Exotic Spectroscopy: A Lattice QCD perspective

Daniel Mohler

Clermont-Ferrand, July 4, 2023

Based on material by R.J. Huspith

트 > K 트 > 트 트 - 이익(N

Outline

1 [Introduction and Motivation](#page-1-0)

[Four-quark states](#page-6-0)

3 B_{s0}^* and B_{s1} [: Regular mesons or meson molecules/tetraquarks?](#page-17-0)

[Beauty-full multi-quark states](#page-22-0)

What to call an exotic state in QCD?

- Textbook: Quark-antiquark mesons and 3-quark baryons
- Historically, multiquark states and hybrids (made of quark and gluons) already suggested by Gell-Mann in addition
- We are now seeing some explicitly *exotic* states in particular with heavy quarks
- Various possible structures: regular mesons/baryons; molecules; tetraquarks/pentaquarks; hybrid hadrons; glueballs; Di-Baryons
- For the purpose of this talk: I will also consider states with quantum numbers allowed by quark-antiquark states but unexpected properties as exotic Example: B_{s0}^* and B_{s1} mesons.

My method of choice: Lattice QCD

• Lattice **QCD**: Regularization of **QCD** by a 4-d Euclidean space-time lattice. Provides a calculational method.

Euclidean correlator of two Hilbert-space operators \hat{O}_1 and \hat{O}_2 .

$$
\langle \hat{O}_2(t)\hat{O}_1(0)\rangle = \sum_n e^{-t\Delta E_n} \langle 0|\hat{O}_2|n\rangle \langle n|\hat{O}_1|0\rangle
$$

=
$$
\frac{1}{Z} \int \mathcal{D}[\psi, \bar{\psi}, U] e^{-S_E} O_2[\psi, \bar{\psi}, U] O_1[\psi, \bar{\psi}, U]
$$

- Path integral over the Euclidean action $S_{E,QCD}[\psi, \psi, U]$; (a sum over quantum fluctuations)
- Can be evaluated with *Markov Chain Monte Carlo* (using methods well established in statistical [phy](#page-2-0)[si](#page-4-0)[cs](#page-2-0)[\)](#page-3-0)

 Ω

Systematic calculations and gauge field ensembles

Important lattice systematics for bound-state calculations

- Taking the *continuum limit*: $a(g, m) \to 0$
• Taking the *infinite volume limit*: $L \to \infty$
- Taking the *infinite volume limit*:
- Calculation at (or extrapolation to) physical quark masses

Example: CLS gauge-field library

Bruno et al. JHEP 1502 043 (2015); Bali et al. PRD 94 074501 (2016)

Hierarchy of challenges on the lattice?

- Relatively simple: Masses of bound states; their quark mass-dependence, finite-volume dependence *Caveats:* signal to noise problems, computational cost
- More difficult: States close to threshold; QCD resonances; determination of scattering amplitudes through volume effects
- Left for the future: Structure of exotic states (through form factors, etc.)
- Hierarchy of projects:
	- Proof of principle (often single ensemble)
	- Explore quark mass dependence
	- Full spectroscopy calculation including continuum limit
	- Structure observables (transitions, form factors, \dots)
- Hierarchy of difficulties not the same as in experiment

Outline

[Four-quark states](#page-6-0)

3 B_{s0}^* and B_{s1} [: Regular mesons or meson molecules/tetraquarks?](#page-17-0)

[Beauty-full multi-quark states](#page-22-0)

Tetraquarks - the T_{bb}

The $I(J^P) = 0(1^+)$ ud $b\bar{b}$ tetraquark, T_{bb} , is the most concrete pure-tetraquark candidate phenomenologically and from the lattice in terms of being deeply-bound and strong-interaction-stable.

Cousin of the T_{cc} but likely has quite different physics,

 T_{bb} bound by ≈ 100 MeV, T_{cc} by 360 KeV

 T_{bb} often described by the diquark picture:

- "Good" (attractive) light diquark $(u^T C \gamma_5 d)$ lighter diquark increases binding
- Color-Coulomb heavy antidiquark $(\bar{b}C\gamma_i\bar{b}^T)$ deeper binding as heavy mass gets heavier

No Wick-contractions with annihilation \rightarrow easy to compute on the lattice!

