Exotic Spectroscopy: A Lattice QCD perspective

Daniel Mohler

Clermont-Ferrand, July 4, 2023

Based on material by R.J. Huspith

E + 4 E + E = 900

Outline

Introduction and Motivation

- 2 Four-quark states
- 3 B_{s0}^* and B_{s1} : Regular mesons or meson molecules/tetraquarks?
 - Beauty-full multi-quark states
- 5 Conclusions

What to call an exotic state in QCD?

- Textbook: Quark-antiquark mesons and 3-quark baryons
- Historically, multiquark states and hybrids (made of quark and gluons) already suggested by Gell-Mann in addition
- We are now seeing some explicitly *exotic* states in particular with heavy quarks
- Various possible structures: regular mesons/baryons; molecules; tetraquarks/pentaquarks; hybrid hadrons; glueballs; Di-Baryons
- For the purpose of this talk:
 I will also consider states with quantum numbers allowed by quark-antiquark states but unexpected properties as exotic Example: B^{*}_{s0} and B_{s1} mesons.

My method of choice: Lattice QCD

• Lattice QCD: Regularization of QCD by a 4-d Euclidean space-time lattice. Provides a calculational method.

Euclidean correlator of two Hilbert-space operators \hat{O}_1 and \hat{O}_2 .

$$\begin{split} \left\langle \hat{O}_{2}(t)\hat{O}_{1}(0) \right\rangle &= \sum_{n} e^{-t\Delta E_{n}} \langle 0|\hat{O}_{2}|n\rangle \langle n|\hat{O}_{1}|0\rangle \\ &= \frac{1}{Z} \int \mathcal{D}[\psi,\bar{\psi},U] e^{-S_{E}} O_{2}[\psi,\bar{\psi},U] O_{1}[\psi,\bar{\psi},U] \end{split}$$

- Path integral over the Euclidean action S_{E,QCD}[ψ, ψ̄, U];
 (a sum over quantum fluctuations)
- Can be evaluated with *Markov Chain Monte Carlo* (using methods well established in statistical physics)

Daniel Mohler (TU Darmstadt)

Systematic calculations and gauge field ensembles

Important lattice systematics for bound-state calculations

- Taking the *continuum limit*: $a(g,m) \rightarrow 0$
- Taking the *infinite volume limit*: $L \to \infty$
- Calculation at (or extrapolation to) physical quark masses

Example: CLS gauge-field library

Bruno et al. JHEP 1502 043 (2015); Bali et al. PRD 94 074501 (2016)

Hierarchy of challenges on the lattice?

- **Relatively simple:** Masses of bound states; their quark mass-dependence, finite-volume dependence *Caveats:* signal to noise problems, computational cost
- More difficult: States close to threshold; QCD resonances; determination of scattering amplitudes through volume effects
- Left for the future: Structure of exotic states (through form factors, etc.)
- Hierarchy of projects:
 - Proof of principle (often single ensemble)
 - Explore quark mass dependence
 - Full spectroscopy calculation including continuum limit
 - Structure observables (transitions, form factors, ...)
- Hierarchy of difficulties not the same as in experiment

Outline

Four-quark states

3 B_{s0}^* and B_{s1} : Regular mesons or meson molecules/tetraquarks?

Beauty-full multi-quark states

Tetraquarks - the T_{bb}

The $I(J^P) = 0(1^+) u d\bar{b}\bar{b}$ tetraquark, T_{bb} , is the most concrete pure-tetraquark candidate phenomenologically and from the lattice in terms of being deeply-bound and strong-interaction-stable.

Cousin of the T_{cc} but likely has quite different physics,

 T_{bb} bound by ≈ 100 MeV, T_{cc} by 360 KeV

 T_{bb} often described by the diquark picture:

- "Good" (attractive) light diquark $(u^T C \gamma_5 d)$ lighter diquark increases binding
- Color-Coulomb heavy antidiquark $(\bar{b}C\gamma_i\bar{b}^T)$ deeper binding as heavy mass gets heavier

No Wick-contractions with annihilation \rightarrow easy to compute on the lattice!

