

CP violation and P₅' and Kmumu angular

analysis

Chandiprasad Kar On behalf of the CMS Collaboration

03rd July, 2023

CP violation in B_s^0 decays

• CP-violating phase ϕ_s arises from the **interference** between direct B_s^0 decays to a CP final state and decays through $B_s^0 - \overline{B}_s^0$ mixing $B_s^0 - \phi_{decay}$

SM prediction:

$$\phi_s \simeq -2\beta_s = -2arg\left(\frac{-V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right) = -36.96^{+0.72}_{-0.84} \text{ mrad}$$

NP prediction:

New elusive particle contributing to the mixing can modify the phase by ~100%. (DOI)

• $B_s^0 \rightarrow J/\psi \phi \rightarrow \mu^+ \mu^- K^+ K^-$ is a golden channel to measure the phase.

- ϕ_s was first measured by the Tevatron experiments D0 [PRD 85(2012) 032006] and CDF [PRL 109 (2012) 171802]
- Previous result at 8 TeV by CMS [PLB 757 (2016), 424] and ATLAS [JHEP 08 (2016) 147]
- LHCb also measured ϕ_s in other final states: $J/\psi K^+K^-$, $J/\psi \pi^+\pi^-$, $\psi(2S)\phi(1020)$, $D_s^+D_s^-$ [PLB 762 (2016) 253, PRL 113 (2014) 211801]
- Precise measurement of the CP-violating phase ϕ_s by LHCb experiment (<u>CERN seminar</u>) (NEW)

Analysis strategy

- Decay of B_s^0 meson into a final state $J/\psi\phi(1020)$, which is a mixture of two CP eigenstates (odd/even).
 - Need to disentangle the two states using an angular analysis
 - Time dependent analysis, the proper decay time of B_s^0 is reconstructed
- An unbinned maximum-likelihood fit is performed on the combined data samples extracting parameters of interest:
 - Amplitudes and strong phases: $A_0, A_{\perp}, A_{||}, A_s, \delta_0, \delta_{\perp}, \delta_{||}, \delta_{||}$

$$\delta_{s}, \delta_{S\perp} = \delta_{S} - \delta_{\perp}$$

- CPV parameters: ϕ_s , $|\lambda|$
- Mixing parameters: $\Delta \Gamma_s$, Δm_s

•
$$B_s^0$$
 properties: Γ_s , $\Gamma_s = \frac{\Gamma_H + \Gamma_R}{2}$

- Observables used in the fit are,
 - m, ct (B⁰_s proper decay time), angular observable ($\psi_T, \varphi_T, \theta_T$)
 - Per-candidate quantities: resolutions, **flavor tagging** probability

Event selection

- $B_s^0 \rightarrow J/\psi \phi(1020)$ is a good channel to measure the ϕ_s phase
 - easy to reconstruct with high S/B ratio
 - easy to trigger
 - SM predicts no direct CPV
- Trigger: non-displaced $J/\psi \to \mu^+\mu^-$ candidate plus additional muon used to tag the B_s^0 flavour
 - allows for improved tagging efficiency at the cost of reduced number of signal events
- Offline selections
 - J/ψ reconstructed from $\mu^+\mu^-$ with $p_T > 3.5$ GeV and $\eta < 2.4$, good common vertex.
 - ϕ formed from pairs of OS tracks with invariant mass compatible with ϕ (1020) meson mass (kaon mass assumed both tracks)
 - B_s^0 from combination of J/ψ and ϕ (1020) candidates with refitted 2μ + 2tracks common vertex

Δ

- $p_T(B_s^0)$: > 11 GeV
- $ct(B_s^0)$: $\geq 70 \ \mu m$
- $m(\mu^+\mu^-K^+K^-) \in [5.24, 5.49]$ GeV

Flavour tagging

- Tagger: Opposite-side (OS) muon \rightarrow To identify the flavour of B_s^0 and \bar{B}_s^0
 - Exploits the semileptonic b $\rightarrow \mu + X$, tagger feature: μ charge
 - Sources of dilution: cascade decays, pile-up, gluon splitting, mixing
 - DNN is trained on $B_s^0 \rightarrow J/\psi\phi$ MC
 - Mis-tag probability and tagging power are evaluated on per-event basis
 - Calibrated in data using $B^+ \rightarrow J/\psi K^+$
- Tagging efficiency ≈ 50% both in 2017 and 2018 data

