

Recent Belle II results related to B anomalies

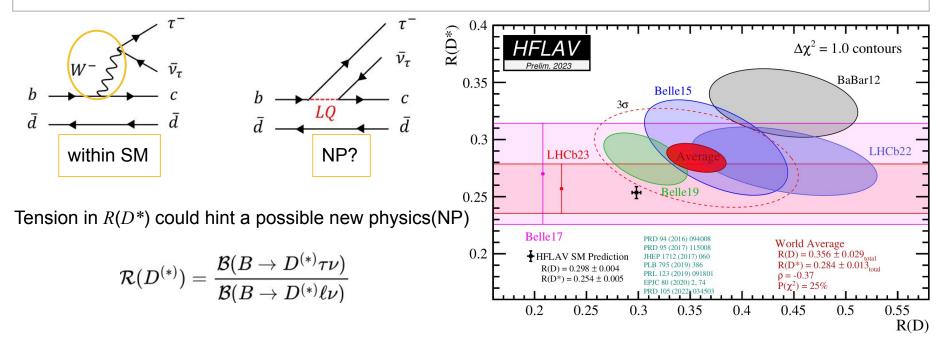
Yulan Fan (DESY) On behalf of the Belle II Collaboration

Beauty 2023 @ Clermont-Ferrand July 4th, 2023

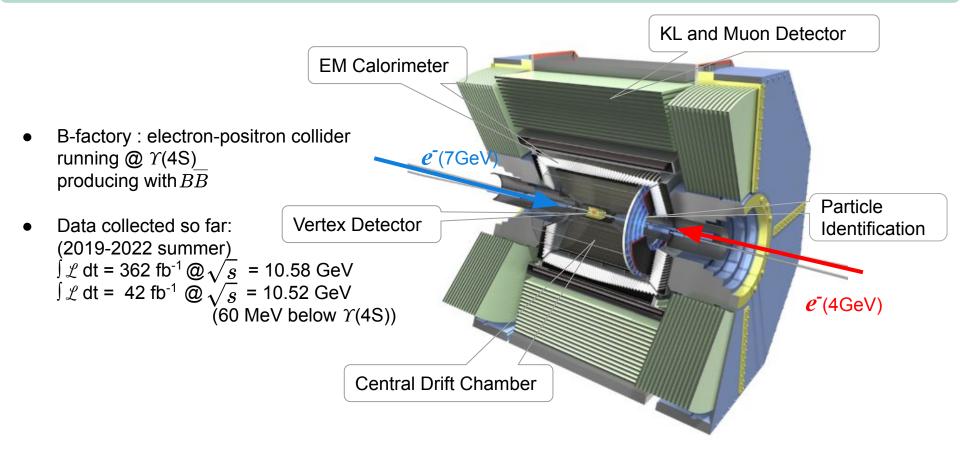
yulan.fan@desy.de

Outline

- Introduction
 - Lepton Flavour Universality
 - Belle II experiment
- Measurement of $R(X_{e/\mu})$ at Belle II
- Measurement of angular asymmetry in $B^0 \rightarrow D^* l v$

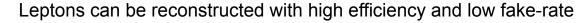

Lepton Flavour Universality

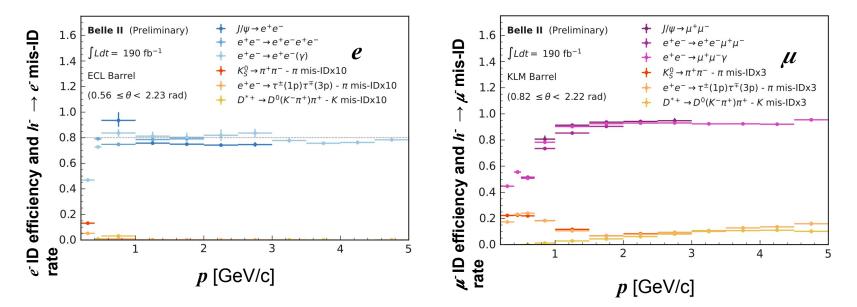
In SM, all charged leptons share the same electroweak coupling — Lepton Flavour Universality (LFU)


• Semileptonic *B*-meson decay involving the quark transition, e.g.

