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We investigate the properties of quantized vortices in a dipolar Bose-Einstein condensed gas by
means of a generalised Gross-Pitaevskii equation. The size of the vortex core hugely increases by
increasing the weight of the dipolar interaction and approaching the transition to the supersolid
phase. The critical angular velocity for the existence of an energetically stable vortex decreases
in the supersolid, due to the reduced value of the density in the interdroplet region. The angular
momentum per particle associated with the vortex line is shown to be smaller than ~, reflecting
the reduction of the global superfluidity. The real-time vortex nucleation in a rotating trap is
shown to be triggered, as for a standard condensate, by the softening of the quadrupole mode. For
large angular velocities, when the distance between vortices becomes comparable to the interdroplet
distance, the vortices are arranged into a honeycomb structure, which coexists with the triangular
geometry of the supersolid lattice and persists during the free expansion of the atomic cloud.

I. INTRODUCTION

The recent realization of supersolidity in dipolar Bose-
Einstein condensed gases [1–3] is stimulating novel exper-
imental and theoretical work aimed at studying the su-
perfluid properties of these intriguing systems, which ex-
hibit the spontaneous breaking of both gauge and trans-
lational symmetry yielding superfluidity and crystal pe-
riodic order, respectively (see, e.g., [4–7]). Experimental
evidence of phase coherence among the droplets form-
ing the crystal structure [1–3], the occurrence of Gold-
stone modes associated with the spontaneous breaking
of both symmetries [8–10] and the reduction of the mo-
ment of inertia with respect to the rigid value [11] have
provided important signatures of the superfluid behav-
ior of these systems. Conclusive proof of superfluidity
is however given by the observation of quantized vortex
lines, following the seminal papers of Refs. [12–15] and
[16] in Bose-Einstein condensates and strongly interact-
ing Fermi gases, respectively. The realization of quan-
tized vortices, hosted by the crystal configuration of the
supersolid, then represents a challenging task to pursue.
This possibility, so far not yet experimentally realized,
has been the object of first recent theoretical investiga-
tions [17]. Even the structure of quantized vortices in
the fully-superfluid phase and in particular the e↵ect of
the long-range dipolar force on the size of the vortex core
and on the value of the critical angular velocity needed
to ensure the energetic stability of a single vortex line,
represents an interesting topic, hopefully of near future
experimental investigation. The purpose of this paper is
to provide a first comprehensive theoretical investigation
of the structure of quantized vortices in a Bose-Einstein
condensate characterized by a long-range dipolar inter-
action with special focus on the supersolid phase.

Our investigation is based on the use of a suitable ex-

⇤Corresponding Author: alessio.recati@ino.it

FIG. 1: Example of the three distinct phases of a dipolar Bose
gas in a pancake geometry (from left to right): superfluid, su-
persolid and droplet crystal phase. The pictures are obtained
as ground state solutions of the extended Gross-Pitaevskii
equation (1) for 105 atoms by decreasing the s-wave scatter-
ing length in order to favor the long-range anysotropic dipolar
interaction (see text).

tension of the Gross-Pitaevskii equation to include the
beyond mean-field term (see Section II) in the equation
of state accounting for quantum fluctuations [18], which
plays a crucial role in the emergence of supersolidity and
the formation of self-bound droplets (see Fig. 1). In Sec-
tion III we explore the properties of a single vortex line in
both the superfluid and the supersolid case. In the super-
fluid phase the dipolar interaction hugely increases the
value of the healing length when compared to Bose gases
with only zero-range interaction. In the supersolid phase,
vortices are hosted in the region separating the droplets
forming the crystal structure and their shape is strongly
deformed by the presence of the droplets. We show that
the value of the critical angular velocity exhibits an im-
portant reduction by increasing the ratio between the
dipolar and the zero-range strengths of the interatomic
force. Furthermore we show that the angular momen-
tum carried by a vortical line in an axi-symmetrically
trapped supersolid is reduced with respect to the usual
value ~ as a consequence of the reduced superfluidity of
the system. By carrying out a time-dependent simulation
we also point out that the nucleation process for the cre-
ation of a vortical line in the supersolid phase is favored
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FIG. 4: Velocity field of a supersolid at small ⌦. The droplets
partially follow the rigid body rotation, being dragged by the
�⌦L̂z term of the hamiltonian.

supersolid phase emerges at the value "dd = 1.32, with
a density profile characterized by overlapping droplets
arranged in triangular cells (see also [25]). The num-
ber and the distribution of the peaks depend on the
atom number, the trapping frequencies and the scatter-
ing length. Nevertheless, the distance between droplets
is essentially the same for all the configurations consid-
ered in the present work, and agrees rather well with the
value of 2⇡/qR = 4.5az predicted in 2D uniform matter
[46], where the roton wave vector qR is determined by
the axial confinement length az =

p
~/(m!z) = 0.87µm.

In isotropic configurations the moment of inertia fixes
the non classical rotational inertia (NCRI) fraction
fNCRI according to the relation [55]

fNCRI = 1�⇥/⇥rig . (4)

In the case of a ring geometry, this quantity coincides
with the superfluid fraction defined in [52, 53]. In Fig.
3 we report our predictions for fNCRI as a function of
the dimensionless parameter "dd. This quantity exhibits
a jump at the transition to the supersolid phase, which
is much smaller than in the case of elongated trapping,
followed by a further jump around "dd = 1.335, corre-
sponding to a change of the supersolid structure from the
single-triangular cell (Fig. 3(c)) to the two triangular-cell
(Fig. 3(d)) configuration. For larger values of "dd, the
NCRI fraction continues decreasing, the global behavior
being similar to the one of the superfluid fraction cal-
culated in periodic configurations as a function of "dd,
both in the 1D [23] and in the 2D [25] case. In order
to get a better insight on the rotational e↵ects taking
place in the supersolid phase we show in Fig. 4 the veloc-
ity field v(r) = (~/m)rS(r) of the rotating supersolid
("dd = 1.347). Despite the irrotational nature of the
eGPE, the figure clearly reveals the rotational motion of
the droplets through the superfluid, which reacts to the
motion of the droplets.

The isotropic rotating configuration is very well suited
to explore another important e↵ect of superfluidity, i.e.,
the emergence of quantized vortices. Indeed we find that,

FIG. 5: Density plots of the ground state and vortical config-
uration: (a) and (c) in the single-triangular cell structure for
"dd = 1.334; (b) and (d) in the case of a two-triangular cell
structure obtained for "dd = 1.351.

at higher values of the angular velocity ⌦, the supersolid
is able to sustain a quantized vortex, thanks to the ex-
istence of an important superfluid component. In Fig.
5 we show the 2D density profiles of a rotating super-
solid configuration at frequency ⌦ = 0.1!x both in the
single-triangular cell and the two-triangular cell struc-
ture case. The presence of the vortex is clearly revealed
by the vanishing of the density in the region of the vortex
core (and - not shown - by the typical divergent behav-
ior of the velocity field in the proximity of the center of
the core), an e↵ect directly measurable in future experi-
ments. Remarkably, due to the small value of the density
in the superfluid region and the vicinity of the surround-
ing droplets, the core of the vortex is large and deformed.
The core deformation strongly depends on the structure
of the droplets, being triangular-shaped and oblate in
Fig. 5(b) and (d), respectively. We find that the vorti-
cal solution becomes the ground state configuration for
⌦ > ⌦c ⇠ 0.12!x, i.e. for values of ⌦ significantly smaller
than in the case of usual condensates [35]. The e↵ect is
the consequence of the small value of the density in the
region where the vortex is formed. Furthermore we find
that the jump in the angular momentum per particle,
caused by the appearence of the vortex, is smaller than
~, reflecting the fact that the superfluid fraction is smaller
than 1 in the supersolid phase. A more systematic dis-
cussion of the behavior of vortices in the supersolid phase
will be the object of a future work.