Fit projections

- Unbinned maximum likelihood fit is performed to extract the parameter of interests.
- Likelihood function: components describing the sig. and bkg contributions (combinatorial and peaking bkg, dominated by $B^0 \rightarrow J/\psi K^{*0}(982)$)

 $B_s^0 \to J/\psi \phi$: Results

- Simultaneous fit on 2017 and 2018 datasets
- ϕ_s and $\Delta\Gamma_s$ are in agreement with the SM expectations
- $|\lambda|$ compatible with no direct CPV

Fit value	Stat. uncer.	Syst. uncer.
-11	± 50	± 10
0.114	± 0.014	± 0.007
17.51	$+0.10 \\ -0.09$	± 0.03
0.972	± 0.026	± 0.008
0.6531	± 0.0042	± 0.0026
0.5350	± 0.0047	± 0.0049
0.2337	± 0.0063	± 0.0045
0.022	$+0.008 \\ -0.007$	± 0.016
3.18	± 0.12	± 0.03
2.77	± 0.16	± 0.05
0.221	$+0.083 \\ -0.070$	± 0.048
	Fit value -11 0.114 17.51 0.972 0.6531 0.5350 0.2337 0.022 3.18 2.77 0.221	Fit valueStat. uncer. -11 ± 50 0.114 ± 0.014 17.51 $\stackrel{+0.10}{_{-0.09}}$ 0.972 ± 0.026 0.6531 ± 0.0042 0.5350 ± 0.0047 0.2337 ± 0.0063 0.022 $\stackrel{+0.008}{_{-0.007}}$ 3.18 ± 0.12 2.77 ± 0.16 0.221 $\stackrel{+0.083}{_{-0.070}}$

- Dominant systematic uncertainties on the ϕ_s and $\Delta\Gamma_s$
 - Fit bias
 - Proper decay length resolution
 - Angular efficiency
 - Sig./bkg. $\omega_{\text{\tiny tag}}$ difference

 $B_{\rm s}^0 \to J/\psi\phi$: Results

8 TeV+13 TeV combination

- Uses Run 1(19.7 fb⁻¹)+ partial Run 2(96.4 fb⁻¹) data $\phi_s = -21 \pm 44 \text{ (stat)} \pm 10 \text{ (syst) mrad},$ $\Delta \Gamma_s = 0.1032 \pm 0.0095 \text{ (stat)} \pm 0.0048 \text{ (syst) ps}^{-1},$
- Significantly more precise than CMS Run 1 results using 8 TeV data [PLB 757 (2016) 97] because of more statistics and better tagging strategy in Run 2 data analysis.

$P_5^{'}$ and Kmumu angular analysis

• In this talk, following analysis will be covered.

- Measurement of angular parameters from the decay $B^0 \rightarrow K^{*0}\mu^+\mu^-$ in proton–proton collisions [*Phys Lett B 781 (2018) 517-541*]
- Angular analysis of the decay $B^+ \to K^+ \mu^+ \mu^-$ in proton-proton collisions at $\sqrt{s} = 8$ TeV. [Phys Rev 112011]
- Angular analysis of the decay $B^+ \rightarrow K^{*+}\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s} = 8$ TeV. [JHEP 04 (2021) 124]
 - $b \rightarrow sll$ decays are Flavour changing neutral current process
 - Forbidden in Standard Model at tree level
 - Proceed through higher order diagrams (penguin, box)
 - Sensitive to New Physics effect

 γ, Z

Lt,c,u

W

 \overline{q}

 \overline{q}

 P_{B^0}

u⁺u⁻ rest frame

- Since the expected signal events are small, floating all parameters will lead to non convergence of fit.
- F_L, F_S , and A_S are fixed from previous CMS measurement.
- P_1 and P'_5 are measured, A^5_S used as nuisance parameter.
- q^2 separated in 9 bins
 - 7 signal bins, angular fit performed independently
 - 2 resonant bins ($B^0 \rightarrow J/\psi K^{*0}$ and $B^0 \rightarrow \psi(2S)K^{*0}$)

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: Results

- Results compared with Run 1 LHCb result and SM prediction.
- CMS result are compatible with SM predictions within uncertainties.
- No significant deviations from other experimental results.

