Ferromagnetism in coherently coupled atomic mixtures

Alessio Recati

Pitaevskii Center for Bose-Einstein Condensation Conference on Quantum-Many-Body Correlations in memory of Peter Schuck

Polaron problem (and the Normal Phase for highly polarisation) Strongly interacting problem and out of equilibrium problem

What happens under a coupling which Transform a non-interacting impurity in a strongly interacting one. How does the system react? (Time dependent variational Ansatz/ *semiclassical derivation of dressed Bloch equation*)

$$\begin{array}{l}
\partial n_{2} + i\frac{\Omega}{2}(f_{23} - f_{23}^{*}) = 0 \\
\partial n_{\alpha} - iZ_{\alpha}\frac{\Omega}{2}(f_{23} - f_{23}^{*}) = I_{\text{coll}}^{\alpha} \\
\partial f_{23} + i\tilde{Z}_{\alpha}\delta_{\alpha}f_{23} + i\frac{\Omega}{2}(n_{\alpha} - n_{2}) = -\frac{\Gamma_{\alpha}^{\text{dec}}}{2}f_{23}
\end{array}$$

Liquid droplets and supersolidity in dipolar Bose gases (beyond mean field equation of state)

[Gallemi, Roccuzzo, Stringari, AR, PRA (2020)]

[Pfau's group, Nature (2015)]

Ultra-cold Bose Gases: Condensate

Hadzibabic PRL 2013

homogeneous:

$$\hat{a}_{p=0} = a_0$$

 $\hat{\psi} = a_0/\sqrt{V} + \dots$
 $e(n) = \frac{1}{2}gn^2$

Dynamics and non-homogeneity- Gross-Pitaevskii equation: $\ \hat{\psi}(x) = \Psi(x) + \dots$

$$\begin{split} i\hbar\frac{\partial}{\partial t}\Psi &= \left[-\frac{\hbar^2\nabla^2}{2m} + V(x) + g|\Psi|^2\right]\Psi \quad \text{with} \quad |\Psi(x)|^2 = n(x) \\ g &= \frac{4\pi\hbar^2a_s}{2m_r} & \begin{array}{c} \text{s-wave} \\ \text{scattering length} \end{array} \end{split}$$

T=0 Bose gases: Elementary excitations

Uniform system (Mean-Field):

$$e(n) = \frac{1}{2}gn^2$$

Bogoliubov Spectrum (Goldstone mode of the U(1) broken symmetry)

$$\omega_k = \sqrt{\frac{q^2}{2m} \left(2mc^2 + \frac{q^2}{2m}\right)}$$

where the speed of sound is:

$$c^2 = gn/m$$

and the healing length

$$\xi = \frac{\hbar}{\sqrt{2}mc}$$

T=0 Bose mixtures

$$e(n_a, n_b) = \frac{1}{2}g_a n_a^2 + \frac{1}{2}g_b n_b^2 + g_{ab}n_a n_b$$

Both Na and Nb are conserved

Elementary excitations

Ground state breaks U(1)xU(1) symmetry: 2 Goldstone modes coming from no cost to change the global and relative phase of the 2 order parameters

Coherently Coupled Bose Condensates

We consider a two component Bose gas with an interconversion term (Rabi coupling)

$$H = \int_{\mathbf{r}} \left[\sum_{\sigma} \left(\frac{\nabla \psi_{\sigma}^{\dagger} \nabla \psi_{\sigma}}{2m} + V_{\sigma} \psi_{\sigma}^{\dagger} \psi_{\sigma} \right) - \frac{\Omega}{2} (\psi_{a}^{\dagger} \psi_{b} + \psi_{b}^{\dagger} \psi_{a}) + \sum_{\sigma \sigma'} \frac{g_{\sigma \sigma'}}{2} \psi_{\sigma}^{\dagger} \psi_{\sigma'}^{\dagger} \psi_{\sigma'} \psi_{\sigma} \right]$$

