B-anomalies beyond the SM

Ben Allanach (University of Cambridge)

by

$$b
ightarrow c\ell
u_{\ell}$$
 anomalies
 $b
ightarrow s\ell^{+}\ell^{-}$ anomalies
EFT fits
Models

Impressive Progress

During the 1990s

We wanted to be the Grand Architects, searching for **one string** model **to rule them all**

During the 2020s

We are happy with any beyond the SM roof

Philosophy and Organisation

Hundreds of specific models reduce to the same important TeV-scale features \Rightarrow take a **bottom** up approach

 $R_{D^{(*)}} = BR(B \rightarrow D^{(*)}\tau\nu)/BR(B \rightarrow D^{(*)}\mu\nu)$

 $R_{D^{(*)}}$: BSM Explanations

 $\mathcal{L}_{WET} = -\frac{2\lambda_1\lambda_2}{M^2} \left(\bar{c}\gamma^{\mu}P_L\nu\right) \left(\bar{\tau}\gamma_{\mu}P_Lb\right) + H.c.$ Fit to data tells us

$$M=3.4\,\,{
m TeV} imes\sqrt{\lambda_1\lambda_2}$$

U_1 Vector LQ

In third family, leptons are the fourth colour and LQ U^{μ} comes from adjoint $SU(4) \rightarrow SU(3).$

 $F_{j} = \begin{pmatrix} Q_{j}^{a=1,2,3} \\ L_{j} \end{pmatrix} \qquad SU(4) \sim \begin{pmatrix} G^{a} & U^{a} \\ (U^{a})^{*} & Z' \end{pmatrix}$

U_1 Vector LQ¹: U^{μ}

 $\mathcal{L} \supset \frac{g_U}{\sqrt{2}} U^{\mu} \left[\beta_L^{i\mu} (\bar{q}_L^i \gamma_{\alpha} L_L^{\alpha}) + \beta_R^{i\alpha} (\bar{d}_R^i \gamma_{\mu} e_R^{\alpha}) + H.c. \right]$

²Aebischer, Isidori, Pesut, Stefanek, Wilsch (2210.13422); Cornella, Faroughy, Fuentes-Martin, Isidori, Neubert, 2103.16558

Simple models³ from SU(4)

Model	Direct SM Yukawa	SU(4) gauged	min. $U(2)_f^n$ breaking	J
1	yes	no	yes	2
2	yes	yes	yes	1
3	yes	yes	no	2
4	no	no	yes	$3(\times 2)$

³Barbieri, Cornella and Isidori, 2207.14248

$b \rightarrow s l^+ l^-$ in Standard Model

$BR(B \to K\mu^+\mu^-) = BR(B \to Ke^+e^-)$

 $BR \sim \mathcal{O}(10^{-7})$: loop+EW+CKM

$\mathbf{Predicting}\ B\to M\ell^+\ell^-$

 $\mathcal{A} = \texttt{local} + \texttt{non-local}$

local: interpolate lattice at high q^2 and LCSR at low q^2 . $q^2 = m_{ll}^2$.

non-local: no lattice. Most use QCD factorisation: perturbative charm loop+ad-hoc EOS approach: interpolate $q^2 < 0$ LCOPE and

measurements of BRs/angular dists at $q^2 = M_{J/\psi}^2$.

 $B^0 \to K^{*0} (\to K^+ \pi^-) \mu^+ \mu^-$

Decay fully described by three helicity angles $\vec{\Omega} = (\theta_{\ell}, \theta_K, \phi)$ and $q^2 = m_{\mu\mu}^2 \frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^3(\Gamma + \bar{\Gamma})}{d\vec{\Omega}} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell - F_L \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + \frac{4}{3} A_{\text{FB}} \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + \frac{4}{3} A_{\text{FB}} \sin^2 \theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \sin 2\phi_\ell$

 $P_5' = S_5 / \sqrt{F_L (1 - F_L)}$

 $B_s \to \phi \mu^+ \mu^-$: $\phi = (s\bar{s})$

 $BR(B \to K\mu^+\mu^-)$

LHCb 2212.09152

$$R_X(q^2) = \frac{BR(B \to X\mu^+\mu^-)}{BR(B \to Xe^+e^-)}(q^2)$$

 $e \neq \mu$ allowed

Fleischer, Malami, Rehult, Keri Vos, 2303.08764; $C_{9\ell}^{NP} = |C_{9\ell}^{NP}|e^{i\phi_{9\ell}^{NP}}$

$$\mathcal{L} = N(\bar{b}_L \gamma^{\alpha} s_L) [C^{NP}_{9\mu}(\bar{\mu}\gamma_{\alpha}\mu) + C^{NP}_{9e}(\bar{e}\gamma_{\alpha}e)] + H.c.$$

Other LFU

$$B_s o \phi \ell^+ \ell^-$$
 ,

 $B \to \pi \ell^+ \ell$, $B \to K \pi^+ \pi^- \ell^+ \ell^-$, ... to come

μ Neutral Current Fits

Greljo, Salko, Smolkovic, Stangl, 2212.10497

 $\mathcal{L} = N[C_{9\mu}^{NP}(\bar{b}_L\gamma^{\alpha}s_L)(\bar{\mu}\gamma_{\alpha}\mu) + C_{10\mu}^{NP}(\bar{b}_L\gamma^{\alpha}s_L)(\bar{\mu}\gamma_{\alpha}\gamma^5\mu)] + H.c.$