In conclusion we have shown that supersolid dipolar
atomic gases confined in harmonic traps reveal impor-
tant superfluid features. In the case of elongated con-
figurations in the plane of rotation we have shown that
the frequency of the scissors mode is a direct indicator
of the e↵ects of superfluidity on the moment of inertia,
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FIG. 1. (a) Scattering properties of the initial 1-2 and final
1-3 state mixtures. The RF pulse pumps impurities from the
weakly interacting into the resonant state. Inset: In situ ab-
sorption images of the state |1i (red) and |2i (blue) atomic
clouds for x = 0.10(1). The rectangles mark the central re-
gion where the spectroscopy signal is recorded. (b) Left: En-
ergy E# landscape of a zero-momentum impurity interacting
with a homogeneous Fermi gas. The shaded area denotes the
dressed dimer continuum and the vertical dashed line marks
the polaron/molecule crossing. Right: Sketch of the momen-
tum dependence of the impurity resonance frequency. The
blue (green) curve depicts the dispersion of bare (dressed)
impurities.

scattering while moderately increasing the comparatively
weak 1-2 interactions (see Fig. 1(a)).

In order to probe the full excitation spectrum of the im-
purities, we employ reverse RF spectroscopy [17, 34, 35]:
we drive the |2i atoms on the |2i ! |3i transition to the
resonantly interacting state, using a RF pulse with vari-
able frequency ⌫. Our spectroscopy signal is the trans-
ferred fraction N3/(N2 + N3), where Ni is the number
of |ii atoms contained in a centered region of size 70µm
(30µm) along the axial (transverse) direction of the trap
(see Fig. 1(a)). For each experimental run, the popu-
lations N2 and N3 are separately monitored by acquir-
ing two consecutive in situ absorption images delayed by
500µs. The transferred fraction is measured as a function
of the RF detuning � = ⌫ � ⌫0 from the frequency ⌫0 of
the non-interacting RF transition, measured in absence
of majority atoms. Extracting the signal from such a
central region helps to reduce the e↵ects of density inho-
mogeneity. The bath is characterized by e↵ective Fermi
energy "F ' 0.74EF and wavevector F ' 0.86 kF , aver-
aged over the in situ density distribution of the state-
|1i gas within the integration region [38]. The bath
residual inhomogeneity quantified by a standard devia-

FIG. 2. Examples of repulsive polaron spectral response
recorded (a) at di↵erent 1/(F a) values with concentration
x = 0.15(3), and (b) at di↵erent x values with F a ' 2. (c)
Resonance position �+ as a function of "̄ for various 1/(F a)
values (see legend). The linear fits used to extract E+ and
m/m

⇤ are shown. Error bars denote the standard errors of
the fitted �+.

tion �F ⇠ 0.1F . From here on, interactions will be
parametrized by 1/(Fa) ⌘ 1/(Fa13).

Figure 1(b) illustrates the generic energy spectrum of
a zero-momentum impurity in a Fermi sea in the mass-
balanced and broad resonance case. Attractive and re-
pulsive polarons appear as discrete levels, with mono-
tonically increasing energies E+ and E� as 1/(Fa) is
decreased. Moreover, the repulsive polaron acquires an
increasingly large width (not shown), owing to a non-
zero probability to decay onto lower-lying states. These
also include a broad continuum of molecular excitations
of spectral width ⇠ "F , which arise from processes in
which the impurity and any of the majority fermions are
bound into a molecule. The attractive polaron enters the
molecular continuum for 1/(Fa) & 0.9 [36, 39], beyond
which a dressed molecule becomes energetically favored.
Reverse RF spectroscopy allows to entirely explore this
energy landscape: besides a broad molecular state con-
tribution, peaks in the RF signal centered at �+ > 0
(�� < 0) are identified as the repulsive (attractive) po-
laron states, providing access to E+ (E�).

Typical repulsive polaron spectra at various 1/(Fa)
values, obtained using a 1ms-long rectangular pulse,
i.e. a 0.8⇡-pulse for non-interacting impurity atoms, are
displayed in Fig. 2(a). These are shown together with
Gaussian fits employed to extract the resonance position

What happens under a coupling which  
Transform a non-interacting impurity in a strongly 

interacting one. 
How does the system react? 

(Time dependent variational Ansatz/  
semiclassical derivation of dressed Bloch 

equation)
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to obtain the ones for the populations. Indeed, in general one has that
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With the above definition, the equations for the populations in |2i and |3i are easily obtained

@tn
(2)
22 + i

⌦

2
(f23 � f⇤

23) = 0 (3.91)

X

↵

1

Z↵

@tn
(↵)
33 � i

⌦

2
(f23 � f⇤

23) =
X

↵

I↵coll. (3.92)

From the above equations, the conservation of coherent particles is obtained, i.e.

@t(N2 +N3) =

Z

p
@tn

(2)
22 +

X

↵

1

Z↵

@tn
(↵)
33 = 0. (3.93)

The conservation of coherent particle inside the kinetic equations is a consequence of the as-
sumption made on A33, Eq. (3.81), where the non-coherent part of the spectral function is totally
neglected. Finally, in order to close the kinetic equations, only a single polaron branch has to
be considered. In this case, both nii and f23 are projected on the same energy up to an e↵ective
mass correction and the kinetic equations become

@n2 + i
⌦

2
(f23 � f⇤

23) = 0 (3.94)

@n↵ � iZ↵

⌦

2
(f23 � f⇤

23) = I↵coll (3.95)

@f23 + iZ̃↵�↵f23 + i
⌦

2
(n↵ � n2) = ��dec

↵

2
f23, (3.96)

with n↵ = n(↵)
33 , �↵(p) = "↵(p) � "2(p) � � and �dec

↵ is the decoherence rate. The absence of
the tilde accent over collisional integral and decoherence rate indicates that they are written
in terms of populations and not of distribution functions. Moreover, if �↵ = 0 and the terms
on the right-hand side are neglected, it is possible to show explicitly that the Rabi frequency
is renormalized as

p
Z↵⌦, in agreement with results obtained with variational Ansätz [73, 4].

This agreement is also an indication that the derived kinetic equations are a good model for
the system. On the other hand, if only the decoherence rate is present, the renormalized Rabi
frequency ⌦ren is given by

⌦ren =
q
Z↵⌦2 � �dec

↵ , (3.97)

when only a single polaronic species is present in the system. For attractive polarons �dec
a ⇠ 0

and the limit
p
Za⌦ is recovered.