The cleanest case is: $g_{a} = g_{b} = g$ $U(1) \times \mathbb{Z}_{2}$

In the weakly interacting regime at T=0 the system forms a BEC well described within mean-field (MF) theory by a spinor order parameter

$$\Psi = e^{i\phi_d/2} \begin{pmatrix} \sqrt{n_{\uparrow}} e^{i\phi_r/2} \\ \sqrt{n_{\downarrow}} e^{-i\phi_r/2} \end{pmatrix}$$

The MF energy reads:
$$\varepsilon_{MF} = \frac{g_{dd}}{2}n^2 + \frac{g_{ss}}{2}s_z^2 - \frac{\Omega}{2}\sqrt{n^2 - s_z^2}\cos(\phi_s)$$

$$n = n_a + n_b \qquad \phi_d = \phi_a + \phi_b \qquad g_{dd} = (g + g_{ab})/2$$
$$s_z = n_a - n_b \qquad \phi_s = \phi_a - \phi_b \qquad g_{ss} = (g - g_{ab})/2$$

Para- or ferro-magnetic ground state

$$\varepsilon_{MF} = \frac{g_{dd}}{2}n^2 + \frac{g_{ss}}{2}s_z^2 - \frac{\Omega}{2}\sqrt{n^2 - s_z^2}\cos(\phi_s)$$

$$\phi_s = 0$$

$$\phi_s = 0$$

$$ferro \quad s_z = \pm n\sqrt{1 - \left(\frac{\Omega}{2g_{ss}n}\right)^2} \quad \text{for } \Omega + 2g_{ss}n < 0.$$

Critical condition for the II order phase transition: $\Omega + 2g_{ss}n = 0$

$$s_z \propto (-(2g_{ss}n + \Omega))^{\beta}$$
 $\beta = 1/2$

T=0 coherently coupled Bose gases

Only Na+Nb is conserved

Indeed the system is a single condensate with a 2-component wave function

Elementary excitations

Ground state breaks U(1) symmetry:

Goldstone mode - coming from no cost to change the global total phase.
 A gapped mode - due to the cost of changing the relative phase

Static structure factor across the transition

Measuring the dispersion relation via "Faraday wave spectroscopy"

Measuring the dispersion relation via "Faraday wave spectroscopy"

$$\begin{split} \widehat{\mathcal{H}}(t) &= \sum_{k \neq 0} \left(\hbar \omega(k) + F(k,t) \right) \widehat{b}_k^{\dagger} \widehat{b}_k + \sum_{k > 0} F(k,t) \left(\widehat{b}_k^{\dagger} b_{-k}^{\dagger} + h.c. \right) \\ F(k,t) &= \mu S(k) f(t) \quad \text{with} \quad f(t) = \eta \sin(\omega_M t) \end{split}$$

The time evolution of the quasi-particle operator is equivalent to parametrically driven harmonic oscillators described by the Mathieu equation:

$$\ddot{x}_k + \omega(k) \Big[\omega(k) + 2\eta \mu S(k) \sin(\omega_M t) / \hbar \Big] x_k = 0.$$
 instabilities for: $\omega_M = 2\omega(k) / l$

 $\Omega = 0$

 $\Omega \neq 0$

Coherently Coupled Bose Condensates

$$\Omega(|a\rangle\langle b| + |b\rangle\langle a|) = \Omega\sigma_x$$

We consider a two component Bose gas with an interconversion term (Rabi coupling)

$$H = \int_{\mathbf{r}} \left[\sum_{\sigma} \left(\frac{\nabla \psi_{\sigma}^{\dagger} \nabla \psi_{\sigma}}{2m} + V_{\sigma} \psi_{\sigma}^{\dagger} \psi_{\sigma} \right) - \frac{\Omega}{2} (\psi_{a}^{\dagger} \psi_{b} + \psi_{b}^{\dagger} \psi_{a}) + \sum_{\sigma \sigma'} \frac{g_{\sigma \sigma'}}{2} \psi_{\sigma}^{\dagger} \psi_{\sigma'}^{\dagger} \psi_{\sigma'} \psi_{\sigma} \right]$$

The cleanest case is: $g_{a} = g_{b} = g$ \longrightarrow $U(1) \times \mathbb{Z}_{2}$

In the weakly interacting regime at T=0 the system is well described within mean-field theory by a spinor order parameter

$$\Psi = e^{i\phi_d/2} \begin{pmatrix} \sqrt{n_{\uparrow}} e^{i\phi_r/2} \\ \sqrt{n_{\downarrow}} e^{-i\phi_r/2} \end{pmatrix}$$

The dynamics of the classical fields are given by <u>coupled Gross-Pitaevskii equations</u>. They can be recast in a very convenient as the equation of motion for the relevant variables describing the gas, namely the **density** and the **spin-density**.

