

# Measurements of $\phi_s$ and $\sin 2\beta$ at LHCb

### Peilian Li (on behalf of the LHCb collaboration)





### **CKM** matrix

$$V_{CKM} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix} + \mathcal{O}(\lambda^5) \sim \begin{pmatrix} 1 & 0.2 & 0.004 \\ 0.2 & 1 & 0.04 \\ 0.008 & 0.04 & 1 \end{pmatrix}$$

• Key test of the SM: Verify unitarity of CKM matrix

- Magnitudes: branching fractions or mixing frequencies
- Phases: CP violation measurement



### **CKM** matrix

$$V_{CKM} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix} + \mathcal{O}(\lambda^5) \sim \begin{pmatrix} 1 & 0.2 & 0.004 \\ 0.2 & 1 & 0.04 \\ 0.008 & 0.04 & 1 \end{pmatrix}$$

- Key test of the SM: Verify unitarity of CKM matrix
  - Magnitudes: branching fractions or mixing frequencies
  - Phases: CP violation measurement
- Sensitive probe for new physics





### Neutral *B* meson oscillation

 $\odot$  Neutral *B* mesons can oscillate through box diagrams



| Mixing and decay can be described by Schröding                                                                                                                                  | ger-like equation                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| $i\frac{d}{dt}\left(\frac{B}{B}\right) = \tilde{\mathbf{H}}\left(\frac{B}{B}\right) = \begin{bmatrix} m - \frac{i}{2}\Gamma\\m_{12}^* - \frac{i}{2}\Gamma_{12}^* \end{bmatrix}$ | $ \begin{array}{c} m_{12} - \frac{i}{2} \Gamma_{12} \\ m - \frac{i}{2} \Gamma \end{array} \right] \begin{pmatrix} B \\ \overline{B} \end{pmatrix} $ |

### Neutral B meson oscillation

 $\bullet$  Neutral *B* mesons can oscillate through box diagrams



Mixing and decay can be described by Schrödinger-like equation  $i\frac{d}{dt}\begin{pmatrix}B\\B\end{pmatrix} = \tilde{\mathbf{H}}\begin{pmatrix}B\\B\end{pmatrix} = \begin{bmatrix}m - \frac{i}{2}\Gamma & m_{12} - \frac{i}{2}\Gamma_{12}\\m_{12}^* - \frac{i}{2}\Gamma_{12}^* & m - \frac{i}{2}\Gamma\end{bmatrix}\begin{pmatrix}B\\B\end{pmatrix}$ 

• Decay rate of initial B or  $\overline{B}$ 

$$\begin{split} |\langle f|H|B\rangle|^2 &= \frac{1}{2}e^{-\Gamma t}|A_f|^2 \Big\{ D \cosh\left(\frac{\Delta\Gamma}{2}t\right) + A_{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &\pm C \cos(\Delta mt) \mp S \sin(\Delta mt) \Big\} \\ &\text{direct } CP \qquad CP \text{ in mixing} \end{split}$$

• Mass difference  $\Delta m_{(s)} = M_H - M_L = 2 |M_{12}| \rightarrow \text{oscillation frequency}!$ 

• Decay-width difference  $\Delta \Gamma_{(s)} = \Gamma_L - \Gamma_H = 2 |\Gamma_{12}| \cos \phi_{12}$ 

# Neutral B meson oscillation

 $\bullet$  Neutral *B* mesons can oscillate through box diagrams



Mixing and decay can be described by Schrödinger-like equation

$$i\frac{d}{dt}\begin{pmatrix}B\\B\end{pmatrix} = \tilde{\mathbf{H}}\begin{pmatrix}B\\B\end{pmatrix} = \begin{bmatrix}m - \frac{i}{2}\Gamma & m_{12} - \frac{i}{2}\Gamma_{12}\\m_{12}^* - \frac{i}{2}\Gamma_{12}^* & m - \frac{i}{2}\Gamma\end{bmatrix}\begin{pmatrix}B\\B\end{pmatrix}$$



• Decay rate of initial B or  $\overline{B}$ 

$$\begin{split} |\langle f|H|B\rangle|^2 &= \frac{1}{2}e^{-\Gamma t}|A_f|^2 \Big\{ \mathcal{D}\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \mathcal{A}_{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &\pm \mathcal{C}\cos(\Delta mt) \mp S\sin(\Delta mt) \Big\} \\ &\text{direct } \mathcal{CP} \qquad \mathcal{CP}\text{ in mixing} \end{split}$$

• Mass difference  $\Delta m_{(s)} = M_H - M_L = 2 |M_{12}| \rightarrow \text{oscillation frequency}!$ 

• Decay-width difference  $\Delta \Gamma_{(s)} = \Gamma_L - \Gamma_H = 2 |\Gamma_{12}| \cos \phi_{12}$ 

### **Opportunities for new physics**



• New physics (NP) short-distance contributions can influence mixing  $m_{12}^q = m_{12}^{SM,q} \cdot \Delta_q^{NP}$ [PRD 86(2012)033008]

 Through B mixing, NP energy scales of up to 20 TeV for tree-level NP or 2 TeV for NP in loops can be probed [PRD 89(2014)033016]



# CP violation in B system

- CP violation requires two interfering amplitudes with different strong and weak phases
- For a  $B_{(s)}^0$  decays to a CP eigenstate *f*, CP-violating effects depend on  $\lambda = \frac{q}{p} \frac{A_f}{A_f}$



*CP* violation in interference of decays with/without mixing

Time-dependent or time-integrated difference of decay rates of initial flavour eigenstates  $\Gamma(B_{(\rightsquigarrow\overline{B})} \to f_{CP})(t) \neq \Gamma(\overline{B}_{(\rightsquigarrowB)} \to f_{CP})(t)$ 

# CP violation in B system

- CP violation requires two interfering amplitudes with different strong and weak phases
- For a  $B_{(s)}^0$  decays to a CP eigenstate *f*, CP-violating effects depend on  $\lambda = \frac{q}{p} \frac{A_f}{A_f}$



 $\phi_s \& \sin(2\beta)$ 

•  $\sin(2\beta) \text{ in } B^0 \to \psi K_s^0 \ (\beta \sim 22^\circ)$   $\beta = arg(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*})$ •  $B^0 \to J/\psi(\mu^+\mu^-)K_s^0(\to \pi^+\pi^-)$ •  $B^0 \to J/\psi(e^+e^-)K_s^0(\to \pi^+\pi^-)$ •  $B^0 \to \psi(2S)(\mu^+\mu^-)K_s^0(\to \pi^+\pi^-)$ 



 $\phi_s \& \sin(2\beta)$ 

• 
$$\sin(2\beta)$$
 in  $B^0 \to \psi K_s^0$  ( $\beta \sim 22^\circ$ )



• 
$$B^0 \to J/\psi(\mu^+\mu^-)K_s^0(\to \pi^+\pi^-)$$
  
•  $B^0 \to J/\psi(e^+e^-)K_s^0(\to \pi^+\pi^-)$   
•  $B^0 \to \psi(2S)(\mu^+\mu^-)K_s^0(\to \pi^+\pi^-)$ 

• 
$$\phi_s \text{ in } B_s^0 \to J/\psi(\mu^+\mu^-)K^+K^-$$
  
 $\phi_s^{SM} \approx -2\beta_s = 2arg(\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*})$ 

(ignoring penguin contribution)

• Tree amplitude dominant



 $\phi_s \& \sin(2\beta)$ 

• 
$$\sin(2\beta)$$
 in  $B^0 \to \psi K_s^0$  ( $\beta \sim 22^\circ$ )



• 
$$B^0 \to J/\psi(\mu^+\mu^-)K_s^0(\to\pi^+\pi^-)$$
  
•  $B^0 \to J/\psi(e^+e^-)K_s^0(\to\pi^+\pi^-)$   
•  $B^0 \to \psi(2S)(\mu^+\mu^-)K_s^0(\to\pi^+\pi^-)$ 



• 
$$\phi_s \text{ in } B_s^0 \to J/\psi(\mu^+\mu^-)K^+K^-$$
  
 $\phi_s^{SM} \approx -2\beta_s = 2arg(\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*})$ 

(ignoring penguin contribution)