The main result of the theoretical derivation are the kinetic equations for the single polaron
species, Eqs. (3.94-3.96). Interestingly, they can also be derived starting from the DE for the
Keldysh component, but the procedure to project on-shell and remove the ! dependence is
better defined starting from the Kadano↵-Baym equation.

To better understand the kinetic equations, it is necessary to derive the explicit form of the
collisional integral and of the decoherence rate. The strategy is the following: one starts from
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We investigate the properties of quantized vortices in a dipolar Bose-Einstein condensed gas by
means of a generalised Gross-Pitaevskii equation. The size of the vortex core hugely increases by
increasing the weight of the dipolar interaction and approaching the transition to the supersolid
phase. The critical angular velocity for the existence of an energetically stable vortex decreases
in the supersolid, due to the reduced value of the density in the interdroplet region. The angular
momentum per particle associated with the vortex line is shown to be smaller than ~, reflecting
the reduction of the global superfluidity. The real-time vortex nucleation in a rotating trap is
shown to be triggered, as for a standard condensate, by the softening of the quadrupole mode. For
large angular velocities, when the distance between vortices becomes comparable to the interdroplet
distance, the vortices are arranged into a honeycomb structure, which coexists with the triangular
geometry of the supersolid lattice and persists during the free expansion of the atomic cloud.

I. INTRODUCTION

The recent realization of supersolidity in dipolar Bose-
Einstein condensed gases [1–3] is stimulating novel exper-
imental and theoretical work aimed at studying the su-
perfluid properties of these intriguing systems, which ex-
hibit the spontaneous breaking of both gauge and trans-
lational symmetry yielding superfluidity and crystal pe-
riodic order, respectively (see, e.g., [4–7]). Experimental
evidence of phase coherence among the droplets form-
ing the crystal structure [1–3], the occurrence of Gold-
stone modes associated with the spontaneous breaking
of both symmetries [8–10] and the reduction of the mo-
ment of inertia with respect to the rigid value [11] have
provided important signatures of the superfluid behav-
ior of these systems. Conclusive proof of superfluidity
is however given by the observation of quantized vortex
lines, following the seminal papers of Refs. [12–15] and
[16] in Bose-Einstein condensates and strongly interact-
ing Fermi gases, respectively. The realization of quan-
tized vortices, hosted by the crystal configuration of the
supersolid, then represents a challenging task to pursue.
This possibility, so far not yet experimentally realized,
has been the object of first recent theoretical investiga-
tions [17]. Even the structure of quantized vortices in
the fully-superfluid phase and in particular the e↵ect of
the long-range dipolar force on the size of the vortex core
and on the value of the critical angular velocity needed
to ensure the energetic stability of a single vortex line,
represents an interesting topic, hopefully of near future
experimental investigation. The purpose of this paper is
to provide a first comprehensive theoretical investigation
of the structure of quantized vortices in a Bose-Einstein
condensate characterized by a long-range dipolar inter-
action with special focus on the supersolid phase.

Our investigation is based on the use of a suitable ex-

⇤Corresponding Author: alessio.recati@ino.it

FIG. 1: Example of the three distinct phases of a dipolar Bose
gas in a pancake geometry (from left to right): superfluid, su-
persolid and droplet crystal phase. The pictures are obtained
as ground state solutions of the extended Gross-Pitaevskii
equation (1) for 105 atoms by decreasing the s-wave scatter-
ing length in order to favor the long-range anysotropic dipolar
interaction (see text).

tension of the Gross-Pitaevskii equation to include the
beyond mean-field term (see Section II) in the equation
of state accounting for quantum fluctuations [18], which
plays a crucial role in the emergence of supersolidity and
the formation of self-bound droplets (see Fig. 1). In Sec-
tion III we explore the properties of a single vortex line in
both the superfluid and the supersolid case. In the super-
fluid phase the dipolar interaction hugely increases the
value of the healing length when compared to Bose gases
with only zero-range interaction. In the supersolid phase,
vortices are hosted in the region separating the droplets
forming the crystal structure and their shape is strongly
deformed by the presence of the droplets. We show that
the value of the critical angular velocity exhibits an im-
portant reduction by increasing the ratio between the
dipolar and the zero-range strengths of the interatomic
force. Furthermore we show that the angular momen-
tum carried by a vortical line in an axi-symmetrically
trapped supersolid is reduced with respect to the usual
value ~ as a consequence of the reduced superfluidity of
the system. By carrying out a time-dependent simulation
we also point out that the nucleation process for the cre-
ation of a vortical line in the supersolid phase is favored
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FIG. 4: Velocity field of a supersolid at small ⌦. The droplets
partially follow the rigid body rotation, being dragged by the
�⌦L̂z term of the hamiltonian.

supersolid phase emerges at the value "dd = 1.32, with
a density profile characterized by overlapping droplets
arranged in triangular cells (see also [25]). The num-
ber and the distribution of the peaks depend on the
atom number, the trapping frequencies and the scatter-
ing length. Nevertheless, the distance between droplets
is essentially the same for all the configurations consid-
ered in the present work, and agrees rather well with the
value of 2⇡/qR = 4.5az predicted in 2D uniform matter
[46], where the roton wave vector qR is determined by
the axial confinement length az =

p
~/(m!z) = 0.87µm.

In isotropic configurations the moment of inertia fixes
the non classical rotational inertia (NCRI) fraction
fNCRI according to the relation [55]

fNCRI = 1�⇥/⇥rig . (4)

In the case of a ring geometry, this quantity coincides
with the superfluid fraction defined in [52, 53]. In Fig.
3 we report our predictions for fNCRI as a function of
the dimensionless parameter "dd. This quantity exhibits
a jump at the transition to the supersolid phase, which
is much smaller than in the case of elongated trapping,
followed by a further jump around "dd = 1.335, corre-
sponding to a change of the supersolid structure from the
single-triangular cell (Fig. 3(c)) to the two triangular-cell
(Fig. 3(d)) configuration. For larger values of "dd, the
NCRI fraction continues decreasing, the global behavior
being similar to the one of the superfluid fraction cal-
culated in periodic configurations as a function of "dd,
both in the 1D [23] and in the 2D [25] case. In order
to get a better insight on the rotational e↵ects taking
place in the supersolid phase we show in Fig. 4 the veloc-
ity field v(r) = (~/m)rS(r) of the rotating supersolid
("dd = 1.347). Despite the irrotational nature of the
eGPE, the figure clearly reveals the rotational motion of
the droplets through the superfluid, which reacts to the
motion of the droplets.