Coherently Coupled Bose Condensates

density:
$$n(\mathbf{r}) = (\Psi_{\uparrow}^*, \Psi_{\downarrow}^*) \cdot (\Psi_{\uparrow}, \Psi_{\downarrow})^T = n_{\uparrow} + n_{\downarrow}$$

spin-density: $s_i(\mathbf{r}) = (\Psi^*_{\uparrow}, \Psi^*_{\downarrow}) \sigma_i(\Psi_{\uparrow}, \Psi_{\downarrow})^T$ with $|\mathbf{s}(\mathbf{r})| = n(\mathbf{r})$

They satisfy what can be called collision-less spin hydrodynamic equations [1]:

a

$$\dot{n} + \operatorname{div}(n\mathbf{v}) = 0,$$

$$m\dot{\mathbf{v}} + \nabla\left(\frac{mv^2}{2} + \mu + \frac{s_z}{n}h + V - \frac{\hbar^2\nabla^2\sqrt{n}}{2m\sqrt{n}} + \frac{\hbar^2|\nabla\mathbf{s}|^2}{8mn^2}\right) = 0,$$

$$\dot{\mathbf{s}} + \sum_{\alpha = x, y, z} \partial_{\alpha}(\mathbf{j}_{s, \alpha}) = \mathbf{H}(\mathbf{s}) \times \mathbf{s},$$

where the superfluid and the spin currents read:

$$\mathbf{v}(\mathbf{r}) = \frac{\mathbf{j}(\mathbf{r})}{n} = \frac{\hbar}{2mni} \sum_{\sigma=\uparrow,\downarrow} (\Psi_{\sigma}^* \nabla \Psi_{\sigma} - \Psi_{\sigma} \nabla \Psi_{\sigma}^*) = \underbrace{\frac{\hbar}{2m} (\nabla \phi_d + s_z/n \nabla \phi_r)}_{(\mathbf{r} \in \mathbf{r},\downarrow)} \xrightarrow{\text{Mermin-Ho}}_{A-\text{phase He-3}}$$

$$\mathbf{j}_{s,\alpha} = \underbrace{\mathbf{v}_{\alpha} \mathbf{s}}_{\sigma=\uparrow,\downarrow} - \frac{\hbar}{2m} \underbrace{\left(\frac{\mathbf{s}}{n} \times \partial_{\alpha} \mathbf{s}\right)}_{\mathbf{r} \in \mathbf{r},\downarrow}, \quad \alpha = x, y, z,$$

$$\mathbf{dvection} \qquad \qquad \mathbf{vectorial nature}$$
and the non-linear magnetic field is
$$\mathbf{H}(\mathbf{s}) = (-\Omega, 0, (g - g_{\uparrow\downarrow})s_z/\hbar)$$

[1] T. Nikuni, J.E. Williams, J. Low Temp. Phys. 133, 323 (2003)

A Landau-Lifshitz magnetic functional

$$E(\mathbf{S}) \propto -\int \left(-\frac{\gamma}{2} |\nabla \mathbf{S}|^2 + \mathbf{B} \cdot \mathbf{S} + \kappa S_z^2\right) dV$$
$$\gamma = \frac{\hbar^2}{2mn}, \ \mathbf{B} = (\Omega, 0, \delta(n)), \ \kappa \propto (g_{12} - g)$$

Our system is harmonically trapped in an elongated potential

From local measurement we can extract the phase diagram

Theory (c)-(d) and purple points: noisy/dissipative GPE - Truncated Wigner

From local measurement we can extract the phase diagram

Theory (c)-(d) and purple points: noisy/dissipative GPE - Truncated Wigner

Susceptibility and magnetic Fluctuations

Metastability and Bubble Creation

The magnetic sector can be described by a scalar field theory with (in the ferromagnetic regime) a potential with a local and global minimum

$$E_c = \frac{\hbar n}{4} \int \left\{ \frac{\hbar}{2m} \frac{(\nabla Z)^2}{1 - Z^2} + V \right\} dx$$

$$V = \kappa n Z^2 - 2\Omega (1 - Z^2)^{1/2} - 2\delta_{\text{eff}} Z$$

Is it possible to study the decay to the ground state by starting in the metastable one? Or to use Coleman wording to study the False vacuum decay?