- Tree amplitude dominant
- $\phi_s^{s\bar{s}s}$  in  $B_s^0 \to \phi(\to K^+K^-)\phi(\to K^+K^-)$ 
  - Penguin dominant





Int. J. Mode. Phys. A30 (2015) 1530022

JINST 14 (2019) P04013

General purpose detector specialised in beauty and charm hadrons

• Daughters of b & c hadron decays:  $p_T \sim \mathcal{O}(1 \text{ GeV}/c)$ , flight distance L~1mm



LHCb MC

√s = 14 TeV

General purpose detector specialised in beauty and charm hadrons

• Daughters of b & c hadron decays:  $p_T \sim \mathcal{O}(1 \text{ GeV}/c)$ , flight distance L~1mm



LHCb MC

vs = 14 TeV



• Daughters of b & c hadron decays:  $p_T \sim \mathcal{O}(1 \text{ GeV}/c)$ , flight distance L~1mm



LHCb MC

vs = 14 TeV

General purpose detector specialised in beauty and charm hadrons

• Daughters of b & c hadron decays:  $p_T \sim \mathcal{O}(1 \text{ GeV}/c)$ , flight distance L~1mm



LHCb MC

vs = 14 TeV

# Luminosity



- Run 1(2011+2012): 3 fb<sup>-1</sup> + Run 2 (2015-2018): 6 fb<sup>-1</sup>
- Large number of beauty hadrons: [PRL118(2017)052002]  $\sigma(b\bar{b})(7TeV) = 72.0 \pm 0.3 \pm 6.8 \ \mu b, \ \sigma(b\bar{b})(13TeV) = 144 \pm 1 \pm 21 \ \mu b \ in 2<\eta<5$

## Mass fit

### *sPlot technique* to subtract combinatorial background: $\rightarrow$ perform fits to invariant mass distribution

•  $B^0 \to J/\psi(\mu^+\mu^-)K_s^0$  (85%) •  $B^0 \to J/\psi(e^+e^-)K_s^0$  (12%) •  $B^0 \to \psi(2S)(\mu^+\mu^-)K_s^0$  (6%)

• 
$$B_s^0 \to J/\psi K^+ K^-$$

• 
$$B_s^0 \to \phi \phi$$

(a) LHCb  $6 \text{ fb}^{-1}$ 

5500

5600



Total signal candidates ~306090 + 42700 + 23560

> LHCb-PAPER-2023-013 In preparation

Total signal candidates ~349000

LHCb-PAPER-2023-016 In preparation

Total signal candidates ~15840

5400

LHCb-PAPER-2023-001

P. Li · Beauty 2023@Clermont-Ferrand · 9

### **CP** asymmetry

• Time-dependent CP asymmetry:  $A_{CP}(t) = \frac{\Gamma(\bar{B}^0_{(s)} \to f) - \Gamma(B^0_{(s)} \to f)}{\Gamma(\bar{B}^0_{(s)} \to f) + \Gamma(B^0_{(s)} \to f)} = \eta_f \cdot \sin 2\beta_{(s)} \cdot \sin(\Delta m_{(s)}t)$ • Experimentally

$$A_{CP}(t) \propto \eta_f \cdot e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} \cdot (1 - 2\omega) \cdot \sin 2\beta_{(s)} \cdot \sin(\Delta m_{(s)}t)$$

- Tagging of  $B_{(s)}^0$  flavor at production: probability of wrong tag  $\omega$
- Excellent decay-time resolution  $\sigma_t \sim 43$  fs
- CP eigenvalue of the final state  $\eta_f$

### **CP** asymmetry

• Time-dependent CP asymmetry:  $A_{CP}(t) = \frac{\Gamma(\bar{B}^0_{(s)} \to f) - \Gamma(B^0_{(s)} \to f)}{\Gamma(\bar{B}^0_{(s)} \to f) + \Gamma(B^0_{(s)} \to f)} = \eta_f \cdot \sin 2\beta_{(s)} \cdot \sin(\Delta m_{(s)}t)$ • Experimentally

$$A_{CP}(t) \propto \eta_f \cdot e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} \cdot (1 - 2\omega) \cdot \sin 2\beta_{(s)} \cdot \sin(\Delta m_{(s)}t)$$

- Tagging of  $B_{(s)}^0$  flavor at production: probability of wrong tag  $\omega$
- Excellent decay-time resolution  $\sigma_t \sim 43$  fs
- CP eigenvalue of the final state  $\eta_f$
- $B^0 \to \psi(\to \ell^+ \ell^-) K^0_S(\to \pi^+ \pi^-)$ : CP-odd component only

### **CP** asymmetry

• Time-dependent CP asymmetry:  $A_{CP}(t) = \frac{\Gamma(\bar{B}^0_{(s)} \to f) - \Gamma(B^0_{(s)} \to f)}{\Gamma(\bar{B}^0_{(s)} \to f) + \Gamma(B^0_{(s)} \to f)} = \eta_f \cdot \sin 2\beta_{(s)} \cdot \sin(\Delta m_{(s)}t)$ • Experimentally

$$A_{CP}(t) \propto \eta_f \cdot e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} \cdot (1 - 2\omega) \cdot \sin 2\beta_{(s)} \cdot \sin(\Delta m_{(s)}t)$$

- Tagging of  $B_{(s)}^0$  flavor at production: probability of wrong tag  $\omega$
- Excellent decay-time resolution  $\sigma_t \sim 43$  fs
- CP eigenvalue of the final state  $\eta_f$
- $B^0 \to \psi(\to \ell^+ \ell^-) K^0_S(\to \pi^+ \pi^-)$ : CP-odd component only
- $B_s^0 \to J/\psi(\to \mu^+\mu^-)\phi(\to K^+K^-) + B_s^0 \to \phi(KK)\phi(KK)$ :
  - → a mixture of CP-even (L = 0,2) & CP-odd (L = 1) components









• Same-side (SS) tagging: Use charge of kaon produced in the fragmentation



- Same-side (SS) tagging: Use charge of kaon produced in the fragmentation
- Opposite-side (OS) tagging: charge of leptons or hadrons from the decay of the other *b* hadrons

tagging efficiency  $\epsilon_{tag}$ 



- Decay time resolution dilutes oscillations,  $\mathcal{D} = exp(-\frac{1}{2}\sigma_{\text{eff}}^2 \Delta m_s^2)$
- Significant for  $B_s^0$  system, negligible for  $B^0$



- Decay time resolution dilutes oscillations,  $\mathcal{D} = exp(-\frac{1}{2}\sigma_{\text{eff}}^2 \Delta m_s^2)$
- Significant for  $B_s^0$  system, negligible for  $B^0$ 
  - $B^0 \rightarrow \psi K_S^0$ :  $\sigma_{MC} \sim 60$  fs •  $B_s^0 \rightarrow J/\psi KK \& B_s^0 \rightarrow \phi \phi$

$$\delta_t^2 = (\frac{m}{p})^2 \sigma_L^2 + (\frac{t}{p})^2 \sigma_p^2$$

$$\sim 200 \,\mu \text{m} \quad \sigma_p/p \sim 0.4 \,\%$$



- Decay time resolution dilutes oscillations,  $\mathcal{D} = exp(-\frac{1}{2}\sigma_{\text{eff}}^2 \Delta m_s^2)$
- Significant for  $B_s^0$  system, negligible for  $B^0$

• 
$$B^0 \to \psi K_S^0$$
:  $\sigma_{MC} \sim 60$  fs  
•  $B_s^0 \to J/\psi KK \& B_s^0 \to \phi \phi$   
 $\delta_t^2 = (\frac{m}{p})^2 \sigma_L^2 + (\frac{t}{p})^2 \sigma_p^2$ 

~ 200 
$$\mu$$
m  $\sigma_p/p \sim 0.4 \%$ 

Effective Gaussian resolution model:  $\sigma_{eff} \text{ as a function of per-event } \delta_t \text{ (11 bins)}$ 



- Decay time resolution dilutes oscillations,  $\mathcal{D} = exp(-\frac{1}{2}\sigma_{\text{eff}}^2\Delta m_s^2)$
- Significant for  $B_s^0$  system, negligible for  $B^0$