The isotropic rotating configuration is very well suited
to explore another important e↵ect of superfluidity, i.e.,
the emergence of quantized vortices. Indeed we find that,

FIG. 5: Density plots of the ground state and vortical config-
uration: (a) and (c) in the single-triangular cell structure for
"dd = 1.334; (b) and (d) in the case of a two-triangular cell
structure obtained for "dd = 1.351.

at higher values of the angular velocity ⌦, the supersolid
is able to sustain a quantized vortex, thanks to the ex-
istence of an important superfluid component. In Fig.
5 we show the 2D density profiles of a rotating super-
solid configuration at frequency ⌦ = 0.1!x both in the
single-triangular cell and the two-triangular cell struc-
ture case. The presence of the vortex is clearly revealed
by the vanishing of the density in the region of the vortex
core (and - not shown - by the typical divergent behav-
ior of the velocity field in the proximity of the center of
the core), an e↵ect directly measurable in future experi-
ments. Remarkably, due to the small value of the density
in the superfluid region and the vicinity of the surround-
ing droplets, the core of the vortex is large and deformed.
The core deformation strongly depends on the structure
of the droplets, being triangular-shaped and oblate in
Fig. 5(b) and (d), respectively. We find that the vorti-
cal solution becomes the ground state configuration for
⌦ > ⌦c ⇠ 0.12!x, i.e. for values of ⌦ significantly smaller
than in the case of usual condensates [35]. The e↵ect is
the consequence of the small value of the density in the
region where the vortex is formed. Furthermore we find
that the jump in the angular momentum per particle,
caused by the appearence of the vortex, is smaller than
~, reflecting the fact that the superfluid fraction is smaller
than 1 in the supersolid phase. A more systematic dis-
cussion of the behavior of vortices in the supersolid phase
will be the object of a future work.

In conclusion we have shown that supersolid dipolar
atomic gases confined in harmonic traps reveal impor-
tant superfluid features. In the case of elongated con-
figurations in the plane of rotation we have shown that
the frequency of the scissors mode is a direct indicator
of the e↵ects of superfluidity on the moment of inertia,

[Gallemì, Roccuzzo, Stringari, AR, PRA (2020)]

Liquid droplets and supersolidity in dipolar Bose gases (beyond mean field equation of state)
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We investigate the properties of quantized vortices in a dipolar Bose-Einstein condensed gas by
means of a generalised Gross-Pitaevskii equation. The size of the vortex core hugely increases by
increasing the weight of the dipolar interaction and approaching the transition to the supersolid
phase. The critical angular velocity for the existence of an energetically stable vortex decreases
in the supersolid, due to the reduced value of the density in the interdroplet region. The angular
momentum per particle associated with the vortex line is shown to be smaller than ~, reflecting
the reduction of the global superfluidity. The real-time vortex nucleation in a rotating trap is
shown to be triggered, as for a standard condensate, by the softening of the quadrupole mode. For
large angular velocities, when the distance between vortices becomes comparable to the interdroplet
distance, the vortices are arranged into a honeycomb structure, which coexists with the triangular
geometry of the supersolid lattice and persists during the free expansion of the atomic cloud.

I. INTRODUCTION

The recent realization of supersolidity in dipolar Bose-
Einstein condensed gases [1–3] is stimulating novel exper-
imental and theoretical work aimed at studying the su-
perfluid properties of these intriguing systems, which ex-
hibit the spontaneous breaking of both gauge and trans-
lational symmetry yielding superfluidity and crystal pe-
riodic order, respectively (see, e.g., [4–7]). Experimental
evidence of phase coherence among the droplets form-
ing the crystal structure [1–3], the occurrence of Gold-
stone modes associated with the spontaneous breaking
of both symmetries [8–10] and the reduction of the mo-
ment of inertia with respect to the rigid value [11] have
provided important signatures of the superfluid behav-
ior of these systems. Conclusive proof of superfluidity
is however given by the observation of quantized vortex
lines, following the seminal papers of Refs. [12–15] and
[16] in Bose-Einstein condensates and strongly interact-
ing Fermi gases, respectively. The realization of quan-
tized vortices, hosted by the crystal configuration of the
supersolid, then represents a challenging task to pursue.
This possibility, so far not yet experimentally realized,
has been the object of first recent theoretical investiga-
tions [17]. Even the structure of quantized vortices in
the fully-superfluid phase and in particular the e↵ect of
the long-range dipolar force on the size of the vortex core
and on the value of the critical angular velocity needed
to ensure the energetic stability of a single vortex line,
represents an interesting topic, hopefully of near future
experimental investigation. The purpose of this paper is
to provide a first comprehensive theoretical investigation
of the structure of quantized vortices in a Bose-Einstein
condensate characterized by a long-range dipolar inter-
action with special focus on the supersolid phase.

Our investigation is based on the use of a suitable ex-

⇤Corresponding Author: alessio.recati@ino.it

FIG. 1: Example of the three distinct phases of a dipolar Bose
gas in a pancake geometry (from left to right): superfluid, su-
persolid and droplet crystal phase. The pictures are obtained
as ground state solutions of the extended Gross-Pitaevskii
equation (1) for 105 atoms by decreasing the s-wave scatter-
ing length in order to favor the long-range anysotropic dipolar
interaction (see text).

tension of the Gross-Pitaevskii equation to include the
beyond mean-field term (see Section II) in the equation
of state accounting for quantum fluctuations [18], which
plays a crucial role in the emergence of supersolidity and
the formation of self-bound droplets (see Fig. 1). In Sec-
tion III we explore the properties of a single vortex line in
both the superfluid and the supersolid case. In the super-
fluid phase the dipolar interaction hugely increases the
value of the healing length when compared to Bose gases
with only zero-range interaction. In the supersolid phase,
vortices are hosted in the region separating the droplets
forming the crystal structure and their shape is strongly
deformed by the presence of the droplets. We show that
the value of the critical angular velocity exhibits an im-
portant reduction by increasing the ratio between the
dipolar and the zero-range strengths of the interatomic
force. Furthermore we show that the angular momen-
tum carried by a vortical line in an axi-symmetrically
trapped supersolid is reduced with respect to the usual
value ~ as a consequence of the reduced superfluidity of
the system. By carrying out a time-dependent simulation
we also point out that the nucleation process for the cre-
ation of a vortical line in the supersolid phase is favored
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FIG. 4: Velocity field of a supersolid at small ⌦. The droplets
partially follow the rigid body rotation, being dragged by the
�⌦L̂z term of the hamiltonian.

supersolid phase emerges at the value "dd = 1.32, with
a density profile characterized by overlapping droplets
arranged in triangular cells (see also [25]). The num-
ber and the distribution of the peaks depend on the
atom number, the trapping frequencies and the scatter-
ing length. Nevertheless, the distance between droplets
is essentially the same for all the configurations consid-
ered in the present work, and agrees rather well with the
value of 2⇡/qR = 4.5az predicted in 2D uniform matter
[46], where the roton wave vector qR is determined by
the axial confinement length az =

p
~/(m!z) = 0.87µm.

In isotropic configurations the moment of inertia fixes
the non classical rotational inertia (NCRI) fraction
fNCRI according to the relation [55]

fNCRI = 1�⇥/⇥rig . (4)

In the case of a ring geometry, this quantity coincides
with the superfluid fraction defined in [52, 53]. In Fig.
3 we report our predictions for fNCRI as a function of
the dimensionless parameter "dd. This quantity exhibits
a jump at the transition to the supersolid phase, which
is much smaller than in the case of elongated trapping,
followed by a further jump around "dd = 1.335, corre-
sponding to a change of the supersolid structure from the
single-triangular cell (Fig. 3(c)) to the two triangular-cell
(Fig. 3(d)) configuration. For larger values of "dd, the
NCRI fraction continues decreasing, the global behavior
being similar to the one of the superfluid fraction cal-
culated in periodic configurations as a function of "dd,
both in the 1D [23] and in the 2D [25] case. In order
to get a better insight on the rotational e↵ects taking
place in the supersolid phase we show in Fig. 4 the veloc-
ity field v(r) = (~/m)rS(r) of the rotating supersolid
("dd = 1.347). Despite the irrotational nature of the
eGPE, the figure clearly reveals the rotational motion of
the droplets through the superfluid, which reacts to the
motion of the droplets.