[S. Coleman, PRD 15, 2929 (1977); C. G. Callan and S. Coleman, PRD 16, 1762 (1977); A. D. Linde, Nucl. Phys.B 216, 421 (1983)]

Metastability and Bubble Creation

The magnetic sector can be described by a scalar field theory with (in the ferromagnetic regime) a potential with a local and global minimum

$$E_c = \frac{\hbar n}{4} \int \left\{ \frac{\hbar}{2m} \frac{(\nabla Z)^2}{1 - Z^2} + V \right\} dx$$

$$V = \kappa n Z^2 - 2\Omega (1 - Z^2)^{1/2} - 2\delta_{\text{eff}} Z$$

Is it possible to study the decay to the ground state by starting in the metastable one? Or to use Coleman wording to study the False vacuum decay?

[S. Coleman, PRD 15, 2929 (1977); C. G. Callan and S. Coleman, PRD 16, 1762 (1977); A. D. Linde, Nucl. Phys.B 216, 421 (1983)]

Metastability and Bubble Creation

From the general of False Vacuum Decay the exponential behaviour of the decay rate can be inferred

 $1/ au \sim e^{ ilde{E}c/T}$ with $ilde{E}_c$ the critical (istanton) bubble field configuration

NOTE:

we indeed observe orders of magnitude change in the bubble formation

DISCLAIMER:

instanton theory provides only the qualitative behaviour (Temperature, quantum fluctuations, noise, complex field...still a lot to do)

The Trento team on Coherently Coupled Bose Gases

Experimental group

Riccardo Cominotti (PhD)

Gabriele Ferrari (UNITN)

Giacomo Chiara Lamporesi (INO-CNR) Rogora (PhD)

Theory group

Albert Gallemì (postdoc) -> Hannover

Anna Berti (PhD)

Arko Roy (postdoc) -> IIT Mandi

lacopo Carusotto (INO-CNR)

[Exp+Theory: Nat. Phys. 17, 1359 (2021), PRA 104, 023326 (2021), PRL 128, 210401 (2022), arXiv:2209.13235]

Beyond Mean Field Effect: anomalous Goldstone mode damping and "tunable" LHY correction

Beliaev Decay across the phase transition

 $V^{dss}_{{\bf k},{\bf q},{\bf k}-{\bf q}}$

 $\mathbf{k} - \mathbf{q}$

k

Bogolyubov modes have finite life time. For a single component gas the lowest order decaying processes is due to a three phonon vertex leading to Beliaev decay

 $\Gamma({f k}) \propto k^5$

Beliaev Decay across the phase transition

Bogolyubov modes have finite life time. For a single component gas the lowest order decaying processes is due to a three phonon vertex leading to Beliaev decay

 $\Gamma({\bf k}) \propto k^5$

For a two-component gas more process are possible. What happens to the Goldstone (in-phase Bogolyubov mode) close to the FM $V_{k,q,k-q}^{dss}$ k-q transition? k-q

Due to symmetries the possible term are not that many and it is easy to find out that the most relevant one is $\Pi_d \Pi_s^2$ (density in 2 spin modes):

Beilaev Decay across the phase transition

 \mathbf{k}

$$\Gamma(\mathbf{k}) = \frac{\mathrm{Pm}_V}{(2\pi)^2} \int d^3 \mathbf{q} |V_{\mathbf{k},\mathbf{q},\mathbf{k}-\mathbf{q}}|^2 \delta(\omega_k^d - \omega_q^s - \omega_{|\mathbf{k}-\mathbf{q}|}^s)$$