• 
$$B^0 \to \psi K_S^0$$
:  $\sigma_{MC} \sim 60$  fs  
•  $B_s^0 \to J/\psi KK \& B_s^0 \to \phi \phi$   
 $\delta_t^2 = (\frac{m}{n})^2 \sigma_L^2 + (\frac{t}{n})^2 \sigma_p^2$ 

 $\begin{array}{c} P \downarrow & P \downarrow \\ \sim 200 \,\mu \mathrm{m} & \sigma_p/p \sim 0.4 \,\% \end{array}$ 

Effective Gaussian resolution model:  $\sigma_{eff} \text{ as a function of per-event } \delta_t \text{ (11 bins)}$ 

$$\sigma_{eff} \sim 42(3) \text{ fs} \rightarrow \mathcal{D} = 0.757$$



### Decay time & angular efficiencies

- Reconstruction and selection criteria introduce non-uniform efficiency
- Decay-time efficiencies: Data driven method  $\varepsilon_{\text{data}}^{B_s^0}(t) = \varepsilon_{\text{data}}^{B^0}(t) \times \frac{\varepsilon_{\text{sim}}^{B_s^{\circ}}(t)}{\varepsilon_{\text{sim}}^{B^0}(t)}$ Scaled  $\varepsilon^{B_s^0}_{\text{data}}$ LHCb EPJC79(2019)706  $B_s^0 \to J/\psi KK$ Modelled by cubic splines: 0.8 knots at 0.3, 0.91, 1.96, 9 ps 0.6 10 1 *t* [ps]  $f(t) \propto \varepsilon(t) \cdot e^{-t/\tau} \otimes G(0,\sigma_t)$

# Decay time & angular efficiencies

• Reconstruction and selection criteria introduce non-uniform efficiency



• Angular efficiencies for  $B_s^0$  decays estimated with simulation



P. Li · Beauty 2023@Clermont-Ferrand · 14



P. Li · Beauty 2023@Clermont-Ferrand · 15

 $\phi_s \text{ in } B_s^0 \to J/\psi KK$ 

LHCb-PAPER-2023-016 In preparation

| Parameters                                 | Values <sup>1</sup>                            |
|--------------------------------------------|------------------------------------------------|
| $\phi_s$ [rad]                             | $-0.039 \pm 0.022 \pm 0.006$                   |
| $ \lambda $                                | $1.001 \pm 0.011 \pm 0.005$                    |
| $\Gamma_s - \Gamma_d \ [\mathrm{ps}^{-1}]$ | $-0.0057  {}^{+ 0.0013}_{- 0.0015} \pm 0.0014$ |
| $\Delta\Gamma_s \ [ \mathrm{ps}^{-1}]$     | $0.0846 \pm 0.0044 \pm 0.0024$                 |
| $\Delta m_s \; [ { m ps}^{-1}]$            | $17.743 \pm 0.033 \pm 0.009$                   |
| $ A_{\perp} ^2$                            | $0.2463 \pm 0.0023 \pm 0.0024$                 |
| $ A_0 ^2$                                  | $0.5179 \pm 0.0017 \pm 0.0032$                 |
| $\delta_{\perp} - \delta_0$ [rad]          | $2.903 {}^{+ 0.075}_{- 0.074} \pm 0.048$       |
| $\delta_{\parallel} - \delta_0 \; [rad]$   | $3.146 \pm 0.060 \pm 0.052$                    |

 $\phi_{s}$  in  $B_{s}^{0} \rightarrow J/\psi KK$ 

LHCb-PAPER-2023-016 In preparation

| Parameters                                     | Values <sup>1</sup>                           |
|------------------------------------------------|-----------------------------------------------|
| $\phi_s$ [rad]                                 | $-0.039 \pm 0.022 \pm 0.006$                  |
| $ \lambda $                                    | $1.001 \pm 0.011 \pm 0.005$                   |
| $\Gamma_s - \Gamma_d \; [  \mathrm{ps}^{-1} ]$ | $-0.0057 {}^{+ 0.0013}_{- 0.0015} \pm 0.0014$ |
| $\Delta \Gamma_s \ [ { m ps}^{-1}]$            | $0.0846 \pm 0.0044 \pm 0.0024$                |
| $\Delta m_s [\mathrm{ps}^{-1}]$                | $17.743 \pm 0.033 \pm 0.009$                  |
| $ A_{\perp} ^2$                                | $0.2463 \pm 0.0023 \pm 0.0024$                |
| $ A_0 ^2$                                      | $0.5179 \pm 0.0017 \pm 0.0032$                |
| $\delta_{\perp} - \delta_0$ [rad]              | $2.903 {}^{+ 0.075}_{- 0.074} \pm 0.048$      |
| $\delta_{\parallel} - \delta_0$ [rad]          | $3.146 \pm 0.060 \pm 0.052$                   |

- The most precise measurement in single channel to date
- Compatible with prediction assuming the SM
- No evidence of CP violation
- Consistent and combined with Run 1 measurement:

 $\phi_s = -0.043 \pm 0.020$  rad

# $\phi_s$ combinations in $b \rightarrow c\bar{c}s$ transition

Previous World Average:  $\phi_s^{c\bar{c}s} = -0.049 \pm 0.019$  rad  $\phi_s^{J/\psi KK} = -0.070 \pm 0.022$  rad New World Average: (preliminary)  $\phi_s^{c\bar{c}s} = -0.050 \pm 0.016 \text{ rad (16\%)}$  $\phi_s^{J/\psi KK} = -0.039 \pm 0.017 \text{ rad (23\%)}$ 

Consistent with the Global fits with SM assumption

 $\phi_s^{\text{CKMFitter}} \approx -2\beta_s = (-0.0368^{+0.0006}_{-0.0009}) \text{ rad} \quad \phi_s^{\text{UTFitter}} = (-0.0370 \pm 0.0010) \text{ rad}$ 



# $\phi_s$ in $b \rightarrow s\bar{s}s$ transition

#### LHCb-PAPER-2023-001

$$\phi_s^{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 \text{ rad}$$
$$|\lambda| = 1.004 \pm \pm 0.030 \pm 0.009$$

- The most precise measurement in any penguin dominated B decays
- No polarisation dependence is observed



# $\sin 2\beta$ in $B^0 \to \psi K_S^0$

LHCb-PAPER-2023-013 In preparation



0.55

0.60

0.65

0.70

0.75

0.80

0.85

 $S_{\psi K_{
m S}^0}$ 

# $\sin 2\beta$ combinations





# $\sin 2\beta$ combinations



- Consistent with other measurements, still statistical uncertainty limited
- **Dominant contribution** to the World Average

# $\sin 2\beta$ combinations



- Consistent with other measurements, still statistical uncertainty limited
- Dominant contribution to the World Average

### Looking at Run 3 and beyond



### Looking at Run 3 and beyond



- Further precision improvement with more data
- Great opportunities to search for NP indirectly, up to > TeV scale





### Summary

- LHCb dominates the world average of many CPV measurements
- ✓ Flag-ship time-dependent measurements of CP violation in *B*-meson decays with full LHCb data sample, providing the most precise results for
  - $\checkmark \phi_s$  in  $b \rightarrow c\bar{c}s$  transition,  $\sigma(\phi_s) \sim 20$  mrad
  - $\checkmark \phi_s^{s\bar{s}s}$  in penguin dominant *B* decays
  - $\checkmark \sin 2\beta = 0.716 \pm 0.013 (\text{stat.}) \pm 0.008 (\text{syst.})$
- Looking forward to further test of the SM and search for new physics with more data from Upgrade I & II

### Summary

- LHCb dominates the world average of many CPV measurements
- ✓ Flag-ship time-dependent measurements of CP violation in *B*-meson decays with full LHCb data sample, providing the most precise results for
  - $\checkmark \phi_s$  in  $b \rightarrow c\bar{c}s$  transition,  $\sigma(\phi_s) \sim 20$  mrad
  - $\checkmark \phi_s^{s\bar{s}s}$  in penguin dominant *B* decays
  - $\checkmark \sin 2\beta = 0.716 \pm 0.013 (\text{stat.}) \pm 0.008 (\text{syst.})$
- Looking forward to further test of the SM and search for new physics with more data from Upgrade I & II