 $b \rightarrow c/s \ l \ \nu, \quad b \rightarrow c/s \ l \ l, \dots$

are sensitive to probe (violation of) LFU

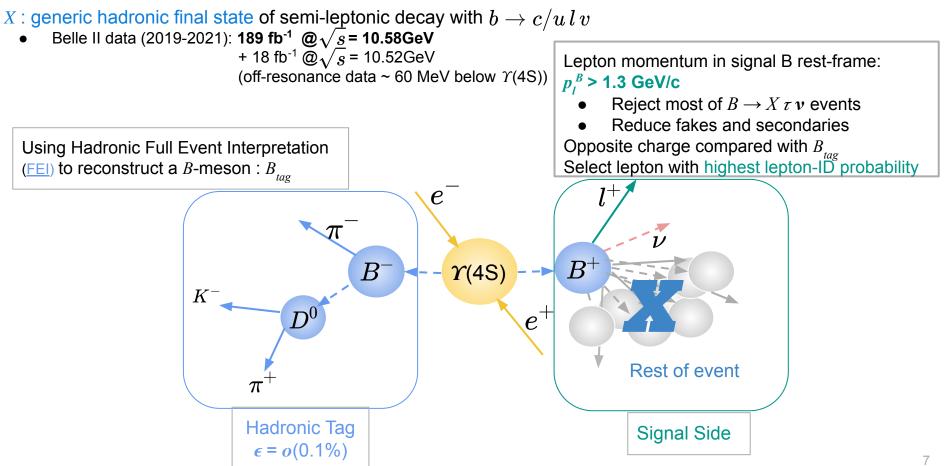



SuperKEKB and Belle II Experiment

Lepton Identification | Belle II

BELLE2-CONF-PH-2022-003

Similar performance at high momentum for *e* and μ


$R(X_{e/\mu})$ Measurement in $B \rightarrow X e/\mu v$

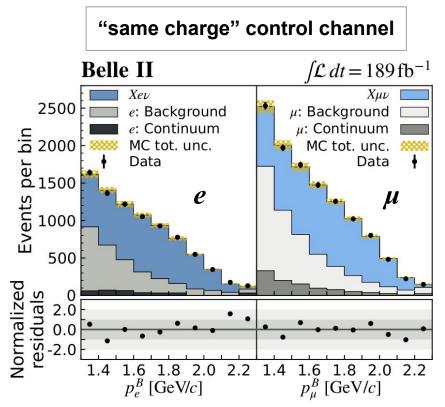
$$Rig(X_{e/\mu}ig) = {B(B o \ X \, e
u) \over B(B o \ X \, \mu
u)}$$

Preparation for measuring inclusive $R(X_{\tau/l})$

2301.08266v2 (accepted by PRL)

Event Reconstruction

Signal Yields Extraction

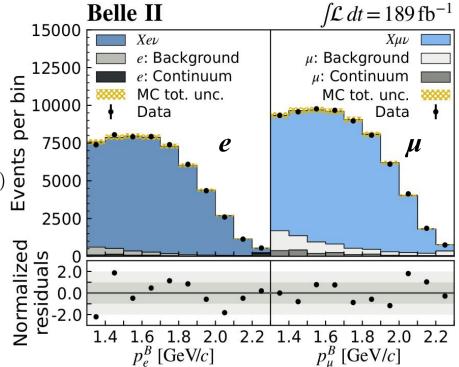

- Fit *e* and μ channels simultaneously in 10 p_l^B bins with binned maximum likelihood fit
- 3 templates for each channel:

"Continuum" (scaled to 'off-resonance data')

+ "Background" (fakes + secondaries +...)
(constraint yields from same charge control channel)

+ X e/µ v

• Systematics included as nuisance parameters


Extracting signal yields N_l^{means} in each channel

$$egin{aligned} Rig(X_{e/\mu}ig) \ &= \ rac{N_e^{meas}/\epsilon_e}{N_\mu^{meas}/\epsilon_\mu} \ & \ Rig(X_{e/\mu}ig) = 1.007 \pm 0.009(stat.\,) \pm 0.019(syst.\,) \end{aligned}$$

 $Rig(X_{e/\mu}\,,\,p_l^B>1.3\,GeVig)\,=\,1.005\pm 0.009(stat.\,)\pm 0.019(syst.\,)$