Overview of Lattice $I(J^P) = 0(1^+) T_{bb}$ determinations

Red: Static b-quarks; Black: Lattice NRQCD b quarks

Daniel Mohler (TU Darmstadt)

An aside: tuning lattice NRQCD

R.J. Hudspith, DM, PRD 106, 034508 (2022)R.J. Hudspith, DM, PRD 107, 114510 (2023)

The current state of the art in heavy-light multiquark states utilises lattice NRQCD for b-quarks

- Fully non-perturbative tuning of lattice NRQCD
- Runs with a random distribution for the action parameters
- Let the neural network make parameter predictions
- Due to additive mass we must only consider splittings
- 7-parameter tuning, bare mass aM_0 and corrections c_i
- Tuning precision is around 1%

Excited bottomonium spectrum from our tuning

Figure: (Left) neural network tuning for excited bottomonia, (Right) tree-level tuning.

- Higher S- and P-wave states serve as a check whether our tuning leads to reasonable results
- Main results from the lattice spacing of U103; H200 used to estimate systematics

Our result - many configurations at many masses

Figure: Mass and finite volume dependence of the binding energy of our T_{bb}

Heavy pion mass \rightarrow shallower binding Exponential finite volume effects \rightarrow (deeply) bound state!

Daniel Mohler (TU Darmstadt)

Exotic Spectroscopy

The sad aspect of T_{bb} : Difficult to see at the LHC

- T_{bb} is very heavy ($\approx 10.5 \text{ GeV}$) and decays weakly
- A possible exemplary decay channel could be see Phys.Rev.Lett. 118 (2017) 14, 142001 A. Francis, RJH et al.:

$$T_{bb} \to B^+ \bar{D}^0$$

• It is unlikely to be found anytime soon at the LHC

- Obvious next candidate 0^+ or $1^+ u d\bar{c}\bar{b} "T_{cb}"$ potentially unbound or very weakly bound, due to the reduction of binding from the heavy antidiquark.
- Further exotic states $ud\bar{s}b$ or $us\bar{c}b$ seem to be unlikely by diquark picture but worth investigating as some models predict these being deeply bound (mostly Chiral Quark models)

The $0^+/1^+ T_{cb}$ - the jury is out!

• Could be shallow bound states or resonances.

Figure: 0^+ and $1^+ u d\bar{c}\bar{b}$ tetraquark binding energies

If bound, it is so shallow it will decay electromagnetically via $T_{bc} \rightarrow \bar{D}B\gamma$ (Phys.Rev.D 99 (2019) 5, 054505 - A. Francis, RJH, R. Lewis, K. Maltman). Errors for the "no-binding" findings maybe 10-20 MeV.

Daniel Mohler (TU Darmstadt)

Ruling out some other deeply-bound states

R.J. Hudspith et al. PRD 102 114506 (2020)

Figure: (Left) energies of 0^+ or $1^+ u d\bar{s}\bar{b}$ states, (Right) similarly for a $\ell s\bar{b}\bar{c}$ tetraquark candidate.

- Energies suggest repulsion or only weak attractons (resonances?)
- Stark conflict with Chiral Quark models as no deep binding seen

Daniel Mohler (TU Darmstadt)

Exotic Spectroscopy

The $\frac{1}{2}(1^+)$, T_{bbs} : Overview of binding energies

- Less bound than T_{bb} and heavier
- makes it even more difficult to detect experimentally, likely more interesting phenomenologically.

Note $(ud) \rightarrow (\ell s)$ gives ≈ 60 MeV reduction in binding energy.

The $\frac{1}{2}(1^+) \ \ell c \overline{b} \overline{b}$ and $0(1^+) \ s c \overline{b} \overline{b}$

Figure: Binding energies of $\ell c \bar{b} \bar{b}$ (left) and $s c \bar{b} \bar{b}$ tetraquarks

Compatible with zero or very shallow binding

 \rightarrow more evidence that the simple diquark picture describes these states well

E SQA

Outline

2 Four-quark states

 B_{s0}^* and B_{s1} : Regular mesons or meson molecules/tetraquarks?