Back up slides

- Statistical process, the tag is not always right  $\rightarrow$  knowledge of mistag rate  $\omega$
- Not all selected candidates can be tagged  $\rightarrow$  knowledge of tagging efficiency  $\epsilon_{tag}$
- Data-driven method to calibration the performance

- Statistical process, the tag is not always right  $\rightarrow$  knowledge of mistag rate  $\omega$
- Not all selected candidates can be tagged  $\rightarrow$  knowledge of tagging efficiency  $\epsilon_{tag}$
- Data-driven method to calibration the performance



- Statistical process, the tag is not always right  $\rightarrow$  knowledge of mistag rate  $\omega$
- Not all selected candidates can be tagged  $\rightarrow$  knowledge of tagging efficiency  $\epsilon_{tag}$
- Data-driven method to calibration the performance



- SS tagging for  $B_s^0: B_s^0 \to D_s^- \pi^+$
- SS tagging for  $B^0: B^0 \to J/\psi K^*$



- Statistical process, the tag is not always right  $\rightarrow$  knowledge of mistag rate  $\omega$
- Not all selected candidates can be tagged  $\rightarrow$  knowledge of tagging efficiency  $\epsilon_{tag}$
- Data-driven method to calibration the performance



# $\phi_s$ polarisation dependent fit

- New physics effects can vary in different polarisation states
  - Allow  $|\lambda|$  and  $\phi_s$  differ in polarisation states
  - Shows no evidence for any polarisation dependence

LHCb-PAPER-2023-016

| $ \begin{array}{lll} \phi^0_s \; [{\rm rad}] & -0.034 \pm 0.023 \\ \phi_s^{\parallel} - \phi^0_s \; [{\rm rad}] & -0.002 \pm 0.021 \\ \phi_s^{\perp} - \phi^0_s \; [{\rm rad}] & -0.001 \stackrel{+ \; 0.020}{- \; 0.021} \\ \phi_s^{S} - \phi^0_s \; [{\rm rad}] & 0.022 \stackrel{+ \; 0.027}{- \; 0.026} \\  \lambda^0  & 0.969 \stackrel{+ \; 0.025}{- \; 0.024} \\  \lambda^{\parallel}/\lambda^0  & 0.982 \stackrel{+ \; 0.055}{- \; 0.052} \\  \lambda^{\perp}/\lambda^0  & 1.107 \stackrel{+ \; 0.081}{- \; 0.075} \\ \end{array} $ | Parameters                                                                                                                                                                                                                                                                                    | Values (stat. unc. only)                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \lambda^{3}/\lambda^{0} $ 1.121 + 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{l} \phi_s^0 \; [rad] \\ \phi_s^{\parallel} - \phi_s^0 \; [rad] \\ \phi_s^{\perp} - \phi_s^0 \; [rad] \\ \phi_s^{\ S} - \phi_s^0 \; [rad] \\  \lambda^0  \\  \lambda^0  \\  \lambda^{\parallel}/\lambda^0  \\  \lambda^{\perp}/\lambda^0  \\  \lambda^S/\lambda^0  \end{array}$ | $\begin{array}{c} -0.034 \pm 0.023 \\ -0.002 \pm 0.021 \\ -0.001 \stackrel{+ \ 0.020}{_{- \ 0.021}} \\ 0.022 \stackrel{+ \ 0.027}{_{- \ 0.026}} \\ 0.969 \stackrel{+ \ 0.025}{_{- \ 0.024}} \\ 0.982 \stackrel{+ \ 0.055}{_{- \ 0.052}} \\ 1.107 \stackrel{+ \ 0.081}{_{- \ 0.075}} \\ 1.121 \stackrel{+ \ 0.085}{_{- \ 0.079}} \end{array}$ |

### Results of the parameters for S-wave

$$\begin{split} |A_S^1|^2 &= 0.472 \pm 0.024 \pm 0.027, \\ |A_S^2|^2 &= 0.042 \pm 0.005 \pm 0.010, \\ |A_S^3|^2 &= 0.0029^{+0.0013}_{-0.0019} \pm 0.023, \\ |A_S^4|^2 &= 0.0037^{+0.0025}_{-0.0019} \pm 0.032, \\ |A_S^5|^2 &= 0.0508 \pm 0.007 \pm 0.027, \\ |A_S^6|^2 &= 0.151 \pm 0.011 \pm 0.051, \\ \delta_S^1 - \delta_\perp &= 2.05^{+0.12}_{-0.14} \pm 0.19 \text{ rad}, \\ \delta_S^2 - \delta_\perp &= 1.62^{+0.19}_{-0.19} \pm 0.41 \text{ rad}, \\ \delta_S^3 - \delta_\perp &= 1.16^{+0.37}_{-0.15} \pm 0.31 \text{ rad}, \\ \delta_S^5 - \delta_\perp &= -0.637^{+0.068}_{-0.076} \pm 0.17 \text{ rad}, \\ \delta_S^6 - \delta_\perp &= -1.013^{+0.074}_{-0.083} \pm 0.07 \text{ rad}. \end{split}$$

## Systematics for $\phi_s$

| * Uncertainties (×0     | 0.01)     | Domina          | ted sy         | s. S        | ub-domin                                  | ated sys.                                     | Stat.                                     | limited                               |                                  |
|-------------------------|-----------|-----------------|----------------|-------------|-------------------------------------------|-----------------------------------------------|-------------------------------------------|---------------------------------------|----------------------------------|
| Source                  | $ A_0 ^2$ | $ A_{\perp} ^2$ | $\phi_s$ [rad] | $ \lambda $ | $\delta_{\perp} - \delta_0 \ [	ext{rad}]$ | $\delta_{\parallel} - \delta_0 \ [	ext{rad}]$ | $\Gamma_s - \Gamma_d$ [ps <sup>-1</sup> ] | $\Delta \Gamma_s$ [ps <sup>-1</sup> ] | $\Delta m_s$ [ps <sup>-1</sup> ] |
| Mass parametrization    | 0.04      | 0.03            | 0.03           | 0.02        | 0.15                                      | 0.12                                          | 0.02                                      | 0.04                                  | 0.03                             |
| Mass: shape statistical | 0.04      | 0.04            | 0.05           | 0.09        | 0.62                                      | 0.33                                          | 0.02                                      | 0.01                                  | 0.11                             |
| Mass factorization      | 0.11      | 0.10            | 0.42           | 0.19        | 0.54                                      | 0.60                                          | 0.12                                      | 0.16                                  | 0.18                             |
| $B_c^+$ contamination   | 0.04      | 0.05            | _              | 0.02        | _                                         | 0.17                                          | (0.07)                                    | (0.03)                                | _                                |
| D–wave component        | 0.04      | 0.04            | 0.02           | _           | 0.07                                      | 0.13                                          | 0.01                                      | 0.03                                  | 0.02                             |
| Bkgcat 60               | 0.07      | 0.04            | 0.02           | 0.10        | 0.18                                      | 0.18                                          | 0.02                                      | _                                     | 0.01                             |
| Multiple candidates     | 0.01      | _               | 0.27           | 0.22        | 0.90                                      | 0.41                                          | 0.01                                      | 0.01                                  | 0.24                             |
| Particle identification | 0.06      | 0.09            | 0.27           | 0.27        | 1.31                                      | 0.51                                          | 0.05                                      | 0.15                                  | 0.46                             |
| $C_{\rm SP}$ factors    | _         | 0.01            | 0.01           | 0.03        | 0.73                                      | 0.41                                          | —                                         | 0.01                                  | 0.04                             |
| DTR model portability   | _         | —               | 0.08           | 0.03        | 0.26                                      | 0.09                                          | —                                         | —                                     | 0.09                             |
| DTR calibration         | _         | —               | 0.03           | 0.02        | 0.11                                      | 0.07                                          | —                                         | —                                     | 0.05                             |
| Time bias correction    | 0.04      | 0.05            | 0.06           | 0.05        | 0.77                                      | 0.11                                          | 0.03                                      | 0.05                                  | 0.44                             |
| Angular efficiency      | 0.05      | 0.14            | 0.25           | 0.32        | 0.42                                      | 0.44                                          | 0.01                                      | 0.02                                  | 0.13                             |
| Angular resolution      | 0.01      | 0.01            | 0.02           | 0.01        | 0.02                                      | 0.08                                          | _                                         | 0.01                                  | 0.02                             |
| Kinematic weighting     | 0.24      | 0.09            | 0.01           | 0.01        | 0.98                                      | 0.86                                          | 0.02                                      | 0.03                                  | 0.31                             |
| Momentum uncertainty    | 0.08      | 0.04            | 0.04           | —           | 0.07                                      | 0.11                                          | 0.01                                      | _                                     | 0.13                             |
| Longitudinal scale      | 0.07      | 0.04            | 0.04           | —           | 0.10                                      | 0.09                                          | 0.02                                      | _                                     | 0.31                             |
| Neglected correlations  | —         | —               | —              | —           | 4.20                                      | 4.96                                          | —                                         | —                                     | —                                |
| Total sys. unc.         | 0.32      | 0.24            | 0.6            | 0.5         | 4.8                                       | 5.2                                           | 0.14                                      | 0.24                                  | 0.9                              |
| Stat. unc.              | 0.17      | 0.23            | 2.2            | 1.1         | 7.5                                       | 6.0                                           | 0.14                                      | 0.44                                  | 3.3                              |