μ Neutral Current Fits

Alguero et al, 2304.07330; Altmannshofer, Stangl, flavio 2212.10497 Ciuchini et al, HEPfit 2212.10516; Hurth et al, superIso 23??.????

$$\mathcal{L} = N[C_{9\mu}^{NP}(\bar{b}_L\gamma^{\alpha}s_L)(\bar{\mu}\gamma_{\alpha}\mu) + C_{10\mu}^{NP}(\bar{b}_L\gamma^{\alpha}s_L)(\bar{\mu}\gamma_{\alpha}\gamma^5\mu)] + H.c.$$

Plot from B Capdevila-Soler Beyond Flavour Anomalies workshop

μ/e Neutral Current Fits

Alguero et al, 2304.07330

${\rm Simple}\,\, Z'\,\, {\rm Models}$

SM-singlet scalar 'flavon' θ

Additional $U(1)_X$ gauge symmetry broken by $\langle\theta\rangle\sim {\rm TeV} \Rightarrow M_{Z'}\sim {\rm TeV}$

 $SM+3\nu_R$ fermion content

Zero charges for first two generations of quark Postdicts heavy third family quarks⁵

⁵Bonilla et al, 1705.00915; Alonso et al 1705.03858, BCA 2009.02197 (*simplified EFT*)

Flavour problem

$$Y_u \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}, \qquad Y_d \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix},$$

Postdicts CKM angles $|V_{cb}|$, $|V_{ub}|$, $|V_{ts}|$, $|V_{td}|$ to be small

$$\begin{split} \mathcal{L}_{X\psi} &= g_X \quad \left(\overline{\mathbf{u}_{\mathrm{L}}} \Lambda_{\xi}^{(u_L)} \mathbf{Z}' \mathbf{u}_{\mathrm{L}} + \overline{\mathbf{u}_{\mathrm{R}}} \Lambda_{\xi}^{(u_R)} \mathbf{Z}' \mathbf{u}_{\mathrm{R}} \right. \\ &\quad + \overline{\mathbf{d}_{\mathrm{L}}} \Lambda_{\xi}^{(d_L)} \mathbf{Z}' \mathbf{d}_{\mathrm{L}} + \overline{\mathbf{d}_{\mathrm{R}}} \Lambda_{\xi}^{(d_R)} \mathbf{Z}' \mathbf{d}_{\mathrm{R}} \\ &\quad - \overline{\mathbf{e}_{\mathrm{L}}} \Lambda_{\Xi}^{(e_L)} \mathbf{Z}' \mathbf{e}_{\mathrm{L}} - \overline{\mathbf{e}_{\mathrm{R}}} \Lambda_{\Xi}^{(e_R)} \mathbf{Z}' \mathbf{e}_{\mathrm{R}} \\ &\quad - \overline{\boldsymbol{\nu}_{L}} \Lambda_{\Xi}^{(\nu_L)} \mathbf{Z}' \boldsymbol{\nu}_{L} - \overline{\boldsymbol{\nu}_{R}} \Lambda_{\Xi}^{(\nu_R)} \mathbf{Z}' \boldsymbol{\nu}_{R} \right), \\ \Lambda_{\xi}^{(I)} &\equiv V_{I \, \Xi}^{\dagger\xi} V_{I}, \ \xi = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \Xi = \begin{pmatrix} X_{e} & 0 & 0 \\ 0 & X_{\mu} & 0 \\ 0 & 0 & X_{\tau} \end{pmatrix} \\ X_{\tau} &= 3 - X_{e} - X_{\mu} \left(\text{BCA}, \text{Mullin}, 2306.08669 \right) \end{split}$$

Z' couplings, $I \in \{u_L, d_L, e_L, \nu_L, u_R, d_R, e_R\}$

A simple limiting case

$$V_{u_R} = V_{d_R} = V_{e_L} = V_{e_R} = 1$$

$$V_{d_L} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{sb} & -\sin \theta_{sb} \\ 0 & \sin \theta_{sb} & \cos \theta_{sb} \end{pmatrix}$$

 $\Rightarrow V_{u_L} = V_{d_L} V_{CKM}^{\dagger}$ and $V_{\nu_L} = V_{e_L} U_{PMNS}^{\dagger}$.

