Observation of an excess of di-charmonium events in the four-muon final state with the ATLAS detector

The ATLAS Collaboration

Alina Isobel Hagan Lancaster University Beauty 2023 - 03/07/23

Introduction

Introduction

Contents:

Introduction

- References:
- Belle [0309032]
- LHCb [2006.16957]
- Image:CERN

- Tetraquark and pentaquark states can exist under color confinement.
- Evidence for a candidate recorded by the Belle Collaboration in 2003, the $X(3872)\,.$

- New 'particle zoo', evolution of hadron spectroscopy
- LHCb 2020: narrow structure, 6.9GeV, di- $J/\psi(4\mu)$ channel
- Possible to interperate this state, X(6900), as a full-charm tetraquark, $T_{cc\bar{c}\bar{c}}$

Introduction

Introduction

Contents:

Introduction

References: • LHCb - [2006.16957] 3/17 - LHCb also sees an enhancement in the mass spectrum closer to the ${\rm di}\text{-}J/\psi$ threshold.

- X(6900) is above $J/\psi + \psi(2S)$ threshold, could observe this in two channels.

- ATLAS explores di- J/ψ and $J/\psi+\psi(2S),$ with $140\,{\rm fb}^{-1}$, 4μ final states.
- Data collected at $\sqrt{s}{=}13 {\rm TeV}$ 2015-2018.

The ATLAS Detector

Detector

Contents:

Detector

References:

- ATLAS [2305.16623]
- ATLAS Schematic

4/17

• The ATLAS experiment is a general purpose detector with a forward-backwards cylindrical geometrey and nearly complete 4π sr coverage in solid angle.

• There are four main components; The inner detector, LAr EM Calorimeter, Hadronic tile calorimeter, Muon spectrometer

• Two stage trigger, L1 and HLT, hardware and software.

MC Samples

Samples

Samples		

- \cdot Estimation of signal and background contribution; derive from combination of MC and data.
- Multiple background sources;
 - di- J/ψ from SPS and DPS
 - Non-prompt J/ψ from b
 - Uncorrelated prompt J/ψ and non-resonant $\mu\mu$ pairs.
- Single or no ${\mathcal Q}$ background events are modelled using data.
- $J/\psi + \psi(2S)$ feed-down is included in relevant backgrounds.
- MC samples are reweighted for pileup correction.

Data Sample and selection _{Samples}

Samples

- Selection with dimuon and 3-muon trigger, muon pair with mass in j/ψ or $\psi(2S)$ range.
- Use the loose criteria for all muon candidates, the thresholds on muon momentum depend on trigger and muon identification requirements.
- Combinations of these triggers with various prescales are used to maximise acceptance, 72% efficieny vs offline.
- 4μ candidate events with two OS pairs; fit all tracks to a vertex.
- Discovered charmonium candidates are refit with a J/ψ or $\psi(2S).$
- · Accept the 4μ candidate with the lowest χ^2/N

Background Modelling

Samples

Samples

- Reduction of the background by restricting of the 4μ fit quality ($\chi^2/N)$ & limit the transverse distances between the primary vertex and the reconstructed 4μ vertex and di- μ sub-vertices.
- Signal and control defined below and above $\varDelta R{=}0.25,$ respectively.
- Event generator doesn't provide most accurate model of SPS and DPS backgrounds in di- J/ψ p_T , $\Delta\phi$, and $\Delta\eta$.
- Make kinematic corrections to this using two control regions.
- \cdot Also model the non-prompt background using MC, control regions created by inverting the vertex quality and transverse distance cuts.

Signal region	Control region	Non-prompt region
Di-muon or tri-muon triggers, oppositely charged muons from each charmonium, <i>loose</i> muons, $p_1^{1,2,3,4} > 4, 4, 3, 3$ GeV and $ \eta_{1,2,3,4} < 2.5$ for the four muons, $m_{J/\psi} \in [2.94, 3.25]$ GeV, or $m_{\psi(2S)} \in [3.56, 3.80]$ GeV, Loose vertex requirements $\chi^2_{4\mu}/N < 40$ ($N = 5$) and $\chi^2_{di;\mu}/N < 100$ ($N = 2$),		
Vertex $\chi^2_{4\mu}/N < 3$, $L^{4\mu}_{xy} < 0.2$ m	m, $ L_{xy}^{\text{di-}\mu} < 0.3 \text{ mm}, m_{4\mu} < 11 \text{ GeV},$	Vertex $\chi^2_{4\mu}/N > 6$,
$\Delta R < 0.25$ between charmonia	$\Delta R \ge 0.25$ between charmonia	or $ L_{xy}^{\text{di-}\mu} > 0.4 \text{ mm}$