•  $\phi_s$ ,  $|\lambda|$ ,  $\Delta\Gamma_s$ ,  $\Delta m_s$  are statistically limited

# Systematics for $\phi_s^{s\bar{s}s}$

#### LHCb-PAPER-2023-016

| Source                   | $\phi^{s\overline{s}s}_{s}$ | $ \lambda $ | $ A_0 ^2$ | $ A_{\perp} ^2$ | $\delta_{\parallel}-\delta_{0}$ | $\delta_{\perp} - \delta_0$ |
|--------------------------|-----------------------------|-------------|-----------|-----------------|---------------------------------|-----------------------------|
| Time resolution          | 4.9                         | 2.6         | 0.8       | 0.8             | 0.1                             | 3.4                         |
| Flavor tagging           | 4.8                         | 4.7         | 0.9       | 1.3             | 1.2                             | 9.7                         |
| Angular acceptance       | 3.9                         | 4.9         | 1.4       | 1.7             | 4.7                             | 1.2                         |
| Time acceptance          | 2.3                         | 1.7         | 0.1       | 0.1             | 5.6                             | 0.7                         |
| Mass fit & factorization | 2.2                         | 4.4         | 1.9       | 2.3             | 2.3                             | 2.5                         |
| MC truth match           | 1.1                         | 0.2         | 0.1       | 0.1             | 0.2                             | 0.3                         |
| Fit bias                 | 0.8                         | 0.7         | 0.9       | 0.3             | 3.6                             | 0.7                         |
| Candidate multiplicity   | 0.3                         | 0.2         | 0.1       | 0.8             | 0.2                             | 0.1                         |
| Total                    | 8.8                         | 8.6         | 2.7       | 3.3             | 8.5                             | 10.7                        |

| Parameter                                               | Result                       |
|---------------------------------------------------------|------------------------------|
| $\phi_s^{s\overline{s}s}$ [rad ]                        | $-0.042 \pm 0.075 \pm 0.009$ |
| $ \lambda $                                             | $1.004 \pm 0.030 \pm 0.009$  |
| $ A_0 ^2$                                               | $0.384 \pm 0.007 \pm 0.003$  |
| $ A_{\perp} ^2$                                         | $0.310 \pm 0.006 \pm 0.003$  |
| $\delta_{\parallel} - \delta_0 \; \; [ { m rad} \; ]$   | $2.463 \pm 0.029 \pm 0.009$  |
| $\delta_{\perp}^{-} - \delta_{0} \; \; [ { m rad} \; ]$ | $2.769 \pm 0.105 \pm 0.011$  |

# Systematics for $\phi_s^{s\bar{s}s}$

#### LHCb-PAPER-2023-016

| Source                   | $\phi^{s\overline{s}s}_{s}$ | $ \lambda $ | $ A_0 ^2$ | $ A_{\perp} ^2$ | $\delta_{\parallel}-\delta_{0}$ | $\delta_{\perp} - \delta_0$ |
|--------------------------|-----------------------------|-------------|-----------|-----------------|---------------------------------|-----------------------------|
| Time resolution          | 4.9                         | 2.6         | 0.8       | 0.8             | 0.1                             | 3.4                         |
| Flavor tagging           | 4.8                         | 4.7         | 0.9       | 1.3             | 1.2                             | 9.7                         |
| Angular acceptance       | 3.9                         | 4.9         | 1.4       | 1.7             | 4.7                             | 1.2                         |
| Time acceptance          | 2.3                         | 1.7         | 0.1       | 0.1             | 5.6                             | 0.7                         |
| Mass fit & factorization | 2.2                         | 4.4         | 1.9       | 2.3             | 2.3                             | 2.5                         |
| MC truth match           | 1.1                         | 0.2         | 0.1       | 0.1             | 0.2                             | 0.3                         |
| Fit bias                 | 0.8                         | 0.7         | 0.9       | 0.3             | 3.6                             | 0.7                         |
| Candidate multiplicity   | 0.3                         | 0.2         | 0.1       | 0.8             | 0.2                             | 0.1                         |
| Total                    | 8.8                         | 8.6         | 2.7       | 3.3             | 8.5                             | 10.7                        |

| Parameter                                               | Result                       |
|---------------------------------------------------------|------------------------------|
| $\phi_s^{s\overline{s}s}$ [rad]                         | $-0.042 \pm 0.075 \pm 0.009$ |
| $ \lambda $                                             | $1.004 \pm 0.030 \pm 0.009$  |
| $ A_0 ^2$                                               | $0.384 \pm 0.007 \pm 0.003$  |
| $ A_{\perp} ^2$                                         | $0.310 \pm 0.006 \pm 0.003$  |
| $\delta_{\parallel} - \delta_0 \; \; [ { m rad} \; ]$   | $2.463 \pm 0.029 \pm 0.009$  |
| $\delta_{\perp}^{-} - \delta_{0} \; \; [ { m rad} \; ]$ | $2.769 \pm 0.105 \pm 0.011$  |

# Systematics for $\sin 2\beta$

| Source                                        | $\sigma(S)$ | $\sigma(C)$ |
|-----------------------------------------------|-------------|-------------|
| Fitter validation                             | 0.0004      | 0.0006      |
| $\Delta \Gamma_d$ uncertainty                 | 0.0055      | 0.0017      |
| FT calibration portability                    | 0.0053      | 0.0001      |
| FT $\Delta \epsilon_{\text{tag}}$ portability | 0.0014      | 0.0017      |
| Decay-time bias model                         | 0.0007      | 0.0013      |

$$\begin{split} S^{\text{Run }2}_{J/\psi(\rightarrow\mu^+\mu^-)K^0_{\text{S}}} &= & 0.714 \pm 0.015 \,(\text{stat}) \pm 0.0074 \,(\text{syst}) \\ C^{\text{Run }2}_{J/\psi(\rightarrow\mu^+\mu^-)K^0_{\text{S}}} &= & 0.013 \pm 0.014 \,(\text{stat}) \pm 0.0025 \,(\text{syst}) \\ S^{\text{Run }2}_{\psi(2S)K^0_{\text{S}}} &= & 0.647 \pm 0.053 \,(\text{stat}) \pm 0.018 \quad(\text{syst}) \\ C^{\text{Run }2}_{\psi(2S)K^0_{\text{S}}} &= -0.083 \pm 0.048 \,(\text{stat}) \pm 0.0053 \,(\text{syst}) \\ S^{\text{Run }2}_{J/\psi(\rightarrow e^+e^-)K^0_{\text{S}}} &= & 0.752 \pm 0.037 \,(\text{stat}) \pm 0.084 \quad(\text{syst}) \\ C^{\text{Run }2}_{J/\psi(\rightarrow e^+e^-)K^0_{\text{S}}} &= & 0.046 \pm 0.034 \,(\text{stat}) \pm 0.0077 \,(\text{syst}) \end{split}$$

