SM uncertainties for $b \rightarrow s\ell\ell$ decays

Beauty 2023 – Clermont-Ferrand

Méril Reboud

Based on:

- Gubernari, van Dyk, Virto 2011.09813
- Gubernari, MR, van Dyk, Virto 2206.03797, 2305.06301

Experimental "Summary plot"

- Many measurements of b → sℓℓ transitions are in tension with theory
- This is a *advertising plot*:
 - It only shows the observables featuring a tension
 - Observables and predictions are correlated
- This talk: theory uncertainties

Weak Effective Theory

• These processes take place at a scale m_b < m_w, m_t

• Allows for a model independent interpretation of the anomalies

0

• Avoids the appearance of large logarithm in the calculations of observables

QCD in $b \rightarrow s\ell\ell$

$$\begin{split} \mathcal{A}_{\lambda}^{L,R}(B \to M_{\lambda}\ell\ell) &= \mathcal{N}_{\lambda} \left\{ (C_{9} \mp C_{10})\mathcal{F}_{\lambda}(q^{2}) + \frac{2m_{b}M_{B}}{q^{2}} \begin{bmatrix} C_{7}\mathcal{F}_{\lambda}^{T}(q^{2}) & \\ \end{bmatrix} \right\} \\ \mathbf{B} \to \mathsf{K}^{(*)} \mu\mu \\ \mathbf{B}_{s} \to \varphi \mu\mu \\ \Lambda_{b} \to \Lambda^{(*)} \mu\mu \\ \mathbf{Local form-factors,} \\ \text{involves e.g.} \\ \begin{split} \mathcal{F}_{\mu}(k,q) &= \langle \bar{M}(k) | \bar{s}\gamma_{\mu} b_{L} | \bar{B}(q+k) \rangle \end{split}$$

•

QCD in $b \rightarrow s\ell\ell$

 \rightarrow Main contributions: the "charm-loops" $\mathcal{O}_{2(1)}^c = (\bar{s}_L \gamma_\mu(T^a) c_L) (\bar{c}_L \gamma^\mu(T^a) b_L)$

Local form factors

- Conceptually easy, but still the dominant source of uncertainties
- 2 main approaches
 - Lattice QCD \rightarrow most feasible at large q^2
 - Light-cone sum rules → most feasible at small q²,
 2 possible LCSRs
 - \rightarrow Interpolation/Extrapolation, depending on the use case
 - \rightarrow How to control extrapolation uncertainties?

Form Factor Properties

$$\mathcal{F}_{\mu}(k,q) = \langle \bar{M}(k) | \bar{s} \gamma_{\mu} b_L | \bar{B}(q+k) \rangle$$

Analytic properties of the form factors:

- Pole due to bs bound state
- Branch cut due to on-shell BM
 production

Form Factor Properties

 $\mathcal{F}_{\mu}(k,q) = \langle \bar{M}(k) | \bar{s} \gamma_{\mu} b_L | \bar{B}(q+k) \rangle$

Form Factor Parametrization

Conformal mapping [Boyd, Grinstein, Lebed '97]

 $z(s) \equiv \frac{\sqrt{s_{+} - s} - \sqrt{s_{+} - s_{0}}}{\sqrt{s_{+} - s} + \sqrt{s_{+} - s_{0}}}$

Simplified Series expansion [Bourrely, Caprini, Lellouch, '08; Bharucha, Feldmann, Wick '10]

$$\mathcal{F}_{\lambda}^{(T)}(q^2) = \frac{1}{q^2 - m_{B_s^*}^2} \sum_{k=0}^N \alpha_{\lambda,k} z^k$$

What is the uncertainty due to the truncation order N?