Beauty-full multi-quark states

5 Conclusions

Exotic D_s and B_s candidates

- Corresponding $D_0^*(2400)$ and $D_1(2430)$ are broad resonances
- Peculiarity: $M_{c\bar{s}} \approx M_{c\bar{d}}$ Is this really the case?
- Additional exotic states are expected (in the sextet representation)
- B_s cousins of the $D_{s0}^*(2317)$ and $D_{s1}(2460)$ not (yet) seen in experiment

E SQA

Systematic uncertainties and final result

R.J. Hudspith, DM, PRD 107, 114510 (2023)

Resulting binding energies:

$$\begin{split} \Delta_{B_{s0}^*}(0,\infty,0) &= -75.4(3.0)_{\text{Stat.}}(13.7)_{\text{a}} \text{ [MeV]}, \\ \Delta_{B_{s1}}(0,\infty,0) &= -78.7(3.7)_{\text{Stat.}}(13.4)_{\text{a}} \text{ [MeV]}. \end{split}$$

- Small uncertainty from statistics + combined extrapolation
- Largest systematics from usage of NRQCD/discretization effects
- Central value shifted by applying half the mass difference between two different lattice-spacings
- All other explored uncertainties (finite volume shapes, modified quark-mass dependence, etc.) small

B_{s0}^* and B_{s1} : Chiral – infinite volume extrapolation

R.J. Hudspith, DM, PRD 107, 114510 (2023) Combined extrapolation for the binding energy:

$$\Delta_{B_{s0}^*/B_{s1}}(\Delta\phi_2, m_K L, a) = \Delta_{B_{s0}^*/B_{s1}}(0, \infty, a) \left(1 + A\Delta\phi_2 + Be^{-m_K L}\right)$$
$$\Delta\phi_2 = \phi_2^{\text{Lat}} - \phi_2^{\text{Phys}} \quad ; \qquad \phi_2 = 8t_0 m_\pi^2$$

• Two different am_s trajectories to control strange-quark dependence

Daniel Mohler (TU Darmstadt)

Exotic Spectroscopy

Clermont-Ferrand, July 4, 2023 21/27

Model and lattice results for the B_{s0} and B_{s1} mesons.

Dominant uncertainty in our calculation from the use of Lattice NRQCD
Could likely be improved by using an RHQ action for the b-quark

Daniel Mohler (TU Darmstadt)

Exotic Spectroscopy

Clermont-Ferrand, July 4, 2023 22/27

Outline

2 Four-quark states

4 Beauty-full multi-quark states

5 Conclusions

The T_{bbbb} : Comparing Lattice QCD and Models

C. Hughes and E. Eichten, PRD 97 054505 (2018)

• Several model predictions for a *bbbb* tetraquark but emphatically ruled-out from being deeply bound from the lattice.

Daniel Mohler (TU Darmstadt)

Exotic Spectroscopy

Clermont-Ferrand, July 4, 2023 24/27

Dibaryons with beauty quarks

P. Junnarkar and N. Mathur, PRL 123 162003 (2019)

Figure: Binding energies of various deuteron-like dibaryons

- Studies D_{q_1,q_2} states made of 2 baryons with valence quarks $(q_1q_1q_2)$ and $(q_1q_2q_2)$
- Deeply bound deuteron-like dibaryons $\Omega_c \Omega_{cc}$, $\Omega_b \Omega_{bb}$, $\Omega_{ccb} \Omega_{cbb}$ states are seen to be strong-interaction stable

Daniel Mohler (TU Darmstadt)

Exotic Spectroscopy

Outline

- 2 Four-quark states
- 3 B_{s0}^* and B_{s1} : Regular mesons or meson molecules/tetraquarks?

Beauty-full multi-quark states

Heavy-quark exotics from the lattice

- Lattice QCD is good at determining deeply-bound states and can rule out phenomenological models for states not yet observed in experiment
- The calculations are systematically-improvable and we are seeing convergence for the easiest-to-compute quantities such as the *T*_{bb}
- The smoking-gun tetraquark state T_{bb} is very difficult to see in current experiments; it is worth exploring weaker-bound candidates such as T_{bc}
- More and more indications that the multi-quark exotic spectrum at heavy masses is diverse
- Further insight can be gained from exploring the quark-mass dependence between charm and bottom.