For a mixture at the PS point the Goldstone mode is still well defined at low-*k*

$$\Gamma(\mathbf{k}) = \frac{(mc_d k)^{5/2}}{48nm\pi}.$$

For coh. coup. gases at the PT point the Goldstone mode is not well defined anymore at low-*k*

$$\Gamma(\mathbf{k}) = \frac{(mc_s)^4 k}{4nm\pi}$$

[AR and F. Piazza, PRB 99, 064505 (2019)]

LHY corrections

The LHY correction to the mean-field equation is obtained as by expanding the energy functional to second order in the fluctuations around the mean-field solution and considering the zero-point energy:

Due to the spin fluctuations: the gap introduce a new scaling.

- 1. Without Rabi one obtains standard LHY just from two independent modes
- 2. For $\Omega \gg (g g_{\uparrow\downarrow})n$ strong change. *From a 2.5-body to 2+3-body* interaction:

$$\frac{\sqrt{\Omega}}{2\sqrt{2}\pi} \left(\frac{g - g_{ab}}{2}n\right)^2 + \frac{1}{8\sqrt{2\Omega}\pi} \left(\frac{g - g_{ab}}{2}n\right)^3$$

Both terms are exactly equal to a coupled STM calculation for 2 and 3 atoms. LHY correction is much easier and therefore it could be even used to get results for 2 and 3 body interaction strengths in more general cases.

LHY corrections

Due to the spin fluctuations: the gap introduce a new scaling.

- 1. Without Rabi one obtains standard LHY just from two independent modes
- 2. For $\Omega \gg (g g_{\uparrow\downarrow})n$ strong change. *From a 2.5-body to 2+3-body* interaction:

$$\frac{\sqrt{\Omega}}{2\sqrt{2}\pi} \left(\frac{g - g_{ab}}{2}n\right)^2 + \frac{1}{8\sqrt{2\Omega}\pi} \left(\frac{g - g_{ab}}{2}n\right)^3$$

Both terms are exactly equal to a coupled STM calculation for 2 and 3 atoms. LHY correction is much easier and therefore it could be even used to get results for 2 and 3 body interaction strengths in more general cases.

Therefore if the interspecies interaction is $g_{ab} = -g < 0$ the mean-field energy as well as the LHY for the in-phase vanishes and the EoS reads:

$$\frac{\sqrt{\Omega}}{2\sqrt{2}\pi} \left(-g_{ab}n\right)^2 + \frac{1}{8\sqrt{2\Omega}\pi} \left(-g_{ab}n\right)^3$$

[L. Lavoine, A. Hammond, AR, D. Petrov, T. Bourdel, PRL 127, 203402 (2021)]

Beyond-Mean-Field Correction close to collapse

In collaboration with Dima Petrov (LPTMS, France)

Dmitry Petrov (Orsay)

and the Thomas Bourdel K-39 experimental group (Inst. Optique, France)

See also A. Cappellaro, F. Macri, G. Bertacco, and L. Salasnich, Scientic Reports 7, 13358 (2017) for the discussion of the effect of coherent coupling on (Z_2 symmetric) droplets

Beyond-Mean-Field Correction

Experimental results vs extended Gross-Pitaevskii equation (eGPE)

Black line: R_{TF} (µm) full LHY equation of state in the eGPE including experimental noise $\Omega/2\pi$ (kHz) $\frac{\sqrt{\tilde{\Omega}}}{\sqrt{2\pi}}g_{\uparrow\downarrow}^2\frac{n^2}{2} + \frac{3}{4\sqrt{2\pi}\sqrt{\tilde{\Omega}}}|g_{\uparrow\downarrow}|^3\frac{n^3}{6}$ $E_{\rm BMF} \approx$

[L. Lavoine, A. Hammond, AR, D. Petrov, T. Bourdel, PRL 127, 203402 (2021)]

For a recent review on coherently coupled Bose gases including spin-orbit coupling:

Alessio Recati and Sandro Stringari, Ann. Rev. Cond. Matter Physics 13, 407 (2022)