• Main idea: Compute the inclusive $e^+e^- \rightarrow \bar{b}s$ cross-section and relate it to the form factors [Bharucha, Feldmann, Wick '10]

$$\Pi^{\mu\nu}_{\Gamma}(q) \equiv i \int d^4x \, e^{iq \cdot x} \, \langle 0 | \mathcal{T} \left\{ J^{\mu}_{\Gamma}(x) J^{\dagger,\nu}_{\Gamma}(0) \right\} | 0 \rangle$$

1) Partonic calculation

• Main idea: Compute the inclusive $e^+e^- \rightarrow \overline{b}s$ cross-section and relate it to the form factors [Bharucha, Feldmann, Wick '10]

$$\Pi^{\mu\nu}_{\Gamma}(q) \equiv i \int d^4x \, e^{iq \cdot x} \, \langle 0 | \mathcal{T} \left\{ J^{\mu}_{\Gamma}(x) J^{\dagger,\nu}_{\Gamma}(0) \right\} | 0 \rangle$$

2) Relation to form factors

Sum over all the $\overline{s}b$ states: \overline{B}_{s} , $\overline{B}K$, $\overline{B}K^*$, $\overline{B}K\pi$, ...

• Main idea: Compute the inclusive $e^+e^- \rightarrow \bar{b}s$ cross-section and relate it to the form factors [Bharucha, Feldmann, Wick '10]

• Assuming global quark-hadron duality we have

$$\chi_{\Gamma}^{(\lambda)}|_{\text{OPE}} = \chi_{\Gamma}^{(\lambda)}|_{\text{1pt}} + \chi_{\Gamma}^{(\lambda)}|_{\bar{B}K} + \chi_{\Gamma}^{(\lambda)}|_{\bar{B}K^*} + \chi_{\Gamma}^{(\lambda)}|_{\bar{B}_s\phi} + \dots$$
Known terms
Sum of positive quantities

Further contributions such as $B \rightarrow K\pi\pi$ or $\Lambda_b \rightarrow \Lambda^{(*)}$.

Any new terms strengthens the bound.

• Main idea: Compute the inclusive $e^+e^- \rightarrow \bar{b}s$ cross-section and relate it to the form factors [Bharucha, Feldmann, Wick '10]

• Changing the basis of the *z*-polynomials yields:

 $\sum_{\mathcal{F}} \sum_{n \ge 0} \left| a_n^{\mathcal{F}} \right|^2 < 1$

$$\mathcal{F}_{\Gamma,\lambda}^{B\to M}(z) = \frac{1}{\mathcal{P}_{\mathcal{F}}(z)\phi_{\mathcal{F}}(z)} \sum_{n\geq 0} a_n^{\mathcal{F}} p_n(z, \alpha_{\Gamma}^{B\to M})$$

$$\bigwedge$$

$$\bigwedge$$

$$\bigwedge$$

$$\bigwedge$$

$$\bigwedge$$

$$\bigwedge$$

$$Orthnormal polynomials$$

Local form factors fit

- With this framework we perform a **combined fit** of $B \rightarrow K$, $B \rightarrow K^*$ and $B_s \rightarrow \phi$ LCSR and lattice QCD inputs:
 - $B \rightarrow K:$
 - [HPQCD '13 and '22; FNAL/MILC '17]
 - ([Khodjamiriam, Rusov '17]) \rightarrow large uncertainties, not used in the fit
 - $\quad B \to K^*:$
 - [Horgan, Liu, Meinel, Wingate '15]
 - [Gubernari, Kokulu, van Dyk '18] (B-meson LCSRs)
 - $B_{s} \rightarrow \phi:$
 - [Horgan, Liu, Meinel, Wingate '15]
 - [Gubernari, van Dyk, Virto '20] (B-meson LCSRs)
- Adding $\Lambda_b \to \Lambda^{(*)}$ form factors is possible and desirable

Results

Main conclusions:

- Fits are very good already at N = 2 (p-values > 77%)
- LCSR and LQCD combine nicely and still dominate the uncertainties
- Progresses in LQCD will gradually replace LCSR

Non-local form factors

r

$$\mathcal{A}_{\lambda}^{L,R}(B \to M_{\lambda}\ell\ell) = \mathcal{N}_{\lambda} \left\{ (C_9 \mp C_{10})\mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[C_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

$$\mathcal{H}_{\mu}(k,q) = i \int d^4x \, e^{iq \cdot x} \langle \bar{M}(k) | T\{\mathcal{J}_{\mu}^{\mathrm{em}}(x), \mathcal{C}_i \mathcal{O}_i\} | \bar{B}(q+k) \rangle$$