The isotropic rotating configuration is very well suited
to explore another important e↵ect of superfluidity, i.e.,
the emergence of quantized vortices. Indeed we find that,

FIG. 5: Density plots of the ground state and vortical config-
uration: (a) and (c) in the single-triangular cell structure for
"dd = 1.334; (b) and (d) in the case of a two-triangular cell
structure obtained for "dd = 1.351.

at higher values of the angular velocity ⌦, the supersolid
is able to sustain a quantized vortex, thanks to the ex-
istence of an important superfluid component. In Fig.
5 we show the 2D density profiles of a rotating super-
solid configuration at frequency ⌦ = 0.1!x both in the
single-triangular cell and the two-triangular cell struc-
ture case. The presence of the vortex is clearly revealed
by the vanishing of the density in the region of the vortex
core (and - not shown - by the typical divergent behav-
ior of the velocity field in the proximity of the center of
the core), an e↵ect directly measurable in future experi-
ments. Remarkably, due to the small value of the density
in the superfluid region and the vicinity of the surround-
ing droplets, the core of the vortex is large and deformed.
The core deformation strongly depends on the structure
of the droplets, being triangular-shaped and oblate in
Fig. 5(b) and (d), respectively. We find that the vorti-
cal solution becomes the ground state configuration for
⌦ > ⌦c ⇠ 0.12!x, i.e. for values of ⌦ significantly smaller
than in the case of usual condensates [35]. The e↵ect is
the consequence of the small value of the density in the
region where the vortex is formed. Furthermore we find
that the jump in the angular momentum per particle,
caused by the appearence of the vortex, is smaller than
~, reflecting the fact that the superfluid fraction is smaller
than 1 in the supersolid phase. A more systematic dis-
cussion of the behavior of vortices in the supersolid phase
will be the object of a future work.

In conclusion we have shown that supersolid dipolar
atomic gases confined in harmonic traps reveal impor-
tant superfluid features. In the case of elongated con-
figurations in the plane of rotation we have shown that
the frequency of the scissors mode is a direct indicator
of the e↵ects of superfluidity on the moment of inertia,
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text) as a function of the scattering length a by crossing the
superfluid to supersolid transition, both in the non-dipolar
(solid line) and dipolar (points) case. The simulation’s pa-
rameters are: N = 40000 atoms, !x,y,z = 2⇡ ⇥ (60, 60, 120)
Hz, and ⌦ = 2⇡ ⇥ 12.7 Hz.

A. Vortex core structure

The structure of the vortex core in superfluids is deeply
connected to a length called healing length. In conden-
sates with only contact interactions, the healing length is
computed as the half width at half maximum of the wave
function. Keeping the same definition also the dipolar
gases, seminal papers already studied in detail the de-
pendence of the healing length on the scattering length
for dipolar gases without the LHY correction [30, 31]. In
these works, it has been shown that the healing length
of the vortex increases by increasing "dd until the gas
collapses.

As mentioned above, quantum fluctuations prevent the
collapse, and the supersolid phase emerges in the trapped
geometry at higher values of ✏dd. In Fig. 2 we report the
healing length as the system goes from the superfluid
to the supersolid regime, by solving in imaginary time
the Gross-Pitaevskii equation in a rotating frame with
angular frequency ⌦. We find that the healing length
keeps increasing till the transition point, after which a
non-monotonic and irregular behavior is observed. At
the transition point, there appears to be a jump. In
the supersolid phase, the healing length does not show
a monotonic behaviour, but it remains roughly constant.
As noticed already in [17] indeed in the supersolid phase
the vortex core size is of the same order of the peak
density distance, which implies that the vortex core is
no longer characterized only by atom-atom interactions,
but it is deeply modified by the crystal structure. The
healing length for the non-dipolar case is also shown for
comparison.
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FIG. 3: a) Critical rotation frequency as a function of "dd. b)
Jump of the angular momentum � and nonclassical momen-
tum of inertia fraction fNCRI as a function of "dd. Angular
momentum as a function of the rotation frequency ⌦ for c)
"dd = 1.347, d) "dd = 1.404 and e) "dd = 1.483, respectively
in the superfluid, supersolid and crystal regimes. The other
parameters are the same of Fig. 2, i.e., N = 40000 atoms and
trapping frequencies!x,y,z = 2⇡ ⇥ (60, 60, 120) Hz.

B. Critical rotation frequency

The single vortex line is energetically stable only above
a certain angular frequency ⌦c, which makes the energy
in the rotating frame of the system with the vortex lower
than the energy without the vortex. In Fig. 3(a) we show
the numerical value of the critical rotation frequency for
a stable vortex line in the trap center as a function of "dd
across the whole phase diagram from the superfluid to
the supersolid and to the droplet crystal regime. There
are already several works [30–32] accounting for the de-
pendence of the critical rotation frequency as a function
of "dd in dipolar condensates without including quantum
fluctuations. In that case, ⌦c increases with "dd, reaching
a maximum for "dd = 1, and decreasing for larger values
until the collapse is achieved. Thanks to the inclusion of
the beyond mean-field term in the Gross-Pitaevskii equa-
tion one can go beyond the mean-field collapse, eventu-
ally entering the supersolid phase. We find that after
the maximum is reached, the critical frequency keeps de-
creasing, showing a rather small jump at the transition
to the supersolid regime, and continues decreasing until
the crystal phase is reached.

Δ ∝ ns /n

[Gallemì, Roccuzzo, Stringari, AR, PRA (2020)]
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demonstrate a simple experimental configuration for
trapped-atom interferometry and use it to confirm the
coherence of our quasi-uniform BEC.

Our setup for producing 87Rb condensates in a harmonic
potential is described elsewhere [16]; we create BECs in
the jF;mFi ¼ j2; 2i hyperfine ground state using a hybrid
magnetic-optical trap [17]. The dark optical trap [18,19]
that is central to this work is formed by three 532 nm laser
beams—a ‘‘tube’’ beam propagating along the x axis and
two ‘‘sheet’’ beams propagating along the y axis. The
green laser beams create a repulsive potential for the atoms
and confine them to the cylindrical dark region depicted in
red in Fig. 1(a). To create a uniform potential, we addi-
tionally cancel the gravitational force on the atoms at a
10"4 level, using a magnetic field gradient [16].

As outlined in Fig. 1(b), all three trapping beams are
created by reflecting a single Gaussian beam off a phase-
imprinting spatial light modulator with three superposed
phase patterns [20]. The tube beam is an optical vortex
created by imprinting a 24! phase winding on the incom-
ing beam [21], the sheet beams are created using
cylindrical-lens phase patterns, and the three outgoing
beams are deflected in different directions using phase
gradients. With a total laser power of P0 # 700 mW we
achieve a trap depth of V0 # kB $ 2 "K.