# **Time-dependent angular fit** $\mathscr{P}(t, \theta_K, \theta_\mu, \phi_h | \delta_t) \propto \sum_{k=1}^{10} N_k h_k(t) f_k(\theta_K, \theta_\mu, \phi_h) \rightarrow \phi_s, \Delta m_s, \Delta \Gamma_s, \Gamma_s - \Gamma_d$

k=1

EPJC79(2019)706

$$\begin{split} \mathscr{P}(t,\theta_{K},\theta_{\mu},\phi_{h}|\delta_{t}) \propto \sum_{k=1}^{10} N_{k}h_{k}(t)f_{k}(\theta_{K},\theta_{\mu},\phi_{h}) &\to \phi_{s}, \Delta m_{s}, \Delta\Gamma_{s}, \Gamma_{s}-\Gamma_{d} \\ & \mathcal{P}\left(t,\Omega|\mathfrak{q}^{\mathrm{OS}},\mathfrak{q}^{\mathrm{SSK}},\eta^{\mathrm{OS}},\eta^{\mathrm{SSK}},\delta_{t}\right) \\ & \propto \sum_{k=1}^{10} C_{\mathrm{SP}}^{k}N_{k}f_{k}(\Omega)\varepsilon_{\mathrm{data}}^{B_{s}^{0}}(t) \\ & \cdot\left\{\left[\mathcal{Q}\left(\mathfrak{q}^{\mathrm{OS}},\mathfrak{q}^{\mathrm{SSK}},\eta^{\mathrm{OS}},\eta^{\mathrm{SSK}}\right)h_{k}\left(t|B_{s}^{0}\right)\right. \\ & \left.+\bar{\mathcal{Q}}\left(\mathfrak{q}^{\mathrm{OS}},\mathfrak{q}^{\mathrm{SSK}},\eta^{\mathrm{OS}},\eta^{\mathrm{SSK}}\right)h_{k}\left(t|\overline{B}_{s}^{0}\right)\right] \otimes \mathcal{R}\left(t-t'|\delta_{t}\right)\right\} \end{split}$$

$$\begin{aligned} \mathcal{P}(t,\theta_{K},\theta_{\mu},\phi_{h}|\delta_{t}) \propto \sum_{k=1}^{10} N_{k}h_{k}(t)f_{k}(\theta_{K},\theta_{\mu},\phi_{h}) & \rightarrow \phi_{s}, \Delta m_{s}, \Delta\Gamma_{s}, \Gamma_{s} - \Gamma_{d} \\ \\ \mathcal{P}\left(t,\Omega|\mathfrak{q}^{\mathrm{OS}},\mathfrak{q}^{\mathrm{SSK}},\eta^{\mathrm{OS}},\eta^{\mathrm{SSK}},\delta_{t}\right) & \qquad \text{Angular amplitudes} \\ \approx \sum_{k=1}^{10} C_{\mathrm{SP}}^{k}N_{k}f_{k}(\Omega)\varepsilon_{\mathrm{data}}^{B_{s}^{0}}(t) & \qquad \\ \cdot\left\{\left[\mathcal{Q}\left(\mathfrak{q}^{\mathrm{OS}},\mathfrak{q}^{\mathrm{SSK}},\eta^{\mathrm{OS}},\eta^{\mathrm{SSK}}\right)h_{k}\left(t|B_{s}^{0}\right)\right. \\ \left. +\bar{\mathcal{Q}}\left(\mathfrak{q}^{\mathrm{OS}},\mathfrak{q}^{\mathrm{SSK}},\eta^{\mathrm{OS}},\eta^{\mathrm{SSK}}\right)h_{k}\left(t|\overline{B}_{s}^{0}\right)\right] \otimes \mathcal{R}\left(t-t'|\delta_{t}\right)\right\} \end{aligned}$$

| k  | $A_k$                      | $f_k(	heta_\mu,	heta_K,arphi_h)$                               |
|----|----------------------------|----------------------------------------------------------------|
| 1  | $ A_0 ^2$                  | $2\cos^2	heta_K\sin^2	heta_\mu$                                |
| 2  | $ A_{\ } ^{2}$             | $\sin^2	heta_k(1-\sin^2	heta_\mu\cos^2arphi_h)$                |
| 3  | $ A_{\perp} ^2$            | $\sin^2	heta_k(1-\sin^2	heta_\mu\sin^2arphi_h)$                |
| 4  | $ A_{\parallel}A_{\perp} $ | $\sin^2	heta_k \sin^2	heta_\mu \sin 2arphi_h$                  |
| 5  | $ A_0A_{\parallel} $       | $\frac{1}{2}\sqrt{2}\sin 2	heta_k\sin 2	heta_\mu\cos arphi_h$  |
| 6  | $ A_0A_\perp $             | $-\frac{1}{2}\sqrt{2}\sin 2	heta_k\sin 2	heta_\mu\sin arphi_h$ |
| 7  | $ A_{S} ^{2}$              | $rac{2}{3}\sin^2	heta_\mu$                                    |
| 8  | $ A_S A_{\parallel} $      | $\frac{1}{3}\sqrt{6}\sin\theta_k\sin2\theta_\mu\cos\varphi_h$  |
| 9  | $ A_S A_{\perp} $          | $-\frac{1}{3}\sqrt{6}\sin\theta_k\sin2\theta_\mu\sin\varphi_h$ |
| 10 | $ A_S A_0 $                | $\frac{4}{3}\sqrt{3}\cos	heta_K\sin^2	heta_\mu$                |

$$\mathcal{P}(t,\theta_K,\theta_\mu,\phi_h | \delta_t) \propto \sum_{k=1}^{10} N_k h_k(t) f_k(\theta_K,\theta_\mu,\phi_h) \to \phi_s, \Delta m_s, \Delta \Gamma_s, \Gamma_s - \Gamma_d$$

$$\mathcal{P}\left(t, \Omega | \mathfrak{q}^{\mathrm{OS}}, \mathfrak{q}^{\mathrm{SSK}}, \eta^{\mathrm{OS}}, \eta^{\mathrm{SSK}}, \delta_{t}\right)$$

$$\propto \sum_{k=1}^{10} \mathbb{C}_{\mathrm{SP}}^{k} N_{k} f_{k}(\Omega) \varepsilon_{\mathrm{data}}^{B_{s}^{0}}(t)$$

$$\cdot \left\{ \left[ \mathcal{Q}\left(\mathfrak{q}^{\mathrm{OS}}, \mathfrak{q}^{\mathrm{SSK}}, \eta^{\mathrm{OS}}, \eta^{\mathrm{SSK}}\right) h_{k}\left(t | B_{s}^{0}\right) \right. \right. \\ \left. + \bar{\mathcal{Q}}\left(\mathfrak{q}^{\mathrm{OS}}, \mathfrak{q}^{\mathrm{SSK}}, \eta^{\mathrm{OS}}, \eta^{\mathrm{SSK}}\right) h_{k}\left(t | \overline{B}_{s}^{0}\right) \right\}$$

EPJC79(2019)706

Angular amplitudes  $C_{\text{SP}}^k$  account for the interference between P- and S- wave

| k  | $A_k$                      | $f_k(	heta_\mu,	heta_K,arphi_h)$                                     |
|----|----------------------------|----------------------------------------------------------------------|
| 1  | $ A_0 ^2$                  | $2\cos^2	heta_K\sin^2	heta_\mu$                                      |
| 2  | $ A_{\ } ^{2}$             | $\sin^2	heta_k(1-\sin^2	heta_\mu\cos^2arphi_h)$                      |
| 3  | $ A_{\perp} ^2$            | $\sin^2	heta_k(1-\sin^2	heta_\mu\sin^2arphi_h)$                      |
| 4  | $ A_{\parallel}A_{\perp} $ | $\sin^2	heta_k \sin^2	heta_\mu \sin 2arphi_h$                        |
| 5  | $ A_0A_{\parallel} $       | $\frac{1}{2}\sqrt{2}\sin 2	heta_k\sin 2	heta_\mu\cos arphi_h$        |
| 6  | $ A_0A_\perp $             | $-\frac{1}{2}\sqrt{2}\sin 2\theta_k \sin 2\theta_\mu \sin \varphi_h$ |
| 7  | $ A_{S} ^{2}$              | $\frac{2}{3}\sin^2	heta_{\mu}$                                       |
| 8  | $ A_S A_{\parallel} $      | $\frac{1}{3}\sqrt{6}\sin\theta_k\sin2\theta_\mu\cos\varphi_h$        |
| 9  | $ A_S A_\perp $            | $-\frac{1}{3}\sqrt{6}\sin\theta_k\sin2\theta_\mu\sin\varphi_h$       |
| 10 | $ A_S A_0 $                | $\frac{4}{3}\sqrt{3}\cos\theta_K\sin^2\theta_\mu$                    |