Background models, feeddown & selection summary Samoles

Samples

- Single Q non-resonant di- μ events are modelled using datadriven approach as MC also struggles to produce an accurate representation of this background contribution.
- \cdot Create CR here by requiring one ${\cal Q}$ candidate is reconstructed with a track from something other than a muon candidate.
- For di- J/ψ , feeddown from the $J/\psi+\psi(2S)$ channel in the form of $\psi(2S){\rightarrow}J/\psi+X$ decays are accounted for;

$$N_{fd} = \frac{\mathcal{B}'\epsilon'}{\mathcal{B}(\psi(2S) \to \mu\mu)\epsilon} N$$

- · ϵ is the efficiency, (ϵ' feeddown), N are the yields, and ${\cal B}$ are the branching fractions.
- B' is the branching fraction of the cascading feeddown;

$$B' = \left[B(\psi(2S) \to J/\psi + X) + B(\psi(2S) \to \gamma \chi_{cJ}) B(\chi_{cJ} \to \gamma J/\psi) \right] \cdot B(J/\psi \to \mu \mu)$$

Signal Extraction

Fits & models

Contents:

Fits & models

- Use an unbinned maximum likelihood fit for the extraction of the signal in the 4μ mass spectrum with the following likelihood function;

$$\mathcal{L} = \mathcal{L}_{SR}(\vec{\theta}, \vec{\lambda}) \cdot \mathcal{L}_{CR}(\vec{\theta}) \cdot \prod_{j=1}^{K} G(\theta'_j; \theta_j, \sigma_j)$$

- $\mathcal{L}_{SR,CR}$ are the signal and control region likelihoods. $\vec{\lambda}$ are the parameters of interest and θ_j are the nuisance parameters.
- Background yields in the signal and control regions are constrained together by a transfer factor which is obtained from the aforementioned background modelling.
- \cdot Two models are considered for each of the channels under examination.

${\rm Di}$ - J/ψ Models

Fits & models

Contents:

Fits & models

• Model A for the di- J/ψ channel, signal p.d.f. consists of three interfering Breit-Wigners, a phase space factor, and a convolution with a mass resolution function.

$$f_s(x) = \left[\sum_{i=0}^2 \frac{z_i}{m_i^2 - x^2 - im_i \Gamma_i(x)}\right]^2 \sqrt{1 - \frac{4m_{J//\psi}^2}{x^2}} \otimes R(\theta)$$

• B reduces to two resonances, one non-interfering, and the other interacting with the SPS background, p.d.f;

$$\mathbf{f}(x) = \left[\frac{z_0}{m_0^2 - x^2 - im_0\Gamma_0(x)} + Ae^{i\phi}\right]^2 + \left[\frac{z_2}{m_w^2 - x^2 - im_2\Gamma_2(x)}\right]^2 \sqrt{1 - \frac{4m_{J//\psi}^2}{x^2}} \otimes R(\theta)$$

• A, ϕ define the SPS background amplitude and phase to m_0 . • These models are analogous to those in the LHCb study, though interferences between the signal resonances occur in model A, unlike in the LHCb work.

$J/\psi + \psi(2S)$ Models

Fits & models

Contents:

Fits & models

• For $J/\psi + \psi(2S)$ channel, model α , introduce a 4th noninterfering resonance, assuming the resonances also decay to $J/\psi + \psi(2S)$;

$$f_{s}(x) = \left(\left[\sum_{i=0}^{2} \frac{z_{i}}{m_{i}^{2} - x^{2} - im_{i}\Gamma_{i}(x)} \right]^{2} + \left[\frac{z_{3}}{m_{3}^{2} - x^{2} - im_{3}\Gamma_{3}(x)} \right]^{2} \right) \\ \cdot \sqrt{1 - \frac{(m_{J//\psi} + m_{\psi}(2S))}{x^{2}}} \otimes R(\theta)$$

• Other model, known as model β , single resonance.

$\begin{array}{l} {\rm Di-}J/\psi \\ {\rm results} \end{array}$

Results

Contents:

Results

• Models A and B, shown left and right respectively, reproduce the data well.

- A significant excess of events above the background is observed here in the ${\rm di}\text{-}J/\psi$ channel.

• The broad structure at lower mass could result from other effects like feeddown from the higher di-Q resonances, for example $T_{cc\bar{c}\bar{c}} \rightarrow \chi_{cJ}\chi_{cJ'} \rightarrow J/\psi J/\psi \gamma \gamma$

 $J/\psi + \psi(2S)$ results

Results

Contents:

Results

• The signal significance with signal shape parameters of model α reaches $4.7\sigma,$ and 4.3σ for model $\beta.$

- For model $\alpha,$ the significance of the second resonance alone is 3.0σ

Summary

Results

Contents:

Results

- The parameters extracted from the fit to the $m_{4\mu}$ spectrum in both channels is shown below.