- Compatible with Belle measurements in $B \rightarrow D^* l v$ [Phys. Rev. D 100, 052007], [2301.07529v1]
- Most precise branching fraction based lepton universality test with semileptonic *B* decays
- Good agreement with SM prediction of
 [JHEP11(2022)007]

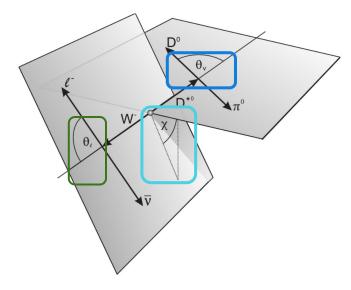
 $Rig(X_{e/\mu}ig) \,=\, 1.006 \pm 0.001$

9

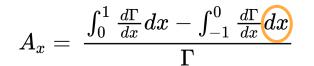
Angular Asymmetries of $B^0 \rightarrow D^* l v$

Tests of light-lepton universality

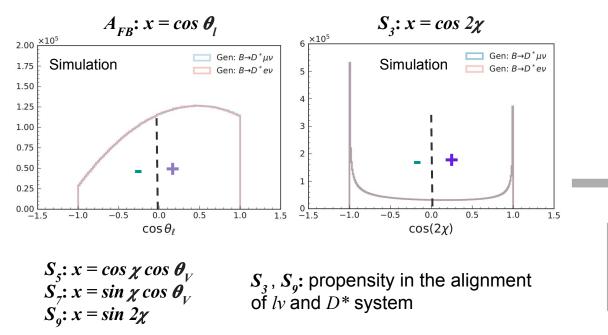
preliminary results

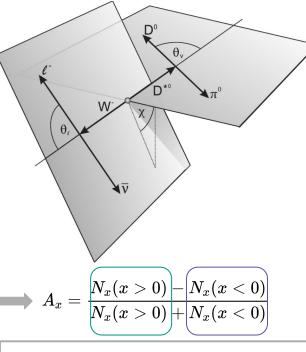

Motivation | Angular Analysis of $B^{\theta} \rightarrow D^* l v$

• 4 parameters to fully describe $B^0 \rightarrow D^* l v$ decay:

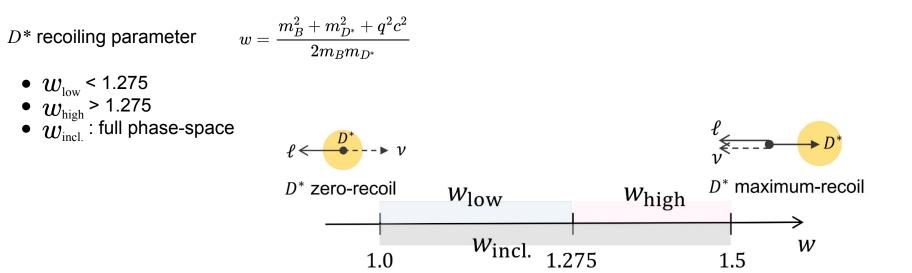

squared invariant mass of l v system: $q^2 = (p_B - p_{D^*})^2 + 3$ helicity angles θ_I , θ_V and χ

- **Properties of** *V*-*A* **coupling** are encoded in angular distribution
- Tension in differences of A_{FB} between e and μ is reported in a re-interpretation of Belle data [Phys. Rev. D 100, 052007 (2019)] in [Eur. Phys. J. C 81, 984 (2021)]