We evaporatively cool the gas in the harmonic trap down
to T # 120 nK, when the cloud size is similar to the size of
our optical box [see Fig. 1(c)] and kBT % V0. At this point
the gas is partially condensed, but the BEC is lost during
the transfer into the box trap, which is not perfectly adia-
batic. Over 1 s, we turn on the green light and then turn off
the harmonic trapping, capturing >80% of the atoms.

In Fig. 1(d) we show in-trap absorption images of the
cloud just before and just after the transfer into the box trap.
The images are taken along the y direction, using high-
intensity imaging [8,9,22] with a saturation parameter
I=Isat # 150. For each image, we show the line-density
profiles along x and z, obtained by integrating the image
along one direction. If a cylindrical box of length L and
radius R is filled perfectly uniformly, the density distribu-
tion along x is simply a top-hat function ofwidthL. Along z,
the line-of-sight integration results in ‘‘circular’’ column-

and line-density profiles,/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" ðz=RÞ2

p
. In the experimen-

tal images, the edges of the cloud are rounded off for two
reasons, both related to the diffraction limit of our optical
setup. First, the 1=e2 waist of the 532 nm trapping beams is
diffraction limited to# 3 "m, which leads to some round-
ing off of the potential bottom near the edges of the box.
Second, our imaging resolution is diffraction limited to
# 5 "m, making the cloud edges appear more smeared
out than they actually are. The green dashed lines in the
right panel of Fig. 1(d) are fits to the data based on a
perfectly uniform distribution convolved only with the
imaging point-spread function. The fits describe the data
well and giveL ¼ 63( 2 "m andR ¼ 15( 1 "m. These

values are consistent with the calculated separation of the
green walls, reduced by the diffraction-limited wall
thickness.
After the transfer into the box trap, the cloud contains

N # 6$ 105 atoms at T # 130 nK. From this point, we
cool the gas to below Tc by forced evaporative cooling in
the box trap. We lower the trapping power P in an expo-
nential ramp with a 0.5 s time constant, thus proportionally
reducing the power in all three trapping beams. Initially,
the trap depth is much larger than kBT, so significant
cooling occurs only for P & 0:5P0. At the end of the
evaporation, we always raise (over 0.5 s) the trapping
power back to P0 so that the cloud cooled to different
temperatures is always confined in the same potential.
Figure 2 qualitatively illustrates the effects of evapora-

tion and condensation in the box trap. We show images of
the cloud both in situ and after 50 ms of TOF expansion
from the trap.Whereas in a harmonic trap cooling results in
simultaneous real-space and momentum-space condensa-
tion, here it has no dramatic effects on the in-trap atomic
distribution. The density is gradually reduced by evapora-
tion, but the shape of the cloud does not reveal condensa-
tion. On the other hand, in momentum space (i.e., in TOF)
the effects of cooling are obvious and the signatures of
condensation are qualitatively the same as for a harmoni-
cally trapped gas—the momentum distribution becomes
bimodal and the BEC expands anisotropically, with its
aspect ratio inverting in TOF.
We now turn to a quantitative analysis of our degenerate

quasiuniform Bose gas. We assess the flatness of our trap-
ping potential and contrast the thermodynamics of con-
densation in our system with the case of a harmonically
trapped gas.

P/P0 = 1 P/P0 = 0.4 P/P0 = 0.2 
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FIG. 2 (color online). Evaporation and Bose-Einstein conden-
sation in the optical-box trap. Cooling is achieved by lowering
the trapping laser power P. We show absorption images taken
after 50 ms of TOF and in situ [insets, with same color scale as in
Fig. 1(d)]. The bottom panels show cuts through the momentum
distributions recorded in TOF. In contrast to the case of a
harmonic trap, no dramatic effects of cooling are observed
in situ. However, BEC is clearly seen in the bimodality of the
momentum distribution and the anisotropic expansion.
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Bose-Einstein Condensation of Atoms in a Uniform Potential
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We have observed the Bose-Einstein condensation of an atomic gas in the (quasi)uniform three-

dimensional potential of an optical box trap. Condensation is seen in the bimodal momentum distribution

and the anisotropic time-of-flight expansion of the condensate. The critical temperature agrees with the

theoretical prediction for a uniform Bose gas. The momentum distribution of a noncondensed quantum-

degenerate gas is also clearly distinct from the conventional case of a harmonically trapped sample and

close to the expected distribution in a uniform system. We confirm the coherence of our condensate in a

matter-wave interference experiment. Our experiments open many new possibilities for fundamental

studies of many-body physics.

DOI: 10.1103/PhysRevLett.110.200406 PACS numbers: 03.75.Hh, 67.85.!d

Ultracold Bose and Fermi atomic gases are widely used
as test beds of fundamental many-body physics [1].
Experimental tools such as Feshbach interaction reso-
nances [2], optical lattices [3], and synthetic gauge fields
[4] offer great flexibility for studies of outstanding prob-
lems arising in many areas, most commonly in condensed-
matter physics. However, an important difference between
‘‘conventional’’ many-body systems and ultracold gases is
that the former are usually spatially uniform whereas the
latter are traditionally produced in harmonic traps with no
translational symmetries.

Various methods have been developed to overcome this
problem and extract uniform-system properties from a
harmonically trapped sample [5–13], relying on the local
density approximation [5–11] or selective probing of a
small central portion of the cloud [11–13]. Sometimes
harmonic trapping can even be advantageous, allowing
simultaneous mapping of uniform-system properties at
different (local) particle densities. On the other hand, in
many important situations local approaches are inherently
limiting, for example, for studies of critical behavior with
diverging correlation lengths. The possibility to directly
study a spatially uniform quantum-degenerate gas has thus
remained an important experimental challenge. So far,
atomic Bose-Einstein condensates (BECs) have been
loaded into elongated [14] or toroidal [15] traps that are
uniform along only one direction while still harmonic
along the other two directions.

Here, we demonstrate the Bose-Einstein condensation of
an atomic gas in a three-dimensional (3D) (quasi)uniform
potential. We load an optical box trap depicted in Fig. 1(a)
with 87Rb atoms precooled in a harmonic trap and achieve
condensation by evaporative cooling in the box potential.
Below a critical temperature Tc " 90 nK, condensation is
seen in the emergence of a bimodal momentum distribu-
tion and the anisotropic time-of-flight (TOF) expansion
of the BEC. We characterize the flatness of our box poten-
tial and show that both the momentum distribution of the

non-condensed component and the thermodynamics of
condensation are close to the theoretical expectations for
a uniform system, while being clearly distinct from the
conventional case of a harmonically trapped gas. We also
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FIG. 1 (color online). Preparing a quasiuniform Bose gas.
(a) The optical-box trap is formed by one hollow tube beam and
two sheet beams creating a repulsive potential for the atoms. The
atomic cloud is confined to the dark (red) cylindrical region.
Gravitational force is canceled by a magnetic field gradient B0.
(b) The three trapping beams are created by reflecting a single
Gaussian beam off a phase-imprinting spatial light modulator.
(c) The atoms are loaded into the box trap after precooling in a
harmonic trap. (d) In situ images of the cloud just before (left) and
after (right) loading into the box and corresponding line-density
profiles along x (bottom plots) and z (side plots) directions. OD
stands for optical density; the line densities along x (z) are
obtained by integrating the images along z (x). The blue dashed
lines in the left panel are fits to the thermal component of the
harmonically trapped gas. Thegreendashed lines in the right panel
are fits based on the expected profiles for a uniform-density gas.

