMS	6736±38	439 ± 65	6918±

- Fit with model I (w/o interference) shows a good agreement of X(6900) parameters;
- CMS finds wider BW₁ from the fit with model II (w/ interference).

...but both fits have rather poor x2 prob (0.9% and 0.8%)

INVESTIGATION BY ATLAS

- > ATLAS investigated $J/\psi J/\psi a$
 - interference are introduced

CMS Experiment at the LHC, CERN

A candidate event for X(6600)

MEASUREMENT OF Y(1S) PAIR PRODUCTIONS

- \succ Y(1S) pair production is the standard reference for the tetraquark bound state or generic narrow resonance searches, with the target mass close to Y(1S) mass $\times 2$.
- ► CMS analysis with 35.9 fb⁻¹ recorded in 2016:
 - Final state of 4µ paired in Y states, $J/\psi \rightarrow \mu^+\mu^$ candidate vetoed.
 - 4 μ vertex fit, $p_T(\mu) > 2.5$ GeV
 - Fiducial region: |y(Y(1S))| < 2.0 \bigcirc
 - Events are then corrected by efficiency and acceptance derived from MC.

CMS PLB 808 (2020) 135578

Fiducial cross section @ 13 TeV: $\sigma_{fid} = 79 \pm 11 \text{ (stat)} \pm 6 \text{ (syst)} \pm 3 \text{ (BF) } pb$

Measure **DPS-to-inclusive** fraction too!

EXAMINATION OF Y(1S) $\mu^+\mu^-$ MASS SPECTRUM

> Mass difference is introduced to improve the mass resolution (~50% better in resolution):

 $m_{4\mu} = m_{4\mu} - m_{\mu\mu} + m_{Y(1S)}$

- ► $m_{\mu\mu} \in [m_{Y(1S)} 2\sigma, m_{Y(1S)} + 2\sigma]$
- Background components:
 - Y(IS)Y(IS): from simulation, nominal model is an average between the DPS and SPS templates;
 - **Combinatorial**: fit to data with sets of several \bigcirc generic functions.
 - Verified using a control region where the vertex fit x² probability of the 4µ is in the range of [10⁻¹⁰, 10⁻³].

SEARCH FOR Y(1S) $\mu^+\mu^-$ **RESONANCE**

observed above the background expectation.

Limits are also set for pseudoscalar and spin-2 models.

An example signal is shown for the tetraquark model with a mass of 19 GeV, which has a significance of about 1σ .

<u>CMS PLB 808 (2020) 135578</u>

Scanning over $Y(1S)\mu^+\mu^-$ mass spectrum, no significant narrow excess of events is

Largest excess at 25.1 GeV w/ a local significance of 2.4σ for the scalar signal hypothesis.

17

SUMMARY

- > Thanks to the great muon performance and dynamic trigger configurations, CMS play a key role in exotic hadron spectroscopy searches too!
- > CMS found 3 significant structures in $J/\psi J/\psi$ mass spectrum, as full-charm tetra-quark candidates:
 - X(6900) consists with LHCb and ATLAS results.
 - Two new structures X(6600) and X(7300) seen for the first time.
- > No excess of narrow resonance observed in $Y(1S)\mu^+\mu^$ mass spectrum between 16.5–27.0 GeV.

First observation of triple J/ ψ production too! $N = 5.0^{+2.6}_{-1.9}$ (~1 bkg), significance > 5 σ . Future potential "6 charm" state?

18