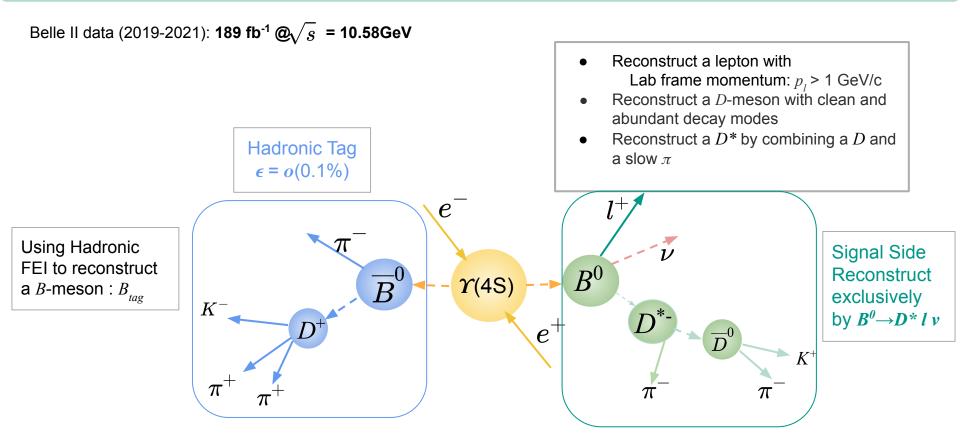

$$A_{FB}(q^2) = \left(\frac{d\Gamma}{dq^2}\right)^{-1} \left[\int_{0}^{1} - \int_{-1}^{0}\right] d\cos\theta_{\ell} \frac{d^2\Gamma}{d\cos\theta_{\ell} dq^2}$$



Angular Analysis of $B^{\theta} \rightarrow D^* l v$


Define a set of 5 asymmetries for observables x

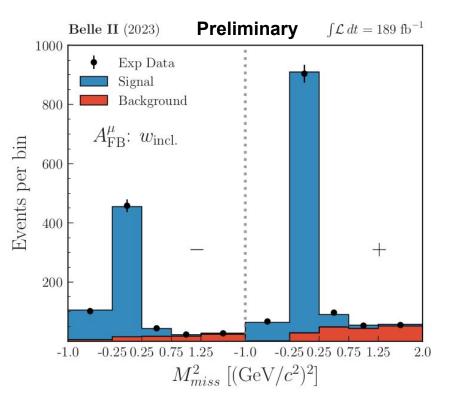
Test e/μ universality through the asymmetry difference $\Delta A = A(B
ightarrow D^* \mu v) - A(B
ightarrow D^* e v)$


Angular Asymmetry |

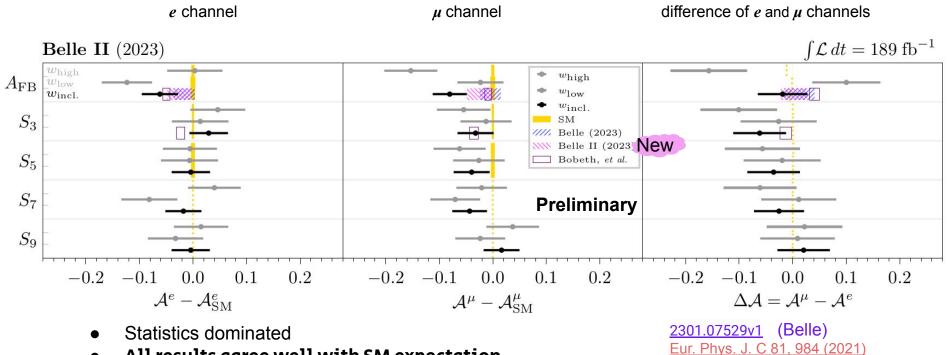
For each e and μ channel, measure asymmetry for each angular observable versus w

$$A_x(w) \,=\, rac{N_x^+(w) - N_x^-(w)}{N_x^+(w) + N_x^-(w)} \qquad \qquad \Delta A_x(w) \,=\, A_x^\mu(w) \,-\, A_x^e(w)$$

Event Reconstruction | Angular Analysis of $B^{\theta} \rightarrow D^* l v$



Extract signal yields:


• Binned maximum likelihood fit to M_{miss}^2

$$M^2_{miss} = \, p^2_{miss} \, = \, ig(p_{\gamma(4S)} - p_{B_{tag}} - p_{D^*} - p_l ig)^2$$

- Main background: $B^0 \rightarrow D^{**} l v$
- Signal is peaked at zero in M_{miss}^2

Results | Angular Analysis of $B^{\theta} \rightarrow D^* l v$

• All results agree well with SM expectation

Summary

The Belle II experiment perform two light-lepton universality tests recently

• Inclusive measurement of $R(X_{e/u})$

Preparation for measuring inclusive $R(X_{r/l})$

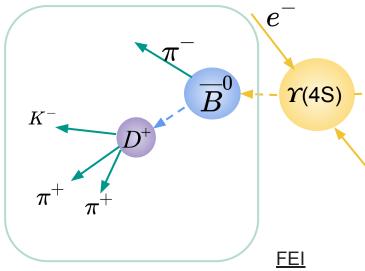
Compatible with exclusive Belle measurements

```
Good agreement with SM prediction
```