Vortices in coherently coupled BECs

Phase domain walls: simple picture [Son & Stephanov PRA '02]

$$e(n_a, n_b) = \frac{1}{2}g_a n_a^2 + \frac{1}{2}g_b n_b^2 + g_{ab}n_a n_b + 2|\Omega|\cos(\phi_a - \phi_b)\sqrt{n_a n_b}$$

For fixed (equal) densities
the functional energy of
the relative phase reads:
$$E_{spin} = \int \left[\frac{\hbar^2 n}{4m} (\nabla \phi_s)^2 + 2\Omega n \cos(\phi_s)\right]$$

Global minimum for $\phi_s = (2n+1)\pi$

Domain wall or kink is a local minimum solution which connects 2 global minima

Vortices in coherently coupled BECs

Phase domain walls: simple picture [Son & Stephanov PRA '02]

Global minimum for $\phi_s = (2n+1)\pi$

Domain wall or kink is a local minimum solution which connects 2 global minima

Vortices in coherently coupled BECs: dimers

Tylutky, AR, Pitaevskii, Stringari, PRA (2016) see also K. Kasamatsu, M. Tsubota, and M. Ueda, PRL 93, 250406 (2004).

Vortices in coherently coupled BECs: dimers

Tylutky, AR, Pitaevskii, Stringari, PRA (2016)

Vortices in coherently coupled BECs: string breaking

Vortices in coherently coupled BECs: string breaking

An elongated inhomogeneous system: 1) Local Josephson oscillations

1) We first prove the local BJJ in an elongated inhomogeneous cloud in the Josephson oscillation regime. 1D spin dynamics with Thomas-Fermi profile and "large" Rabi coupling

$$\dot{\mathbf{s}}(x) = \begin{pmatrix} \Omega \\ 0 \\ \delta + \kappa s_z(x) \end{pmatrix} \times \mathbf{s}(x) \text{ in the Josephson regime } \omega_J(x) = \sqrt{\Omega(\Omega + \kappa n(x))}$$

The parameter $\,\kappa\,$ is determined experimentally from the local Josephson oscillation frequency (black dots) and from the loa

Coherently coupled BEC and Josephson junction dynamics

An elongated inhomogeneous system: 2) Critical region and Quantum-torque

Emulating Landau-Lifshitz equations

Dissipationless Landau Lifshitz Equation (LLE, 1935)

New Exp: An elongated inhomogeneous system

$$\dot{\mathbf{s}} = \mathbf{H}(\mathbf{s}) \times \mathbf{s} \qquad \mathbf{H}(\mathbf{s}) = (\Omega, 0, 2g_{ss}s_z)$$

the correct equation reads
$$\dot{\mathbf{s}} + \partial_x \mathbf{j}_{\mathbf{s}} = \mathbf{H}(\mathbf{s}) \times \mathbf{s}$$

Spin
$$\int_{\mathbf{r}_0^2}^{\mathbf{a}_0^2} \int_{\mathbf{r}_0^2}^{\mathbf{a}_0^2} \int_{\mathbf$$

Equation of motion for the "hydrodynamic" quantities

Note: total density (and total current, not shown) pretty much constant, thus the LLE description can be safely applied

Question: What is generated by the torque? Dispersive magnetic shock wave? (shape and constant front speed) Turbulence?

The correlation looks very much as for a quenched anti-ferromagnet

Need more theoretical and experimental investigations...

Supercurrent stability

phase slips due to vortices in the minority component (spin dominated)

Supercurrent stability

BUT if the RF is kept on the current is stable for over 1 minute

Elementary excitations

Only Na+Nb is conserved: The system is a *single condensate* with a 2-component (spinor) wave function

Ground state breaks one cont. symmetry U(1):

1 gapless Goldstone modes: no cost to change the phase of the order parameter

1 gapped mode: due to the cost of changing the relative phase (explicit U(1) symmetry breaking)

Two Component (mixture) BEC

$$e(n_a, n_b) = \frac{1}{2}g_a n_a^2 + \frac{1}{2}g_b n_b^2 + g_{ab}n_a n_b$$

Both Na and Nb are conserved

Elementary excitations

Ground state breaks U(1)xU(1) symmetry: 2 Goldstone modes - coming from no cost to change the global and relative phase of the 2 order parameters