- Problematic because they can mimic a BSM signal!
 - \mathcal{H}_{λ} can be interpreted as a shift to C₉ and C₇
 - This shift is lepton-flavour universal i.e. compatible with the measurements
- Notably harder to estimate, no lattice computation so far
- Different parametrizations are suggested

Theory inputs

 \mathcal{H}_{λ} can still be calculated in **two kinematics regions**:

- Local OPE $|q|^2 \ge m_b^2$ [Grinstein, Piryol '04; Beylich, Buchalla, Feldmann '11]
- Light Cone OPE $q^2 \ll 4m_c^2$ [Khodjamirian, Mannel, Pivovarov, Wang '10]

Analyticity properties

Analyticity properties:

- Poles due to charmonium state
- Branch cut in the physical range due to on-shell D meson production: $B \rightarrow MD\overline{D}$
- The coefficients of the z-expansion are now complexvalued

Parametrization of the charm loop

- Still focusing on $B \rightarrow K$, $B \rightarrow K^*$ and $B_s \rightarrow \phi$ Inputs:
 - 4 theory point at negative q² from the light cone OPE
 - Experimental results at the J/ ψ (we keep ψ (2S) for future work)
- Use an under-constrained fit (N = 5) and allows for saturation of the dispersive bound

→ The uncertainties are **truncation order independent**, increasing the expansion order does not change their size

 \rightarrow All p-values are larger than 11%

[Gubernari, MR, van Dyk, Virto '22]

SM predictions

- Good overall agreement with previous theoretical approaches [Beneke, Feldman, Seidel '01 & '04]
 - Small deviation in the slope of $B_s \to \varphi \mu \mu$
- Larger but controlled uncertainties especially near the J/ψ
 - \rightarrow The approach is **systematically improvable** (new channels, ψ (2S) data...)

Comparison with data

- Conservatively accounting for the non-local form factors does not solve the $b \rightarrow s\mu\mu$ anomalies
- The largest source of theoretical uncertainty at low q² still comes from local form factors

Experimental results:

[Babar: 1204.3933; Belle: 1908.01848, 1904.02440; ATLAS: 1805.04000, CMS: 1308.3409, 1507.08126, 2010.13968, LHCb: 1403.8044, 2012.13241, 2003.04831, 1606.04731, 2107.13428]

Méril Reboud - 03/07/2023

Additional plots can be found in the paper: 2206.03797

Conclusion

Discussing BSM models requires a solid understanding of the hadronic physics:

- Local form factors uncertainties can be controlled and reduced by using improved dispersive bound and a *appropriate* parametrization
 - This is the first global analysis of $b \rightarrow s$ form factors
 - It is reassuring as it confirms channel-specific analyses...
 - ... and promising as dispersive effects start to be visible
- Understanding of **non-local form factors** is essential to distinguish BSM from SM interpretation of the measurements, but still requires theory inputs.
 - \rightarrow In both cases:
 - Uncertainties are still large, but controlled by dispersive bounds
 - Our approach is systematically improvable

Back-up

Where to find our results

EOS

- All the plots are available here: https://doi.org/10.5281/zenodo.7919635
- We also added
 - the updated posterior distributions for N = 2 in our parametrization and using a SSE as YAML files
 - All the tools/documentation to reproduce our results
- These results are also available in **EOS v1.0.7**:
 - /eos/constraints/B-to-P-form-factors.yaml
 - /eos/constraints/B-to-V-form-factors.yaml

Additional effects

• Rescattering of intermediate hadronic states might spoil the analytic structure of the non-local form-factors [Ciuchini, *et al*, '22]

• The effects of the finite width of the K* amount to a ~10% shift and are accounted for in the fit [Descotes-Genon, Khodjamirian, Virto, '19]

Comparison plots

- Normalizing the form factors to the N = 3 best fit point allows for a model comparison
- All the plots are available here: https://doi.org/10.5281/zenodo.7919635

 $B \rightarrow K^* P'_5$