• Preliminary result on testing of LFU in angular asymmetry in $B^0 \rightarrow D^* l v$

Comprehensive LFU test in angular distributions of semileptonic B decays

Good consistency with SM prediction


backup

Full Event Interpretation | Belle II

B-meson pair is produced with opposite flavours

BDT-based algorithm with a hierarchical approach :

- Reconstruct tracks + clusters
- Reconstruct intermediate particles
- Reconstruct a B-meson

4		
	$B^{\pm}\left(\% ight)$	$B^{0}(\%)$
Hadronic		
FEI with FR channels	0.53	0.33
FEI	0.76	0.46
FR	0.28	0.18
SER	0.4	0.2
Semileptonic		
FEI	1.80	2.04
FR	0.31	0.34
SER	0.3	0.6

$$R(X_{e/\mu}) = \frac{N_e^{\text{meas}}}{N_{\mu}^{\text{meas}}} \cdot \frac{N_{\mu}^{\text{sel}}}{N_e^{\text{sel}}} \cdot \frac{N_e^{\text{gen}}}{N_{\mu}^{\text{gen}}}$$

$$\epsilon_{Xlv} \, = \, rac{N_{sel} imes \epsilon_{B_{tag}}^{Data/MC}}{2 imes N_{B\overline{B}} imes BR(B o Xlv)}$$

$$\epsilon_{Xlv} = rac{N_{sel} imes \epsilon_{B_{tag}}^{Data/MC}}{2 imes N_{B\overline{B}} imes BR(B o Xlv, p_l^B > 1.3\,GeV)}
onumber \ Rig(X_{e/\mu}ig)_{indep} = Rig(X_{e/\mu}ig) imes rac{F_e^{p_l^B > 1.3GeV}}{F_\mu^{p_l^B > 1.3GeV}}$$

 $Rig(X_{e/\mu}\,,\,p_l^B>1.3\,GeVig)\,=\,1.005\pm 0.009(stat.\,)\pm 0.019(syst.\,)$

 $R(X_{e/\mu})$ Measurement in $B \rightarrow X e/\mu v$

Uncertainties estimation based on Asimov fits

$R(X_{e/\mu})$ Measurement in $B \to X e/\mu v$

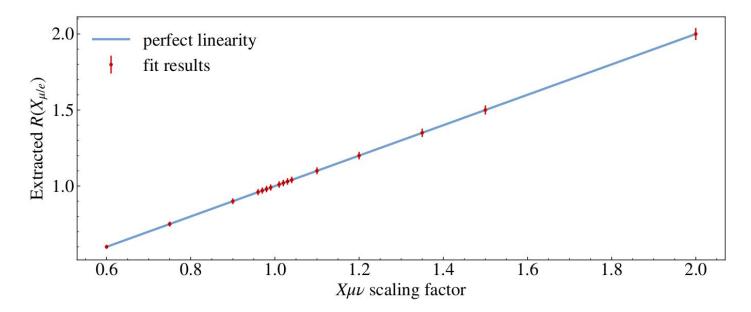
Main Sources	sample size	lepton identification	$B \rightarrow X l v$ branching fraction	$B \rightarrow X_c l v$ form factors	total
Uncertainties(%)	0.9	1.9	0.2	0.1	2.1

Error source	Combination Relative ratio of final uncertainty / %					
	Offres	Fakes, Other	$X\ell\nu$	$\mathcal{R}(X_{e/\mu})$		
Total rel. Error	6.8	6.2	0.5	2.1		
Statistical	96.0	69.9	79.3	22.0		
"Fit"	2.1	19.3	12.4	2.4		
PID	1.5	7.1	5.6	75.0		
Track efficiency	0.0	0.0	0.0	0.0		

FF $D\ell v$	0.0	0.0	0.0	0.0
$\mathrm{FF}D^*\ell v$	0.3	1.2	1.0	0.1
$\mathrm{FF} \ D^{**} \ell \nu$	0.7	4.5	3.5	0.6
FF GAP <i>lv</i>	1.0	5.0	4.0	0.2
FF $X_c \ell \nu$ corr.	-0.9	-4.3	-3.5	-0.1
FF $X_c \tau v$ total	0.0	0.0	0.0	0.0
$FF D\tau v$	0.0	0.0	0.0	0.0
$FF D^* \tau v$	0.0	0.0	0.0	0.0
FF $GAP\tau\nu$	0.0	0.0	0.0	0.0
FF $X_c \tau v$ corr.	-0.0	-0.0	-0.0	-0.0