$$\mathcal{P}(t,\theta_K,\theta_\mu,\phi_h | \delta_t) \propto \sum_{k=1}^{10} N_k h_k(t) f_k(\theta_K,\theta_\mu,\phi_h) \to \phi_s, \Delta m_s, \Delta \Gamma_s, \Gamma_s - \Gamma_d$$

$$\mathcal{P}\left(t, \Omega | \mathfrak{q}^{\mathrm{OS}}, \mathfrak{q}^{\mathrm{SSK}}, \eta^{\mathrm{OS}}, \eta^{\mathrm{SSK}}, \delta_{t}\right)$$

$$\propto \sum_{k=1}^{10} \mathcal{C}_{\mathrm{SP}}^{k} N_{k} f_{k}(\Omega) \varepsilon_{\mathrm{data}}^{B_{s}^{0}}(t)$$

$$\cdot \left\{ \left[ \mathcal{Q}\left(\mathfrak{q}^{\mathrm{OS}}, \mathfrak{q}^{\mathrm{SSK}}, \eta^{\mathrm{OS}}, \eta^{\mathrm{SSK}}\right) h_{k}\left(t | B_{s}^{0}\right) \right. \right. \\ \left. + \bar{\mathcal{Q}}\left(\mathfrak{q}^{\mathrm{OS}}, \mathfrak{q}^{\mathrm{SSK}}, \eta^{\mathrm{OS}}, \eta^{\mathrm{SSK}}\right) h_{k}\left(t | \overline{B}_{s}^{0}\right) \right\}$$

EPJC79(2019)706

Angular amplitudes  $C_{\text{SP}}^k$  account for the interference between P- and S- wave

flavor tagging

| k  | $A_k$                      | $f_k(	heta_\mu,	heta_K,arphi_h)$                                     |
|----|----------------------------|----------------------------------------------------------------------|
| 1  | $ A_0 ^2$                  | $2\cos^2	heta_K\sin^2	heta_\mu$                                      |
| 2  | $ A_{\ } ^{2}$             | $\sin^2	heta_k(1-\sin^2	heta_\mu\cos^2arphi_h)$                      |
| 3  | $ A_{\perp} ^2$            | $\sin^2	heta_k(1-\sin^2	heta_\mu\sin^2arphi_h)$                      |
| 4  | $ A_{\parallel}A_{\perp} $ | $\sin^2	heta_k \sin^2	heta_\mu \sin 2arphi_h$                        |
| 5  | $ A_0A_{\parallel} $       | $\frac{1}{2}\sqrt{2}\sin 2	heta_k\sin 2	heta_\mu\cos arphi_h$        |
| 6  | $ A_0A_\perp $             | $-\frac{1}{2}\sqrt{2}\sin 2\theta_k \sin 2\theta_\mu \sin \varphi_h$ |
| 7  | $ A_{S} ^{2}$              | $\frac{2}{3}\sin^2	heta_{\mu}$                                       |
| 8  | $ A_S A_{\parallel} $      | $\frac{1}{3}\sqrt{6}\sin\theta_k\sin2\theta_\mu\cos\varphi_h$        |
| 9  | $ A_S A_{\perp} $          | $-\frac{1}{3}\sqrt{6}\sin\theta_k\sin2\theta_\mu\sin\varphi_h$       |
| 10 | $ A_S A_0 $                | $\frac{4}{3}\sqrt{3}\cos\theta_K\sin^2\theta_\mu$                    |

$$\mathscr{P}(t,\theta_K,\theta_\mu,\phi_h|\delta_t) \propto \sum_{k=1}^{10} N_k h_k(t) f_k(\theta_K,\theta_\mu,\phi_h) \to \phi_s, \Delta m_s, \Delta \Gamma_s, \Gamma_s - \Gamma_d$$

$$\mathcal{P}\left(t, \Omega | \mathfrak{q}^{\mathrm{OS}}, \mathfrak{q}^{\mathrm{SSK}}, \eta^{\mathrm{OS}}, \eta^{\mathrm{SSK}}, \delta_{t}\right)$$

$$\propto \sum_{k=1}^{10} \mathcal{C}_{\mathrm{SP}}^{k} N_{k} f_{k}(\Omega) \varepsilon_{\mathrm{data}}^{B_{s}^{0}}(t)$$

$$\cdot \left\{ \left[ \mathcal{Q}\left(\mathfrak{q}^{\mathrm{OS}}, \mathfrak{q}^{\mathrm{SSK}}, \eta^{\mathrm{OS}}, \eta^{\mathrm{SSK}}\right) h_{k}\left(t | B_{s}^{0}\right) + \bar{\mathcal{Q}}\left(\mathfrak{q}^{\mathrm{OS}}, \mathfrak{q}^{\mathrm{SSK}}, \eta^{\mathrm{OS}}, \eta^{\mathrm{SSK}}\right) h_{k}\left(t | \overline{B}_{s}^{0}\right) \right\}$$

Angular amplitudes  $C_{\text{SP}}^k$  account for the interference between P- and S- wave

EPJC79(2019)706

flavor tagging time-dependent oscillation

$$h_k(t|B_s^0) = \frac{3}{4\pi} e^{-\Gamma t} \left( a_k \cosh \frac{\Delta \Gamma t}{2} + b_k \sinh \frac{\Delta \Gamma t}{2} + c_k \cosh(\Delta m t) + d_k \sin(\Delta m t) \right),$$
$$+c_k \cos(\Delta m t) + d_k \sin(\Delta m t) \right),$$
$$h_k(t|\bar{B}_s^0) = \frac{3}{4\pi} e^{-\Gamma t} \left( a_k \cosh \frac{\Delta \Gamma t}{2} + b_k \sinh \frac{\Delta \Gamma t}{2} - c_k \cos(\Delta m t) - d_k \sin(\Delta m t) \right),$$

 $a_k, b_k, c_k, d_k$  involve strong and weak phases  $(\delta, \phi_s)$  of each component

| k  | $A_k$                      | $f_k(	heta_\mu,	heta_K,arphi_h)$                                     |
|----|----------------------------|----------------------------------------------------------------------|
| 1  | $ A_0 ^2$                  | $2\cos^2	heta_K\sin^2	heta_\mu$                                      |
| 2  | $ A_{\ } ^{2}$             | $\sin^2	heta_k(1-\sin^2	heta_\mu\cos^2arphi_h)$                      |
| 3  | $ A_{\perp} ^2$            | $\sin^2	heta_k(1-\sin^2	heta_\mu\sin^2arphi_h)$                      |
| 4  | $ A_{\parallel}A_{\perp} $ | $\sin^2	heta_k \sin^2	heta_\mu \sin 2arphi_h$                        |
| 5  | $ A_0A_{\parallel} $       | $\frac{1}{2}\sqrt{2}\sin 2	heta_k\sin 2	heta_\mu\cos arphi_h$        |
| 6  | $ A_0A_\perp $             | $-\frac{1}{2}\sqrt{2}\sin 2\theta_k \sin 2\theta_\mu \sin \varphi_h$ |
| 7  | $ A_{S} ^{2}$              | $\frac{2}{3}\sin^2	heta_{\mu}$                                       |
| 8  | $ A_S A_{\parallel} $      | $\frac{1}{3}\sqrt{6}\sin\theta_k\sin2\theta_\mu\cos\varphi_h$        |
| 9  | $ A_S A_\perp $            | $-\frac{1}{3}\sqrt{6}\sin\theta_k\sin2\theta_\mu\sin\varphi_h$       |
| 10 | $ A_S A_0 $                | $\frac{4}{3}\sqrt{3}\cos\theta_K\sin^2\theta_\mu$                    |