Overview of Lattice $I(J^P) = 0(1^+) T_{bb}$ determinations

• Red: Static b-quarks; Black: Lattice NRQCD b quarks

∢ ≣ ▶ _ ≡ | ≡ YO Q @

An aside: tuning lattice NRQCD

R.J. Hudspith, DM, PRD 106, 034508 (2022) R.J. Hudspith, DM, PRD 107, 114510 (2023)

The current state of the art in heavy-light multiquark states utilises lattice NRQCD for b-quarks

- Fully non-perturbative tuning of lattice NRQCD
- Runs with a random distribution for the action parameters
- Let the neural network make parameter predictions
- Due to additive mass we must only consider splittings
- 7-parameter tuning, bare mass aM_0 and corrections c_i
- Tuning precision is around 1%

Excited bottomonium spectrum from our tuning

Figure: (Left) neural network tuning for excited bottomonia, (Right) tree-level tuning.

- Higher S- and P-wave states serve as a check whether our tuning leads to reasonable results
- Main results from the lattice spacing of U103; H200 used to estimate systematics

 209

Our result - many configurations at many masses

Figure: Mass and finite volume dependence of the binding energy of our T_{bb}

Heavy pion mass \rightarrow shallower binding Exponential finite volume effects \rightarrow (deeply) bound state!

Daniel Mohler (TU Darmstadt) [Exotic Spectroscopy](#page-0-0) Clermont-Ferrand, July 4, 2023 12/27

 Ω

The sad aspect of T_{bb} : Difficult to see at the LHC

- T_{bb} is very heavy (≈ 10.5 GeV) and decays weakly
- A possible exemplary decay channel could be see Phys.Rev.Lett. 118 (2017) 14, 142001 - A. Francis, RJH et al.:

$$
T_{bb} \to B^+ \bar{D}^0
$$

• It is unlikely to be found anytime soon at the LHC

- Obvious next candidate 0^+ or 1^+ $ud\bar{c}\bar{b}$ " T_{cb} " potentially unbound or very weakly bound, due to the reduction of binding from the heavy antidiquark.
- Further exotic states $ud\bar{s}\bar{b}$ or $us\bar{c}\bar{b}$ seem to be unlikely by diquark picture but worth investigating as some models predict these being deeply bound (mostly Chiral Quark models)

The $0^+/1^+$ T_{cb} - the jury is out!

• Could be shallow bound states or resonances.

Figure: 0^+ and 1^+ $ud\bar{c}\bar{b}$ tetraquark binding energies

If bound, it is so shallow it will decay electromagnetically via $T_{bc} \rightarrow \bar{D}B\gamma$ (Phys.Rev.D 99 (2019) 5, 054505 - A. Francis, RJH, R. Lewis, K. Maltman). Errors for the "no-binding" findings maybe 10-20 MeV.

XALEXALEX IELLE VOQO

Ruling out some other deeply-bound states

R.J. Hudspith et al. PRD 102 114506 (2020)

Figure: (Left) energies of 0^+ or 1^+ $ud\bar{s}\bar{b}$ states, (Right) similarly for a $\ell s\bar{b}\bar{c}$ tetraquark candidate.

- Energies suggest repulsion or only weak attractons (resonances?)
- Stark conflict with Chiral Quark models as no [de](#page-13-0)[ep](#page-15-0)[bin](#page-14-0)[d](#page-15-0)[i](#page-5-0)[n](#page-16-0)[g](#page-16-0) [s](#page-17-0)[e](#page-6-0)en

Daniel Mohler (TU Darmstadt) [Exotic Spectroscopy](#page-0-0) Clermont-Ferrand, July 4, 2023 15/27

つへへ

The $\frac{1}{2}(1^+)$, T_{bbs} : Overview of binding energies

- Less bound than T_{bb} and heavier
- makes it even more difficult to detect experimentally, likely more interesting phenomenologically.

Note $(ud) \rightarrow (\ell s)$ gives ≈ 60 MeV reduction in binding energy.