Important Z' Couplings

$$g_{Z'}\left[\left(\overline{d_L}\ \overline{s_L}\ \overline{b_L}\right) \begin{pmatrix} 0 & 0 & 0 \\ 0 & \sin^2\theta_{sb} & \frac{1}{2}\sin 2\theta_{sb} \\ 0 & \frac{1}{2}\sin 2\theta_{sb} & \cos^2\theta_{sb} \end{pmatrix} Z' \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix} \right. \\ \left. -\left(\overline{e}\ \overline{\mu}\ \overline{\tau}\right) \begin{pmatrix} X_e & 0 & 0 \\ 0 & X_\mu & 0 \\ 0 & 0 & (3 - X_e - X_\mu) \end{pmatrix} Z' \begin{pmatrix} e \\ \mu \\ \tau \end{pmatrix} \right] \\ \left. b_L \\ X'_{\mu} \\ S_L \\ \mu^- \\ \right.$$
 LFU Violating, $C_9 \neq 0$

LEP constraints

 $3B_3 - L_e - L_\mu - L_\tau$ model

LEP constraints

Put into flavio (Falkowski, Mimouni 1511.07434) Fit θ_{sb} and $g_{Z'}/M_{Z'}$

$B_s - \bar{B}_s$ Mixing

Measurement agrees with SM.

 $3B_3 - L_e - 2L_\mu$ model

	$\chi^2 - \chi^2_{SM}$	p-value	measurement	pull
LFU	-0.2	.85	$R_{K^*}(0.1, 1.1)$	-0.1
LEP	-0.4	.58	$R_{K^*}(1.1, 6)$	-1.1
quarks	-14.7	.10	$R_K(0.1, 1.1)$	-0.3
global	-15.3	.28	$R_{K}(1.1, 6)$	-0.1

$g_{Z'}=0.2$, $\theta_{sb}=-0.03$ best-fit

BCA, Mullin, 2306.08669

Epilogue

Remarkable that TeV-scale flavour symmetries are still allowed

Backup

SMEFT WCs/ $(g_{Z'}^2/M_{Z'}^2)$

WC	value	WC	value
C_{ll}^{iiii}	$-\frac{1}{2}L_i^2$	$C_{ll}^{iijj} \ (i \neq j)$	$-L_iL_j$
$(C_{lq}^{(1)})^{iijk}$	$L_i(\Lambda^{(d_L)}_{\Xi})_{jk}$		
$C_{ee}^{iijj}(i \neq j)$	$-L_iL_j$	C^{3333}_{uu}	$-\frac{1}{2}$
C_{dd}^{3333}	$-\frac{1}{2}$	C_{ee}^{iiii}	$-\frac{1}{2}L_i^2$
C^{ii33}_{eu}	L_i	C_{ed}^{ii33}	L_i
$C_{ud}^{(1)}{}^{3333}$	-1	$C_{le_{ijj}}^{iijj}$	$-L_iL_j$
C_{qe}^{ijkk}	$L_k(\Lambda_{\Xi})_{ij}$	$C_{qu}^{(1)ij33}$	$-(\Lambda_{\Xi})_{ij}$
$C_{qd}^{(1)ij33}$	$-(\Lambda_{\Xi})_{ij}$	$C_{qq}^{(1)ijkl}$	$(\Lambda_{\Xi})_{ij}(\Lambda_{\Xi})_{kl} rac{\delta_{ik}\delta_{jl}-2}{2}$
C_{lu}^{ii33}	L_i	C_{ld}^{ii33}	L_i

wilson | flavio | smelli > output

BCA, Mullin, 2306.08669

Flavonstrahlung Models of Z' ilk possess $\mathcal{L} = \lambda H H^{\dagger} \theta \theta^{\dagger} \Rightarrow$ a *flavonstrahlung* signature:

BCA, 2009.02197; BCA, Loisa, 2212.07440

⁷BCA, Corbett, Madigan, 1911.0445

Anomaly cancellation

Need to pick X charges for fermions consistent with QFT anomaly cancellation.

$$X = 3B_3 - (X_e L_e + X_\mu L_\mu + [3 - X_e - X_\mu] L_ au)$$
works (proof in 2306.08669).

Trident Neutrino Process

FIG. 10. Neutrino trident process that leads to constraints on the Z^{μ} coupling strength to neutrinos-muons, namely $M_{Z'}/g_{v\mu} \gtrsim 750$ GeV.

t-channel

$H\vartheta$ potential

 $V = -\mu^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2 - \mu_{\theta}^2 \theta^* \theta +$ $\lambda_{\theta}(\theta^*\theta)^2 + \lambda_{\theta H}\theta^*\theta H^{\dagger}H$ $= -\frac{1}{2} \left(h' \,\vartheta' \right) M^2 \left(\frac{h'}{\vartheta'} \right) + \dots$ $M^{2} = \begin{pmatrix} 2\lambda_{H}v_{H}^{2} & \lambda_{\theta H}v_{H}v_{\theta} \\ \lambda_{\theta H}v_{H}v_{\theta} & 2\lambda_{\theta}v_{\theta}^{2} \end{pmatrix}$

$H\vartheta$ mixing

$$\begin{pmatrix} h \\ \vartheta \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} h' \\ \vartheta' \end{pmatrix}$$
$$\sin 2\phi = \frac{2\lambda_{\theta H} v_h v_{\theta}}{m_{\vartheta}^2 - m_h^2}.$$
 (-13)

Three parameters: $v_{\theta} = M_{Z'}/g_{Z'}$, m_{ϑ} and ϕ .

Higgs Signal Strength

ϑ **BRs**

2 resonances

(HL-)LHC searches

FCC Flavonstrahlung