10

$$\mathcal{P}(t,\theta_{K},\theta_{\mu},\phi_{h}|\delta_{t}) \propto \sum_{k=1}^{10} N_{k}h_{k}(t)f_{k}(\theta_{K},\theta_{\mu},\phi_{h}) \rightarrow \phi_{s}, \Delta m_{s}, \Delta\Gamma_{s}, \Gamma_{s} - \Gamma_{d}$$

$$\mathcal{P}(t,\Omega|\mathfrak{q}^{\mathrm{OS}},\mathfrak{q}^{\mathrm{SSK}},\eta^{\mathrm{OS}},\eta^{\mathrm{SSK}},\delta_{t})$$
Angular amplitudes
$$C^{k}$$
account for the interference

$$\propto \sum_{k=1}^{\infty} C_{SP}^{k} N_{k} f_{k}(\Omega) \varepsilon_{data}^{D_{s}}(t)$$

$$\cdot \left\{ \begin{bmatrix} \mathcal{Q} \left( \mathfrak{q}^{OS}, \mathfrak{q}^{SSK}, \eta^{OS}, \eta^{SSK} \right) h_{k} \left( t | B_{s}^{0} \right) \\ + \bar{\mathcal{Q}} \left( \mathfrak{q}^{OS}, \mathfrak{q}^{SSK}, \eta^{OS}, \eta^{SSK} \right) h_{k} \left( t | \overline{B}_{s}^{0} \right) \end{bmatrix} \otimes \mathcal{R} \left( t - t' | \delta_{t} \right) \right\}$$

**D**0

 $C_{\rm SP}^k$  account for the interference between P- and S- wave

flavor tagging time-dependent oscillation

decay-time resolution

$$h_k(t|B_s^0) = \frac{3}{4\pi} e^{-\Gamma t} \left( a_k \cosh \frac{\Delta \Gamma t}{2} + b_k \sinh \frac{\Delta \Gamma t}{2} + c_k \cosh(\Delta m t) + d_k \sin(\Delta m t) \right),$$
$$+c_k \cos(\Delta m t) + d_k \sin(\Delta m t) \right),$$
$$h_k(t|\bar{B}_s^0) = \frac{3}{4\pi} e^{-\Gamma t} \left( a_k \cosh \frac{\Delta \Gamma t}{2} + b_k \sinh \frac{\Delta \Gamma t}{2} - c_k \cos(\Delta m t) - d_k \sin(\Delta m t) \right),$$

 $a_k, b_k, c_k, d_k$  involve strong and weak phases  $(\delta, \phi_s)$  of each component

| k  | $A_k$                      | $f_k(	heta_\mu,	heta_K,arphi_h)$                                     |
|----|----------------------------|----------------------------------------------------------------------|
| 1  | $ A_0 ^2$                  | $2\cos^2	heta_K\sin^2	heta_\mu$                                      |
| 2  | $ A_{\ } ^{2}$             | $\sin^2	heta_k(1-\sin^2	heta_\mu\cos^2arphi_h)$                      |
| 3  | $ A_{\perp} ^2$            | $\sin^2	heta_k(1-\sin^2	heta_\mu\sin^2arphi_h)$                      |
| 4  | $ A_{\parallel}A_{\perp} $ | $\sin^2	heta_k \sin^2	heta_\mu \sin 2arphi_h$                        |
| 5  | $ A_0A_{\parallel} $       | $\frac{1}{2}\sqrt{2}\sin 2	heta_k\sin 2	heta_\mu\cos arphi_h$        |
| 6  | $ A_0A_\perp $             | $-\frac{1}{2}\sqrt{2}\sin 2\theta_k \sin 2\theta_\mu \sin \varphi_h$ |
| 7  | $ A_{S} ^{2}$              | $\frac{2}{3}\sin^2	heta_{\mu}$                                       |
| 8  | $ A_S A_{\parallel} $      | $\frac{1}{3}\sqrt{6}\sin\theta_k\sin2\theta_\mu\cos\varphi_h$        |
| 9  | $ A_S A_{\perp} $          | $-\frac{1}{3}\sqrt{6}\sin\theta_k\sin2\theta_\mu\sin\varphi_h$       |
| 10 | $ A_S A_0 $                | $\frac{4}{3}\sqrt{3}\cos\theta_K\sin^2\theta_\mu$                    |

$$\mathscr{P}(t,\theta_K,\theta_\mu,\phi_h|\delta_t) \propto \sum_{k=1}^{10} N_k h_k(t) f_k(\theta_K,\theta_\mu,\phi_h) \to \phi_s, \Delta m_s, \Delta \Gamma_s, \Gamma_s - \Gamma_d$$

$$\mathcal{P}\left(t, \Omega | \mathfrak{q}^{\mathrm{OS}}, \mathfrak{q}^{\mathrm{SSK}}, \eta^{\mathrm{OS}}, \eta^{\mathrm{SSK}}, \delta_{t}\right)$$

$$\propto \sum_{k=1}^{10} \mathcal{C}_{\mathrm{SP}}^{k} N_{k} f_{k}(\Omega) \varepsilon_{\mathrm{data}}^{B_{s}^{0}}(t)$$

$$\cdot \left\{ \left[ \mathcal{Q}\left(\mathfrak{q}^{\mathrm{OS}}, \mathfrak{q}^{\mathrm{SSK}}, \eta^{\mathrm{OS}}, \eta^{\mathrm{SSK}}\right) h_{k}\left(t | B_{s}^{0}\right) + \bar{\mathcal{Q}}\left(\mathfrak{q}^{\mathrm{OS}}, \mathfrak{q}^{\mathrm{SSK}}, \eta^{\mathrm{OS}}, \eta^{\mathrm{SSK}}\right) h_{k}\left(t | \overline{B}_{s}^{0}\right) \right\}$$

Angular amplitudes
 C<sup>k</sup><sub>SP</sub> account for the interference between P- and S- wave
 flavor tagging
 time-dependent oscillation
 decay-time efficiency
 decay-time resolution

$$h_k(t|B_s^0) = \frac{3}{4\pi} e^{-\Gamma t} \left( a_k \cosh \frac{\Delta \Gamma t}{2} + b_k \sinh \frac{\Delta \Gamma t}{2} + c_k \cosh(\Delta m t) + d_k \sin(\Delta m t) \right),$$
$$+c_k \cos(\Delta m t) + d_k \sin(\Delta m t) \right),$$
$$h_k(t|\bar{B}_s^0) = \frac{3}{4\pi} e^{-\Gamma t} \left( a_k \cosh \frac{\Delta \Gamma t}{2} + b_k \sinh \frac{\Delta \Gamma t}{2} - c_k \cos(\Delta m t) - d_k \sin(\Delta m t) \right),$$

 $a_k, b_k, c_k, d_k$  involve strong and weak phases  $(\delta, \phi_s)$  of each component

| k  | $A_k$                      | $f_k(	heta_\mu,	heta_K,arphi_h)$                                     |
|----|----------------------------|----------------------------------------------------------------------|
| 1  | $ A_0 ^2$                  | $2\cos^2	heta_K\sin^2	heta_\mu$                                      |
| 2  | $ A_{\ } ^{2}$             | $\sin^2	heta_k(1-\sin^2	heta_\mu\cos^2arphi_h)$                      |
| 3  | $ A_{\perp} ^2$            | $\sin^2	heta_k(1-\sin^2	heta_\mu\sin^2arphi_h)$                      |
| 4  | $ A_{\parallel}A_{\perp} $ | $\sin^2	heta_k \sin^2	heta_\mu \sin 2arphi_h$                        |
| 5  | $ A_0A_{\parallel} $       | $\frac{1}{2}\sqrt{2}\sin 2	heta_k\sin 2	heta_\mu\cos arphi_h$        |
| 6  | $ A_0A_\perp $             | $-\frac{1}{2}\sqrt{2}\sin 2\theta_k \sin 2\theta_\mu \sin \varphi_h$ |
| 7  | $ A_{S} ^{2}$              | $\frac{2}{3}\sin^2	heta_{\mu}$                                       |
| 8  | $ A_S A_{\parallel} $      | $\frac{1}{3}\sqrt{6}\sin\theta_k\sin2\theta_\mu\cos\varphi_h$        |
| 9  | $ A_S A_\perp $            | $-\frac{1}{3}\sqrt{6}\sin\theta_k\sin2\theta_\mu\sin\varphi_h$       |
| 10 | $ A_S A_0 $                | $\frac{4}{3}\sqrt{3}\cos	heta_K\sin^2	heta_\mu$                      |