∢ 트 ▶ ४ 트 ▶ - 트 트 - K) Q (^

The $\frac{1}{2}(1^+)$ $\ell c\bar{b}\bar{b}$ and $0(1^+)$ $sc\bar{b}\bar{b}$

Figure: Binding energies of $\ell c\bar{b}\bar{b}$ (left) and $sc\bar{b}\bar{b}$ tetraquarks

Compatible with zero or very shallow binding

 \rightarrow more evidence that the simple diquark picture describes these states well

▶ ४ 로 ▶ 로!님 ♡ 여야

Outline

[Four-quark states](#page-6-0)

3 B_{s0}^* and B_{s1} [: Regular mesons or meson molecules/tetraquarks?](#page-17-0)

[Conclusions](#page-25-0)

Exotic D_s and B_s candidates

$$
D_s (J^P = 0^-) \text{ and } D_s^* (1^-)
$$

\n
$$
D_{s0}^*(2317) (0^+), D_{s1}(2460) (1^+),
$$

\n
$$
D_{s1}(2536) (1^+), D_{s2}^*(2573) (2^+)
$$

\n
$$
B_s (J^P = 0^-) \text{ and } B_s^* (1^-)
$$

\n?
\n
$$
B_{s1}(5830) (1^+), B_{s2}^*(5840) (2^+)
$$

- Corresponding $D_0^*(2400)$ and $D_1(2430)$ are broad resonances
- Peculiarity: $M_{c\bar{s}} \approx M_{c\bar{d}}$ Is this really the case?
- Additional exotic states are expected (in the sextet representation)
- B_s cousins of the $D_{s0}^*(2317)$ and $D_{s1}(2460)$ not (yet) seen in experiment

 $E \cap Q$

Systematic uncertainties and final result

R.J. Hudspith, DM, PRD 107, 114510 (2023)

Resulting binding energies:

$$
\Delta_{B_{s0}^*}(0, \infty, 0) = -75.4(3.0)_{\text{Stat.}}(13.7)_{\text{a}} \text{ [MeV]},
$$

$$
\Delta_{B_{s1}}(0, \infty, 0) = -78.7(3.7)_{\text{Stat.}}(13.4)_{\text{a}} \text{ [MeV]}.
$$

- Small uncertainty from statistics + combined extrapolation
- Largest systematics from usage of NRQCD/discretization effects
- Central value shifted by applying half the mass difference between two different lattice-spacings
- All other explored uncertainties (finite volume shapes, modified quark-mass dependence, etc.) small

 B_{s0}^* and B_{s1} : Chiral – infinite volume extrapolation

R.J. Hudspith, DM, PRD 107, 114510 (2023)

Combined extrapolation for the binding energy:

$$
\Delta_{B_{s0}^{*}/B_{s1}}(\Delta\phi_2, m_K L, a) = \Delta_{B_{s0}^{*}/B_{s1}}(0, \infty, a) \left(1 + A\Delta\phi_2 + Be^{-m_K L}\right)
$$

$$
\Delta\phi_2 = \phi_2^{\text{Lat}} - \phi_2^{\text{Phys}} \qquad ; \qquad \phi_2 = 8t_0 m_\pi^2
$$

 \bullet \bullet \bullet \bullet \bullet Two [d](#page-17-0)iffere[n](#page-22-0)t am_s trajectories to control stra[nge](#page-19-0)[-q](#page-21-0)u[ark](#page-20-0) de[p](#page-21-0)enden[c](#page-0-0)e

 Ω

Model and lattice results for the B_{s0} and B_{s1} mesons.

• Dominant uncertainty in our calculation from the use of Lattice NRQCD Could likely be improved by using an RHQ a[ctio](#page-20-0)[n](#page-22-0) [f](#page-20-0)[or](#page-21-0) [th](#page-22-0)[e](#page-16-0)[b](#page-21-0)[-](#page-22-0)[q](#page-16-0)[u](#page-17-0)[a](#page-21-0)[rk](#page-22-0) QQ

Daniel Mohler (TU Darmstadt) [Exotic Spectroscopy](#page-0-0) Clermont-Ferrand, July 4, 2023 22 / 27

Outline

[Four-quark states](#page-6-0)

4 [Beauty-full multi-quark states](#page-22-0)

The T_{bbbb} : Comparing Lattice QCD and Models

C. Hughes and E. Eichten, PRD 97 054505 (2018)

Several model predictions for a $bb\bar b\bar b$ tetraquark but emphatically ruled-out from being deeply bound from the l[att](#page-22-0)i[ce](#page-24-0)[.](#page-22-0)