PRL 110, 200406 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
17 MAY 2013

0031-9007=13=110(20)=200406(5) 200406-1 ! 2013 American Physical Society

s-wave  
scattering lengthg =

4⇡~2as
2mr



sound-like

particle-like

!k =

s
q2

2m

✓
2mc2 +

q2

2m

◆

Bogoliubov Spectrum (Goldstone mode of the U(1) broken symmetry)

c2 = gn/m

⇠ =
~p
2mc

[MIT 1999]

T=0  Bose gases: Elementary excitations

Uniform system (Mean-Field):

where the speed of sound is:

and the healing length

e(n) =
1

2
gn2



T=0 Bose mixtures

e(na, nb) =
1

2
gan

2
a +

1

2
gbn

2
b + gabnanb

Elementary excitations
Ground state breaks U(1)xU(1) symmetry: 2 Goldstone modes -  

coming from no cost to change the global and relative phase of the 2 order 
parameters  

ga = gb = g

g = gab
Spin mode soft: 
unstable with 

respect to phase 
separation 

(Immiscibility)

Both Na and Nb are conserveda

b

c2d =
n(g + gab)

2m
<latexit sha1_base64="AkqyI+3fHuj+tZaVyKgNSegcFfg=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBahIpSkCLoRim5cVrAPaGOYTCbp0MkkzEyEErJx46+4caGIW//BnX/jtM1CWw9cOJxzL/fe4yWMSmVZ30ZpaXllda28XtnY3NreMXf3OjJOBSZtHLNY9DwkCaOctBVVjPQSQVDkMdL1RtcTv/tAhKQxv1PjhDgRCjkNKEZKS655iF3/vnE5CATCGa+Fp6GbIS8/ybNGlLtm1apbU8BFYhekCgq0XPNr4Mc4jQhXmCEp+7aVKCdDQlHMSF4ZpJIkCI9QSPqachQR6WTTL3J4rBUfBrHQxRWcqr8nMhRJOY483RkhNZTz3kT8z+unKrhwMsqTVBGOZ4uClEEVw0kk0KeCYMXGmiAsqL4V4iHSgSgdXEWHYM+/vEg6jbpt1e3bs2rzqoijDA7AEagBG5yDJrgBLdAGGDyCZ/AK3own48V4Nz5mrSWjmNkHf2B8/gC0O5gP</latexit><latexit sha1_base64="AkqyI+3fHuj+tZaVyKgNSegcFfg=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBahIpSkCLoRim5cVrAPaGOYTCbp0MkkzEyEErJx46+4caGIW//BnX/jtM1CWw9cOJxzL/fe4yWMSmVZ30ZpaXllda28XtnY3NreMXf3OjJOBSZtHLNY9DwkCaOctBVVjPQSQVDkMdL1RtcTv/tAhKQxv1PjhDgRCjkNKEZKS655iF3/vnE5CATCGa+Fp6GbIS8/ybNGlLtm1apbU8BFYhekCgq0XPNr4Mc4jQhXmCEp+7aVKCdDQlHMSF4ZpJIkCI9QSPqachQR6WTTL3J4rBUfBrHQxRWcqr8nMhRJOY483RkhNZTz3kT8z+unKrhwMsqTVBGOZ4uClEEVw0kk0KeCYMXGmiAsqL4V4iHSgSgdXEWHYM+/vEg6jbpt1e3bs2rzqoijDA7AEagBG5yDJrgBLdAGGDyCZ/AK3own48V4Nz5mrSWjmNkHf2B8/gC0O5gP</latexit><latexit sha1_base64="AkqyI+3fHuj+tZaVyKgNSegcFfg=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBahIpSkCLoRim5cVrAPaGOYTCbp0MkkzEyEErJx46+4caGIW//BnX/jtM1CWw9cOJxzL/fe4yWMSmVZ30ZpaXllda28XtnY3NreMXf3OjJOBSZtHLNY9DwkCaOctBVVjPQSQVDkMdL1RtcTv/tAhKQxv1PjhDgRCjkNKEZKS655iF3/vnE5CATCGa+Fp6GbIS8/ybNGlLtm1apbU8BFYhekCgq0XPNr4Mc4jQhXmCEp+7aVKCdDQlHMSF4ZpJIkCI9QSPqachQR6WTTL3J4rBUfBrHQxRWcqr8nMhRJOY483RkhNZTz3kT8z+unKrhwMsqTVBGOZ4uClEEVw0kk0KeCYMXGmiAsqL4V4iHSgSgdXEWHYM+/vEg6jbpt1e3bs2rzqoijDA7AEagBG5yDJrgBLdAGGDyCZ/AK3own48V4Nz5mrSWjmNkHf2B8/gC0O5gP</latexit><latexit sha1_base64="AkqyI+3fHuj+tZaVyKgNSegcFfg=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBahIpSkCLoRim5cVrAPaGOYTCbp0MkkzEyEErJx46+4caGIW//BnX/jtM1CWw9cOJxzL/fe4yWMSmVZ30ZpaXllda28XtnY3NreMXf3OjJOBSZtHLNY9DwkCaOctBVVjPQSQVDkMdL1RtcTv/tAhKQxv1PjhDgRCjkNKEZKS655iF3/vnE5CATCGa+Fp6GbIS8/ybNGlLtm1apbU8BFYhekCgq0XPNr4Mc4jQhXmCEp+7aVKCdDQlHMSF4ZpJIkCI9QSPqachQR6WTTL3J4rBUfBrHQxRWcqr8nMhRJOY483RkhNZTz3kT8z+unKrhwMsqTVBGOZ4uClEEVw0kk0KeCYMXGmiAsqL4V4iHSgSgdXEWHYM+/vEg6jbpt1e3bs2rzqoijDA7AEagBG5yDJrgBLdAGGDyCZ/AK3own48V4Nz5mrSWjmNkHf2B8/gC0O5gP</latexit>

c2s =
n(g � gab)