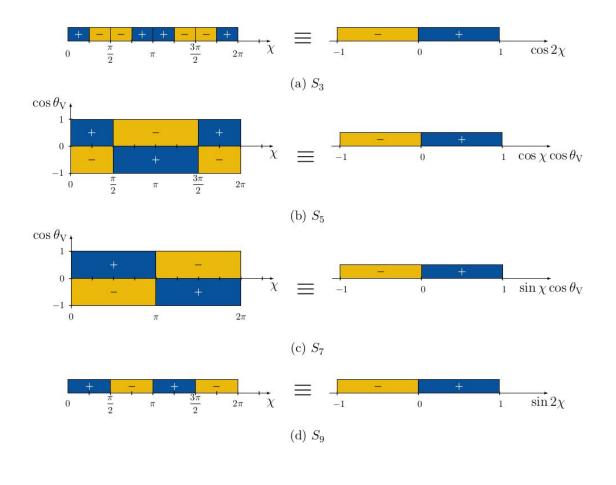
completely uncorrelated

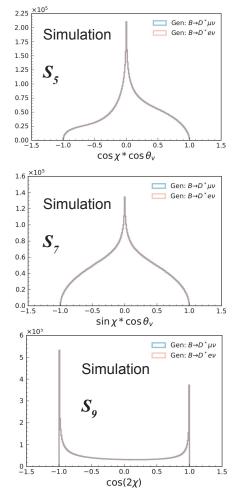
L


Validated by toy study

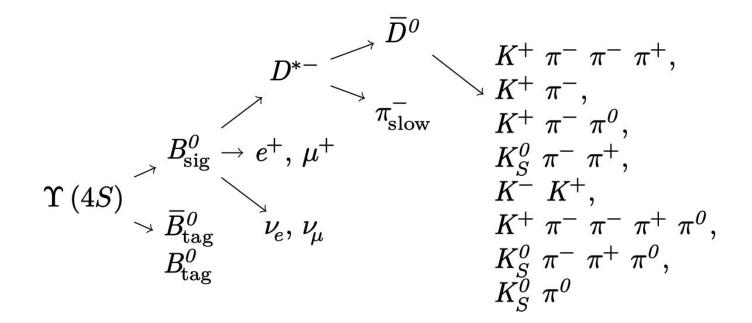
completely correlated

$\mathcal{B}(X_c \ell \nu)$ tot.	1.4	7.6	5.9	0.2
$\mathcal{B}(D\ell\nu)$	0.0	0.1	0.1	0.0
$\mathcal{B}(D^*\ell u)$	0.2	1.4	1.0	0.0
$\mathcal{B}(D^{**}\ell v)$	0.3	1.3	1.1	0.0
$\mathcal{B}(D^{(*)}\pi\pi\ell\nu)$	0.2	0.5	0.4	0.0
$\mathcal{B}(D^{(*)}\eta\ell u)$	1.4	6.4	5.2	0.2
$\mathcal{B}(D_s K \ell \nu)$	0.0	0.0	0.0	0.0
$\mathcal{B}(X_c \ell \nu)$ corr.	-0.7	-2.2	-1.9	-0.0
$\mathcal{B}(X_c \tau \nu)$ tot.	0.0	0.0	0.0	0.0
$\mathcal{B}(D\tau\nu)$	0.0	0.0	0.0	0.0
$\mathcal{B}(D^* au u)$	0.0	0.0	0.0	0.0
$\mathcal{B}(D^{**}\tau\nu)$	0.0	0.0	0.0	0.0
$\mathcal{B}(D^{(*)}\pi\pi\tau\nu)$	0.0	0.0	0.0	0.0
$\mathcal{B}(D^{(*)}\eta au au)$	0.0	0.0	0.0	0.0
$\mathcal{B}(X_c \tau \nu)$ corr.	-0.0	-0.0	-0.0	-0.0