Daniel Mohler (TU Darmstadt)

Exotic Spectroscopy

Clermont-Ferrand, July 4, 2023 27/27

Backup slides

Daniel Mohler (TU Darmstadt)

Exotic Spectroscopy

Clermont-Ferrand, July 4, 2023 28/27

CLS ensembles used for heavy-light mesons

R.J. Hudspith, DM, PRD 107, 114510 (2023)

Ensemble	Mass trajectory	$L^3 \times L_T$	$N_{\rm Conf} \times N_{\rm Prop}$
U103	$\operatorname{Tr}[M] = C$	$24^3 \times 128$	1000×23
H101	$\operatorname{Tr}[M] = C$	$32^3 \times 96$	500×12
U102	$\operatorname{Tr}[M] = C$	$24^3 \times 128$	732×18
H102	$\operatorname{Tr}[M] = C$	$32^3 \times 96$	500×16
U101	$\operatorname{Tr}[M] = C$	$24^3 \times 128$	600×18
H105	$\operatorname{Tr}[M] = C$	$32^3 \times 96$	500×16
N101	$\operatorname{Tr}[M] = C$	$48^3 \times 128$	537×18
C101	$\operatorname{Tr}[M] = C$	$48^3 \times 96$	400×16
H107	$\widetilde{m_s} = \widetilde{m_s}^{\text{Phys.}}$	$32^3 \times 96$	500×16
H106	$\widetilde{m_s} = \widetilde{m_s}^{\text{Phys.}}$	$32^3 \times 96$	500×16
H200	$\operatorname{Tr}[M] = C$	$32^3 \times 96$	500×28

NRQCD action

Typical tadpole-improved NRQCD action (here we will use n=4)

Lepage et al., PRD 46, 4052-4067 (1992)

$$H_{0} = -\frac{1}{2aM_{0}}\Delta^{2},$$

$$H_{I} = \left(-c_{1}\frac{1}{8(aM_{0})^{2}} - c_{6}\frac{1}{16n(aM_{0})^{2}}\right)\left(\Delta^{2}\right)^{2} + c_{2}\frac{i}{8(aM_{0})^{2}}\left(\tilde{\Delta}\cdot\tilde{E} - \tilde{E}\cdot\tilde{\Delta}\right) + c_{5}\frac{\Delta^{4}}{24(aM_{0})}$$

$$H_{D} = -c_{3}\frac{1}{8(aM_{0})^{2}}\sigma\cdot\left(\tilde{\Delta}\times\tilde{E} - \tilde{E}\times\tilde{\Delta}\right) - c_{4}\frac{1}{8(aM_{0})}\sigma\cdot\tilde{B}$$

$$\delta H = H_{I} + H_{D}.$$

Propagators generated through symmetric evolution equation

$$G(x,t+1) = \left(1 - \frac{\delta H}{2}\right) \left(1 - \frac{H_0}{2n}\right)^n \tilde{U}_t(x,t_0)^\dagger \left(1 - \frac{H_0}{2n}\right)^n \left(1 - \frac{\delta H}{2}\right) G(x,t).$$

• We also tune a $\mathcal{O}(v^6)$ action with tree-level coefficients for the higher order terms

Daniel Mohler (TU Darmstadt)

Input used for the tuning

Consider only quark-line connected parts of simple meson operators

 $O(x) = (\bar{b}\Gamma(x)b)(x),$

State	PDG mass [GeV]	$\Gamma(x)$
$\eta_b(1S)$	9.3987(20)	γ_5
$\Upsilon(1S)$	9.4603(3)	γ_i
$\chi_{b0}(1P)$	9.8594(5)	$\sigma \cdot \Delta$
$\chi_{b1}(1P)$	9.8928(4)	$\sigma_j \Delta_i - \sigma_i \Delta_j \ (i \neq j)$
$\chi_{b2}(1P)$	9.9122(4)	$\sigma_j \Delta_i + \sigma_i \Delta_j \ (i \neq j)$
$h_b(1P)$	9.8993(8)	Δ_i

Table: Table of lattice operators used and their continuum analogs.