(Biri) Daniel Mohler (TU Darmstadt) [Exotic Spectroscopy](#page-0-0) Clermont-Ferrand, July 4, 2023 24/27

 $E|E \cap Q$

Dibaryons with beauty quarks

P. Junnarkar and N. Mathur, PRL 123 162003 (2019)

Figure: Binding energies of various deuteron-like dibaryons

- Studies D_{q_1,q_2} states made of 2 baryons with valence quarks $(q_1q_1q_2)$ and $(q_1q_2q_2)$
- Deeply bound deuteron-like dibaryons $\Omega_c \Omega_{cc}$, $\Omega_b \Omega_{bb}$, $\Omega_{ccb} \Omega_{cbb}$ states are seen to be strong-interaction stable E ▶ ४ 분 ▶ (분)님 ⊙ 9 Q ⊙

Outline

- [Four-quark states](#page-6-0)
- 3 B_{s0}^* and B_{s1} [: Regular mesons or meson molecules/tetraquarks?](#page-17-0)

[Beauty-full multi-quark states](#page-22-0)

Heavy-quark exotics from the lattice

- Lattice OCD is good at determining deeply-bound states and can rule out phenomenological models for states not yet observed in experiment
- The calculations are systematically-improvable and we are seeing convergence for the easiest-to-compute quantities such as the T_{bb}
- The smoking-gun tetraquark state T_{bb} is very difficult to see in current experiments; it is worth exploring weaker-bound candidates such as T_{bc}
- More and more indications that the multi-quark exotic spectrum at heavy masses is diverse
- Further insight can be gained from exploring the quark-mass dependence between charm and bottom. K ロ > K 何 > K ヨ > K ヨ > (ヨ)는 K 9 Q (V

Daniel Mohler (TU Darmstadt) [Exotic Spectroscopy](#page-0-0) Clermont-Ferrand, July 4, 2023 27/27

Backup slides

K ロト K 個 ト K 君 ト K 君 ト (君) ヨ め Q ⊙ Daniel Mohler (TU Darmstadt) [Exotic Spectroscopy](#page-0-0) Clermont-Ferrand, July 4, 2023 28 / 27

CLS ensembles used for heavy-light mesons

R.J. Hudspith, DM, PRD 107, 114510 (2023)

K ロト K 個 ト K 君 ト K 君 ト (君) ヨ め Q ⊙ Daniel Mohler (TU Darmstadt) [Exotic Spectroscopy](#page-0-0) Clermont-Ferrand, July 4, 2023 29/27

NRQCD action

Typical tadpole-improved NRQCD action (here we will use n=4)

$$
H_0 = -\frac{1}{2aM_0} \Delta^2,
$$

\n
$$
H_I = \left(-c_1 \frac{1}{8(aM_0)^2} - c_6 \frac{1}{16n(aM_0)^2}\right) (\Delta^2)^2 + c_2 \frac{i}{8(aM_0)^2} (\tilde{\Delta} \cdot \tilde{E} - \tilde{E} \cdot \tilde{\Delta}) + c_5 \frac{\Delta^4}{24(aM_0)}
$$

\n
$$
H_D = -c_3 \frac{1}{8(aM_0)^2} \sigma \cdot (\tilde{\Delta} \times \tilde{E} - \tilde{E} \times \tilde{\Delta}) - c_4 \frac{1}{8(aM_0)} \sigma \cdot \tilde{B}
$$

\n
$$
\delta H = H_I + H_D.
$$

Propagators generated through symmetric evolution equation

$$
G(x,t+1) = \left(1 - \frac{\delta H}{2}\right) \left(1 - \frac{H_0}{2n}\right)^n \tilde{U}_t(x,t_0)^{\dagger} \left(1 - \frac{H_0}{2n}\right)^n \left(1 - \frac{\delta H}{2}\right) G(x,t).
$$

We also tune a $\mathcal{O}(v^6)$ action with tree-level coefficients for the higher order terms

 $L = 2065$

Input used for the tuning

Consider only quark-line connected parts of simple meson operators

 $O(x) = (\bar{b}\Gamma(x)b)(x),$

Table: Table of lattice operators used and their continuum analogs.