21


Fit sensitivity test

the extracted $R(X_{e/u})$ values perfectly follow the expected line


S Observables | Angular Analysis of $B^{\theta} \rightarrow D^* l v$

23

Event Reconstruction | Angular Analysis of $B^{\theta} \rightarrow D^* l v$

Visualization of the reconstructed Υ (4S) decay chain, only reconstructed final states are shown explicitly

Obs.	w bin	Measurement	$\mathrm{SM}{ imes}10^5$
$\Delta A_{\rm FB}$	$w_{ m low}$	0.099 ± 0.064	-104 ± 2
	$w_{ m high}$	-0.168 ± 0.072	-1133 ± 9
	$w_{\rm incl.}$	-0.024 ± 0.046	-566 ± 7
ΔS_3	$w_{ m low}$	-0.026 ± 0.071	28 ± 0.2
	$w_{ m high}$	-0.101 ± 0.072	23 ± 1
	$w_{\rm incl.}$	-0.062 ± 0.049	18 ± 1
ΔS_5	$w_{ m low}$	-0.019 ± 0.072	27 ± 0.3
	$w_{ m high}$	-0.055 ± 0.07	107 ± 4
	$w_{\rm incl.}$	-0.035 ± 0.049	49 ± 2
ΔS_7	$w_{ m low}$	0.011 ± 0.07	0 ± 0
	$w_{ m high}$	-0.061 ± 0.068	0 ± 0
	$w_{\rm incl.}$	-0.026 ± 0.047	0 ± 0
ΔS_9	$w_{ m low}$	0.009 ± 0.07	0 ± 0
	$w_{ m high}$	0.022 ± 0.071	0 ± 0
	$w_{ m incl.}$	0.02 ± 0.049	0 ± 0

							3. 12			
w-Integrated	Central Exp	s Stat MO	shape	Unf. & eff.	Lep. ID	$\pi_{\rm slow}$ eff.	$\mathcal{B}(D^{**})$	K_S^0 eff.	form factors	SM
A^{μ}_{FB}	0.159	0.030	0.003	0.007	0.0017	0.0002	0.0000	0.0001	3.03×10^{-6}	0.0037
$A^e_{ m FB}$	0.183	0.032	0.004	0.007	0.0032	0.0002	0.0000	0.0001	3.52×10^{-7}	0.0037
ΔA_{FB}	0.024	0.044	0.005	0.010	0.0036	0.0002	0.0000	0.0003	4.95×10^{-7}	0.0000
$S_3^{\ \mu}$	0.142	0.032	0.003	0.008	0.0005	0.0002	0.0000	0.0001	5.48×10^{-6}	0.0020
$S_3^{\ e}$	0.080	0.034	0.004	0.008	0.0004	0.0002	0.0000	0.0001	5.27×10^{-6}	0.0020
ΔS_3	0.062	0.046	0.005	0.011	0.0006	0.0004	0.0000	0.0001	2.10×10^{-7}	0.0000
$S_5^{\ \mu}$	0.155	0.032	0.003	0.008	0.0003	0.0003	0.0000	0.0001	4.20×10^{-6}	0.0035
$S_5^{\ e}$	0.190	0.034	0.004	0.008	0.0009	0.0008	0.0000	0.0001	5.50×10^{-6}	0.0036
ΔS_5	0.035	0.046	0.005	0.011	0.0010	0.0005	0.0000	0.0002	1.30×10^{-6}	0.0000
S_7^{μ}	0.043	0.031	0.003	0.008	0.0001	0.0001	0.0000	0.0001	4.69×10^{-7}	0.0000
S_7^e	0.018	0.032	0.004	0.008	0.0002	0.0001	0.0000	0.0001	1.02×10^{-7}	0.0000
ΔS_7	0.026	0.044	0.005	0.011	0.0003	0.0001	0.0000	0.0001	3.68×10^{-8}	0.0000
$S_9^{\ \mu}$	0.016	0.032	0.004	0.008	0.0001	0.0002	0.0000	0.0001	2.12×10^{-7}	0.0000
$S_9^{\ e}$	0.004	0.034	0.003	0.008	0.0002	0.0001	0.0000	0.0001	3.39×10^{-7}	0.0000
ΔS_9	0.020	0.046	0.005	0.011	0.0003	0.0002	0.0000	0.0002	1.28×10^{-7}	0.0000