di- J/ψ	model A	model B
m_0	$6.41 \pm 0.08 ^{+0.08}_{-0.03}$	$6.65 \pm 0.02^{+0.03}_{-0.02}$
Γ_0	$0.59 \pm 0.35^{+0.12}_{-0.20}$	$0.44 \pm 0.05^{+0.06}_{-0.05}$
m_1	$6.63 \pm 0.05^{+0.08}_{-0.01}$	_
Γ_1	$0.35 \pm 0.11 \substack{+0.11 \\ -0.04}$	
m_2	$6.86 \pm 0.03^{+0.01}_{-0.02}$	$6.91 \pm 0.01 \pm 0.01$
Γ_2	$0.11 \pm 0.05 ^{+0.02}_{-0.01}$	$0.15 \pm 0.03 \pm 0.01$
$\Delta s/s$	$\pm 5.1\%^{+8.1\%}_{-8.9\%}$	_
$J/\psi {+}\psi(2S)$	model α	model β
m_3 or m	$7.22 \pm 0.03^{+0.01}_{-0.03}$	$6.96 \pm 0.05 \pm 0.03$
Γ_3 or Γ	$0.09 \pm 0.06^{+0.06}_{-0.03}$	$0.51 \pm 0.17^{+0.11}_{-0.10}$
$\Delta s/s$	$\pm 21\% \pm 14\%$	$\pm 20\% \pm 12\%$

- The significance for all resonances and for the X(6900) exceeds 5σ , m_2 aligns with the LHCb mass.
- As is with the LHCb paper, a broad structure at lower mass and a resonance around 6.9GeV are seen.

Systematics

Systematics

Contents:

Systematics

• Systematics uncertainties are considered to be only those producing an effect on the normalisations and the mass line-shape, though only perturbations of the lineshape are of concern, signal and background normalisations are free-floating parameters.

Systematic	di-J∕ψ		$J/\psi + \psi(2S)$	
Uncertainties (MeV)		Γ_2	<i>m</i> ₃	Γ_3
Muon calibration		±7	<1	±1
SPS model parameter	±7	±7	<	<1
SPS di-charmonium $p_{\rm T}$	±7 ±8		<1	
Background MC sample size	±7	± 8	±1	<1
Mass resolution	±4	-3	-1	+2 -4
Fit bias	-13	+10	+9	+50
Shape inconsistency	<	1	±4	±6
Transfer factor		_	±5	±23
Presence of 4th resonance	<1		-	_
Feed-down	+4 -1	+6 -2	-	_
Interference of 4th resonance	_		-32	-11
P and D-wave BW	+9	+19	<1	±1
ΔR and muon $p_{\rm T}$ requirements	+3 -2	+6 -4	+1 -2	-2
			-	

- Systematic uncertainties in $m_{4\mu}$ are treated as resolution effects, which are dependent on the mass range.

Conclusion

Conclusion

Contents:

· Summary; search of a possible $cc\bar{c}\bar{c}$ state decaying into a \mathcal{Q} pair, either two J/ψ or a J/ψ and $\psi(2S)$ in 4μ state, with $\sqrt{s}{=}13\text{TeV}$ at the ATLAS detector.

- With $140 {\rm fb}^{-1}$ a large excess, of significance over $5\sigma,$ is seen in the ${\rm di}\text{-}J/\psi$ channel

- Broad structure at low mass is seen along with the resonance at $6.9 {\rm GeV}.$

• A three-resonance model with interferences and a model with the broader structure at lower $m_{4\mu}$ are more successful in describing the lineshape than cases with less or no interference.

• For the $J/\psi+\psi(2S)$ channel the excess is of the order 4.7σ when using a two-resonance model, one of which is near the $6.9{\rm GeV}$ threshold.

• The lower-mass structure cannot be discerned in detail with current data, interpretations including non-interfering resonances, reflections and threshold enhancements cannot be discounted.

Conclusion

Conclusion

Contents:

· Summary; search of a possible $cc\bar{c}\bar{c}$ state decaying into a $\mathcal Q$ pair, either two J/ψ or a J/ψ and $\psi(2S)$ in 4μ state, with $\sqrt{s}{=}13 {\rm TeV}$ at the ATLAS detector.

- With $140 {\rm fb}^{-1}$ a large excess, of significance over $5\sigma,$ is seen in the ${\rm di}\text{-}J/\psi$ channel

- Broad structure at low mass is seen along with the resonance at $6.9 {\rm GeV}.$

• A three-resonance model with interferences and a model with the broader structure at lower $m_{4\mu}$ are more successful in describing the lineshape than cases with less or no interference.

• For the $J/\psi+\psi(2S)$ channel the excess is of the order 4.7σ when using a two-resonance model, one of which is near the $6.9{\rm GeV}$ threshold.

• The lower-mass structure cannot be discerned in detail with current data, interpretations including non-interfering resonances, reflections and threshold enhancements cannot be discounted.

Thanks for listening.