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: HL-LHC

$B^+ \rightarrow K^+ \mu^+ \mu^-$ angular analysis

• Three body final state, one angle (θ_l) and q^2 are sufficient to describe the decay rate.

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^2\Gamma}{\mathrm{d}q^2\mathrm{d}\cos\theta_I} = \frac{3}{4} \left(1 - F_{\mathrm{H}}\right) \left(1 - \cos^2\theta_\ell\right) + \frac{1}{2}F_{\mathrm{H}} + \mathcal{A}_{\mathrm{FB}}\cos\theta_\ell$$

 Parameters of interest: forward backward asymmetry of muons (A_{FB}), angular parameter (F_H)

- 7 signal q^2 bin, 2 control channel bins $(B^+ \rightarrow J/\psi K^+, B^+ \rightarrow \psi(2S)K^+)$
- 2 more special bins: [1-6] GeV² and [1-22] GeV²
- An unbinned maximum likelihood fit is performed in signal q^2 bin.
 - Validations are performed on signal MC sample (both high and data-like statistics)

- Two error bar on the data point: Inner error bar is statistical uncertainty, full bar is total uncertainty.
- Dominant systematic uncertainty is from the background shape modelling.
- Observed results are compatible with SM predictions within uncertainties.

Systematic uncertainty	$A_{\rm FB}~(\times 10^{-2})$	$F_{\rm H}~(\times 10^{-2})$
Finite size of MC samples	0.4–1.8	0.9–5.0
Efficiency description	0.1–1.5	0.1–7.8
Simulation mismodeling	0.1–2.8	0.1 - 1.4
Background parametrization model	0.1-1.0	0.1 - 5.1
Angular resolution	0.1 - 1.7	0.1–3.3
Dimuon mass resolution	0.1-1.0	0.1 - 1.5
Fitting procedure	0.1–3.2	0.4–25
Background distribution	0.1–7.2	0.1–29
Total systematic uncertainty	1.6–7.5	4.4–39

$B^+ \rightarrow K^{*+} \mu^+ \mu^-$ angular analysis

- K^{*+} is reconstructed using $K_s^0(\pi^+\pi^-)\pi^+$
- Differential decay rate as a function of θ_l, θ_K , and $q^2 (= m_{\mu\mu}^2)$

$$\frac{1}{\Gamma} \frac{d^{3}\Gamma}{d\cos\theta_{K} d\cos\theta_{\ell} dq^{2}} = \frac{9}{16} \left\{ \frac{2}{3} \left[F_{S} + 2A_{S} \cos\theta_{K} \right] \left(1 - \cos^{2}\theta_{\ell} \right) \\ + \left(1 - F_{S} \right) \left[2F_{L} \cos^{2}\theta_{K} \left(1 - \cos^{2}\theta_{\ell} \right) \\ + \frac{1}{2} \left(1 - F_{L} \right)_{K_{S}^{0}\pi} - \cos^{2}\theta_{K}^{\pi^{+}} \right) \left(1 + \cos^{2}\theta_{\ell} \right) \\ + \frac{4}{3} A_{FB} \left(1 - \cos^{2}\theta_{K} \right) \cos\theta_{\ell} \right] \right\}.$$

- Parameter of interests: longitudinal polarization of $K^{*+}(F_{\perp})$ and forward-backward asymmetry of muons (A_{FB})
- Measurement performed on three q^2 bins.
- Two additional q^2 control regions to include $B^+ \to J/\psi K^{*+}$ and $B^+ \to \psi(2S)K^{*+}$ resonant decays.

Fit algorithm

CMS

60

20

150

4.8

CMS

 $< q^2 < 8.68 \text{ GeV}^2$

5

 $1 < q^2 < 8.68 \text{ GeV}^2$

5.2

Candidates / 0.04 GeV

25

 F_L and A_{FB} extracted for each q^2 bin by unbinned likelihood fit on θ_l, θ_K and m

 $pdf(m, \cos \theta_{K}, \cos \theta_{\ell}) = Y_{S} S^{m}(m) S^{a}(\cos \theta_{K}, \cos \theta_{K})$ $+ \gamma P^{m} (\gamma) S^{a}(\cos \theta_{K}, \cos \theta_{K}) = Y_{S} S^{m}(m) S^{a}(\cos \theta_{K}, \cos \theta_{K})$

CMS

CMS

-0.5

150

100

50

Candidates / 0.125

25

- Υ_S and Υ_B are the signal and background yields (free parameters).
- $S^{m}(m)$ and $B^{m}(m)$ are double Gaussian shape with parameters determined on MC and exponential function (slope free)
- $B^{\theta_{K}}(cos\theta_{K})$ and $B^{\theta_{l}}(cos\theta_{l})$ are polynomial or exponential functions depending on the q^2 .

