

Recent results on spectroscopy of X, Y and Z states in BESIII

(For BESIII Collaboration) Institute of High Energy Physics, CAS

BEAUTY 2023 - The 21st International Conference on B-Physics at Frontier Machines

Clermont-Ferrand, France, from the 3rd to the7th July 2023

Charmonium like states

All quantum numbers

BESIII data samples

46 samples
 ~22 fb⁻¹

small scan samples
 ~2.5 fb⁻¹

1⁻⁻ states in open charm processes

• Investigated by measuring the cross section as a function of c.m.s $\sigma(\sqrt{s})$

1⁻⁻ states in open charm processes (cont.)

• Investigated by measuring the cross section as a function of c.m.s $\sigma(\sqrt{s})$

arXiv: 2305.10789, submitted to PRL

1⁻⁻ states in hidden charm processes (cont.)

• Investigated by measuring the cross section as a function of c.m.s $\sigma(\sqrt{s})$ [24 published]

1⁻⁻ states in hidden charm processes (cont.)

• Investigated by measuring the cross section as a function of c.m.s $\sigma(\sqrt{s})$ [24 published]

Chinese Phys. C 46 111002 (2022)

Phys. Rev. D 107, 092005 (2023)

1⁻⁻ states in hidden charm processes (cont.)

- $e^+e^- \rightarrow \pi^+\pi^-\eta_c$, $\gamma\pi^0\eta_c$, $\pi^+\pi^-\eta\eta_c$ [4.18, 4.23, 4.26, 4.36, 4.42, 4.60, upper limit]
- $e^+e^- \rightarrow \pi^+\pi^-\chi_{cJ}$, [4.18, 4.19, 4.20, 4.21, 4.22, 4.23, 4.245, 4.26, 4.27, 4.28, 4.36, 4.40,

4.53, 4.60, upper limit]

- $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta_c$ [4.009, 4.23, 4.26, 4.42, 4.60, upper limit] No
- $e^+e^- \rightarrow \rho X_2(4013) \rightarrow \rho D\overline{D}$ [4.36, 4.42, 4.60, upper limit]

Need: Proper parameterization couple channel analysis

C-even states direct production from e^+e^- annihilation

- Dedicated scan sample around the resonance
- Careful study of background process and interference effect!

C-even states-radiative/hadronic transition

- Small production rate in radiative transition process
- Low detection efficiency [full reconstruction] or high bkg. [partial reconstruction] in open charm final state
 Need novel approach to increase statistics or suppress bkg.
- Radiative and hadronic transitions to X(3872) are observed at BESIII
- Found evidence of $X(3915)/X(3960) [\omega J/\psi \text{ mode}]$, no obvious signal for $X(4140), X(4274), X(4500) [\phi J/\psi \text{ mode}]$, no evidence of $X2(4013) [D\overline{D} \text{ mode}]$

10

X(3872) **decays**

3.80

3.85

 $M(\pi^{0}\chi_{c})$ [GeV/c²]

