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Introduction

•B physics: reliable tests of SM and information for NP 

Key point: one can probe very high scales for NP,  
                     much higher than in direct colliders  

Precision Physics - Indirect Searches 

•Importance of CP Violation 

- Firstly discovered in 1964,  
     through the observation of  

- It is now established in all systems Nature 07/08/03

non-invariance of the weak interactions  
with respect to a combined  
charge-conjugation (C) and  

parity (P) transformation
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Anomalies in the Bs → D±
s K∓

leading to  
time dependent CP asymmetry 

Γ(B0
s (t) → f ) − Γ(B 0

s (t) → f )
Γ(B0s (t) → f ) + Γ(B0s (t) → f )

= [ C cos(ΔMs t) + S sin(ΔMs t)
cosh(ΔΓs t /2) + %ΔΓsinh(ΔΓs t /2) ]

[R. Fleischer (2003)]
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|a1 |Key quantity

colour-allowed trees
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Strong dependence of value of |Vcb| 

In the future: it could help to 
understand the inclusive-exclusive puzzle, 
if NP in kaon can be controlled/ignored
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These results have interesting applications in  
rare leptonic decays
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CP violation continues to be a key player for 
exploring the flavour sector and New Physics searches  

for both theorists and experimentalists 

Exciting times ahead!!
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