20.0 fb⁻¹ (8 TeV)

Background

5.6

20.0 fb⁻¹ (8 TeV)

 $m(K_{c}^{0}\pi^{+}\mu^{+}\mu^{-})$ [GeV]

Data

5.8

Data

— Total fit

- Signal

5.4

Summary

- CP violation in B_s^0 decays
 - CPV phase ϕ_s and decay width difference $\Delta\Gamma_s$ is measured in $B^0_s \to J/\psi\phi$ channel.
 - Consistent with the SM prediction
- FCNC rare decays are being extensively studied in CMS using Run 1 data
 - $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ has been extended to measure P_1 and P_5' .
 - $P_5^{'}$ showed some deviation from SM (by different experiments)
 - $B^+ \rightarrow K^+ \mu^+ \mu^-$ angular analysis performed for the first time in CMS, to measure A_{FB} and F_H
 - $B^+ \to K^{*+} \mu^+ \mu^-$ angular analysis performed to extract A_{FB} and F_L .
 - Results are in agreement with SM
- Run 2 analyses are underway and new results are expected to be out soon.

 $B_s^0 \rightarrow J/\psi \phi$: Results

 Results are consistent with SM predictions and no CPV in the interference between mixing and decay.

Systematic uncertainties

Source	$P_1(\times 10^{-3})$	$P_5'(\times 10^{-3})$
Simulation mismodeling	1–33	10–23
Fit bias	5-78	10–120
Finite size of simulated samples	29–73	31–110
Efficiency	17–100	5-65
K π mistagging	8–110	6–66
Background distribution	12–70	10–51
Mass distribution	12	19
Feed-through background	4–12	3–24
$F_{\rm L}$, $F_{\rm S}$, $A_{\rm S}$ uncertainty propagation	0–210	0–210
Angular resolution	2–68	0.1–12
Total	100–230	70–250

Fit bias with cocktail signal MC + toy background from data side-bands MC stat due to limited statistics in efficiency shape evaluation $K\pi$ mistag evaluated in J/ψ control region and propagated to all bins F_L, F_S, A_S uncertainty propagation studied with pseudo experiment, take ratio of stat. uncert. on P_1 and P'_5 with free and fixed fit to estimate systematic uncertainties.

New physics in $b \rightarrow sl^+l^-$ transitions

- $b \rightarrow sll$ decays are Flavour changing neutral current process
 - Forbidden in Standard Model at tree level
 - Proceed through higher order diagrams (penguin, box)
 - Sensitive to New Physics effect
- Suitable decay modes are: $B^0 \rightarrow K^{*0}\mu^+\mu^-$, $B^+ \rightarrow K^+\mu^+\mu^-$, $B^+ \rightarrow K^{*+}\mu^+\mu^-$, $B^0_s \rightarrow \phi\mu^+\mu^-$ etc
- List of observables to compare with SM predictions (as function of square of dimuon mass): Branc differential BFs, CP asymmetry, Isospin asy Forward-backward asymmetry of muons $e_{\overline{b}}$
- In this talk, following analysis will be covered.
 - Measurement of angular parameters from the decay $B^0 \to K^{*0}\mu^+\mu^-$ in proton–proton collisions at $\sqrt{s} = 8$ TeV. [Phys Lett B 781 (2018) 517-541]
 - Angular analysis of the decay $B^+ \rightarrow K^+ \mu^+ \mu^-$ in proton-proton collisions at $\sqrt{s} = 8$ TeV. [Phys Rev D 98 (2018) 112011]
 - Angular analysis of the decay $B^+ \rightarrow K^{*+}\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s} = 8$ TeV. [JHEP 04 (2021) 124]

t,c,u

 \overline{q}

 \overline{q}

Fit projections

- Overall agreement is good.
- Systematic uncertainty on the model assumptions are considered.