3.90

3.95

4.00

11

 $Z_{c(s)}$ states

State	$M \; ({ m MeV}/c^2)$	$\Gamma (MeV)$	J^{PC}	Process	Experiment
$Z_c(3900)^{(\pm,0)}$	3888.4 ± 2.5	28.3 ± 2.5	1+-	$e^+e^- \to \pi^{(+,0)}(\pi^{(-,0)}J/\psi)$	BESIII, Belle
				$e^+e^- \to \pi^{(+,0)} (D\bar{D}^*)^{(-,0)}$	BESIII
				$H_b ightarrow X \pi^+ (\pi^- J/\psi)$	D0
				$e^+e^- ightarrow \pi^+(\eta_c ho^-)$	BESIII
$Z_c(4020)^{(\pm,0)}$	4024.1 ± 1.9	13 ± 5	$1^{+-}(?)$	$e^+e^- o \pi^{(+,0)}(\pi^{(-,0)}h_c)$	BESIII, Belle
				$e^+e^- \to \pi^{(+,0)} (D^* \bar{D}^*)^{(-,0)}$	BESIII
$Z(4050)^{\pm}$	4051^{+24}_{-40}	82^{+50}_{-28}	??+	$ar{B}^0 ightarrow K^-(\pi^+\chi_{c1})$	Belle
				$e^+e^- o \pi^{(+,-)}(\pi^{(-,+)}\chi_{c0,1,2})$	BESIII Not Seen!
$Z(4055)^{\pm 3.5}$	$^{\sigma}$ 4054 \pm 3.2	45 ± 13	??-	$e^+e^- \rightarrow \pi^+(\pi^-\psi(2S))$	Belle
$Z(4100)^{\pm}$ 3.4	σ 4096 \pm 28	152^{+80}_{-70}	???	$B^0 o K^+(\pi^-\eta_c)$	LHCb
				$e^+e^- o \pi^{(+,-)}\pi^0(\pi^{(-,+)}\eta_c)$	BESIII Not Seen!
				$e^+e^- ightarrow \pi^{(+,-)}\eta(\pi^{(-,+)}\eta_c)$	BESIII Not Seen!
$Z(4200)^{\pm}$	4196^{+35}_{-32}	370^{+100}_{-150}	1^{+-}	$ar{B}^0 o K^-(\pi^+ J/\psi)$	Belle, LHCb
$Z(4250)^{\pm}$	4248^{+190}_{-50}	177^{+320}_{-70}	$?^{?+}$	$ar{B}^0 o K^-(\pi^+\chi_{c1})$	Belle
				$e^+e^- o \pi^{(+,-)}(\pi^{(-,+)}\chi_{c0,1,2})$	BESIII Not Seen!
$Z(4430)^{\pm}$	4478^{+15}_{-18}	181 ± 31	1^{+-}	$B^0 \to K^+(\pi^-\psi(2S))$	Belle, LHCb
first/2008				$ar{B}^0 o K^-(\pi^+ J/\psi)$	Belle
$R_{c0}(4240)$	4239^{+50}_{-21}	220^{+120}_{-90}	0	$B^0 ightarrow K^+ \pi^- \psi(2S)$	LHCb
$Z_{cs}(3985)^{\pm,0}$	$3982.5^{+2.8}_{-3.4}$	$12.8^{+6.1}_{-5.3}$?	$e^+e^- \to K^+(D^s D^{*0} + D^{*-}_s D^0)$	BESIII
4.6 <i>σ</i> -neutral				$e^+e^- \to K^0_S(D^+_s D^{*-} + D^{*+}_s D^-)$	BESIII
$Z_{cs}(4000)^{\pm}$	4003^{+7}_{-15}	131 ± 30	1^{+}	$B^+ \rightarrow \phi(J/\psi K^+)$	LHCb
$Z_{cs}(4220)^{\pm}$	4216_{-38}^{+49}	233^{+110}_{-90}	1+	$B^+ o \phi(J/\psi K^+)$	LHCb

- Produced in e^+e^- annihilation or *b*-flavor hadron decays
- Typically in *h*+ charmonium final states
- Intrinsic nature unclear, exotic states? kinematic effects?

 Z_{cs}^{\pm} and Z_{cs}^{0} states

Z'_{cs} in $e^+e^- \to K^+D^{*0}D_s^{*-}$

- $e^+e^- \rightarrow K^+D^{*0}D_S^{*-}$
- Chin. Phys. C47, 033001(2023)

• $m = 4123.5 \pm 0.7 \pm 4.7$ MeV / c^2

• significance 2.1 σ (w. sys.)

Z_{cs} in $K^+K^-(c\bar{c})$

• Small cross section of $e^+e^- \rightarrow K\overline{K} + c\overline{c} [J/\psi, h_c, \psi']$ at similar level], will be difficult to get solid conclusion without larger statistics.

Chinese Phys. C 46 111002 (2022)

- $\sqrt{s} = 4.127 \sim 4.6 \text{ GeV}$, $\mathcal{L} = 15.6 f b^{-1}$
- $e^+e^- \rightarrow K\overline{K}J/\psi$

Future data samples

• Pentaquark : 4.96 GeV - $p\bar{p}\eta_c$ threshold ; 4.97 GeV - $p\bar{p}J/\psi$ threshold

- Properties of vector charmonium like states have been investigated using various processes, including open charm, hidden charm, and light hadronic final states.
 - Rich structures in the cross section line shapes
 - Hard to get a unified picture with current used strategy [use simply formula to fit cross section], require joint effort/better modeling
- C-even states
 - Direct electron-positron annihilation process: dedicated data sample, special attention to be paid to signal MC modeling with interference effect taken into account
 - > Radiative transition: small production rate; Hadronic transition: high energy data sample
- Z_c and P_c states
 - Precise measurement of the properties, build connections with other states ⇒Larger data sample for heavier states

Thank you