2m
<latexit sha1_base64="8Jf+p7bAOw15tj8vfCoESaXVeHQ=">AAACBXicdZDLSgMxGIUzXmu9jbrURbAIdWGZKYJuhKIblxXsBdpxyKSZaWiSGZKMUIbZuPFV3LhQxK3v4M63Mb0I9XYgcDjn/0nyBQmjSjvOhzU3v7C4tFxYKa6urW9s2lvbTRWnEpMGjlks2wFShFFBGppqRtqJJIgHjLSCwcWob90SqWgsrvUwIR5HkaAhxUibyLf3sK9uqmfdUCKciXJ0FPkZCvLDPKvy3LdLbsUZCzq/zFdVAlPVffu924txyonQmCGlOq6TaC9DUlPMSF7spookCA9QRDrGCsSJ8rLxL3J4YJIeDGNpjtBwnM5uZIgrNeSBmeRI99XPbhT+1XVSHZ56GRVJqonAk4vClEEdwxES2KOSYM2GxiAsqXkrxH1kgGgDrjgL4X/TrFZcp+JeHZdq51McBbAL9kEZuOAE1MAlqIMGwOAOPIAn8GzdW4/Wi/U6GZ2zpjs74Just0/RDpgh</latexit><latexit sha1_base64="8Jf+p7bAOw15tj8vfCoESaXVeHQ=">AAACBXicdZDLSgMxGIUzXmu9jbrURbAIdWGZKYJuhKIblxXsBdpxyKSZaWiSGZKMUIbZuPFV3LhQxK3v4M63Mb0I9XYgcDjn/0nyBQmjSjvOhzU3v7C4tFxYKa6urW9s2lvbTRWnEpMGjlks2wFShFFBGppqRtqJJIgHjLSCwcWob90SqWgsrvUwIR5HkaAhxUibyLf3sK9uqmfdUCKciXJ0FPkZCvLDPKvy3LdLbsUZCzq/zFdVAlPVffu924txyonQmCGlOq6TaC9DUlPMSF7spookCA9QRDrGCsSJ8rLxL3J4YJIeDGNpjtBwnM5uZIgrNeSBmeRI99XPbhT+1XVSHZ56GRVJqonAk4vClEEdwxES2KOSYM2GxiAsqXkrxH1kgGgDrjgL4X/TrFZcp+JeHZdq51McBbAL9kEZuOAE1MAlqIMGwOAOPIAn8GzdW4/Wi/U6GZ2zpjs74Just0/RDpgh</latexit><latexit sha1_base64="8Jf+p7bAOw15tj8vfCoESaXVeHQ=">AAACBXicdZDLSgMxGIUzXmu9jbrURbAIdWGZKYJuhKIblxXsBdpxyKSZaWiSGZKMUIbZuPFV3LhQxK3v4M63Mb0I9XYgcDjn/0nyBQmjSjvOhzU3v7C4tFxYKa6urW9s2lvbTRWnEpMGjlks2wFShFFBGppqRtqJJIgHjLSCwcWob90SqWgsrvUwIR5HkaAhxUibyLf3sK9uqmfdUCKciXJ0FPkZCvLDPKvy3LdLbsUZCzq/zFdVAlPVffu924txyonQmCGlOq6TaC9DUlPMSF7spookCA9QRDrGCsSJ8rLxL3J4YJIeDGNpjtBwnM5uZIgrNeSBmeRI99XPbhT+1XVSHZ56GRVJqonAk4vClEEdwxES2KOSYM2GxiAsqXkrxH1kgGgDrjgL4X/TrFZcp+JeHZdq51McBbAL9kEZuOAE1MAlqIMGwOAOPIAn8GzdW4/Wi/U6GZ2zpjs74Just0/RDpgh</latexit><latexit sha1_base64="8Jf+p7bAOw15tj8vfCoESaXVeHQ=">AAACBXicdZDLSgMxGIUzXmu9jbrURbAIdWGZKYJuhKIblxXsBdpxyKSZaWiSGZKMUIbZuPFV3LhQxK3v4M63Mb0I9XYgcDjn/0nyBQmjSjvOhzU3v7C4tFxYKa6urW9s2lvbTRWnEpMGjlks2wFShFFBGppqRtqJJIgHjLSCwcWob90SqWgsrvUwIR5HkaAhxUibyLf3sK9uqmfdUCKciXJ0FPkZCvLDPKvy3LdLbsUZCzq/zFdVAlPVffu924txyonQmCGlOq6TaC9DUlPMSF7spookCA9QRDrGCsSJ8rLxL3J4YJIeDGNpjtBwnM5uZIgrNeSBmeRI99XPbhT+1XVSHZ56GRVJqonAk4vClEEdwxES2KOSYM2GxiAsqXkrxH1kgGgDrjgL4X/TrFZcp+JeHZdq51McBbAL9kEZuOAE1MAlqIMGwOAOPIAn8GzdW4/Wi/U6GZ2zpjs74Just0/RDpgh</latexit>



We consider a two component Bose gas with an interconversion term (Rabi coupling)

a

b

a

b
+ ⌦

Coherently Coupled Bose Condensates

<latexit sha1_base64="YjKHj+L5CbIPGZde1fvm2Wn6v50="></latexit>

H =

Z

r

"
X

�

✓
r †

�r �

2m
+ V� 

†
� �

◆
� ⌦

2
( †

a b +  
†
b a) +

X

��0

g��0

2
 
†
� 

†
�0 �0 �

#

The cleanest case is: 
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In the weakly interacting regime at T=0 the system  
forms a BEC well described within mean-field (MF) theory 

by a spinor order parameter
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3. Equilibrium and non equilibrium properties of Rabi coupled gases

In the present Section we describe the phase diagram, the elementary excitations, some

topogical configuration, as well as far-from-equilibrium properties of a spinor condensate

in presence of Rabi coupling. The system has been thoroughly studied at the mean-field

level and the first studies date back to the 90‘s, immediately after the first realisation of

the Bose-Einstein condensate in alkali atoms (1, 2) and the first experimental realisation

has been obtained in the group of Eric Cornell (3, 4) with the aim of studying a superfluid

with a spinor order parameter.

3.1. Ground state properties

In the following we mainly consider the Z2 case, i.e., � = 0. In this case the mean field

energy density for an homogeneous gas, using the same notation as in the previous Section,

reads

"MF =
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2
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2
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⌦
2

p
n2 � s2z cos(�r), 8.

with n = N/V fixed. The stationary states are found by minimising the gran canonical

energy "MF � µn with respect to sz and �r, and where µ is the chemical potential of the

system. Therefore the lowest energy states have �r = 0, and

µ = gddn� ⌦np
n2 � s2z

, 9.

0 = gsssz +
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The Eq.(10) is typical of a bifurcation (see Fig. 1) in the ground state solution solution:

sz = 0 for ⌦+ 2gssn > 0 11.
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for ⌦+ 2gssn < 0. 12.

The transition between the two possible ground state is very much reminiscent of the

quantum phase transition, which occurs in the Ising model in transverse field (see, e.g.,

(5)) and for this reason the two states are referred as the disorder or paramagnetic (Ising)

phase and the ordered or ferromagnetic phase, respectively. The condition ⌦+ 2gssn = 0,

identifies the critical point. In the ferromagnetic phase the system will select one of the

two polarisation breaking the Z2 symmetry. comment already on Ginzburg Landau

theory (�4) for ferromagnetism including the rsz? The magnetisation close to the

critical point 2gssn + ⌦ . 0 grows in the order phase with the characteristic mean field

critical exponent sz / (�(2gssn+⌦))� with � = 1/2. Typical of a ferromagnetic transition

is also the behaviour of the magnetic susceptibility �, which diverges at the critical point.

The magnetic susceptibility is easily calculated as DISCUSS WITH SANDRO PER

ESSERE OMOGENEI!! ��1 = @2"MF /@s
2
z and has a di↵erent expression in the two

phases, namely
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Spectrum of a Rabi coupled gas...

also a Goldstone gapless mode (16). The gapped mode is also refereed to as the magnetic

mode and it has the typical feature of the Z2 critical theory (11). Indeed as in the standard

theory of second order phase transitions the gap closes at the critical point and it has a

di↵erent behaviour in the two phase, namely

�P =
q

2n⌦��1

P ! (2gssn+ ⌦)1/2 for 2gssn+ ⌦ ! 0+ 14.

�FM =

s
2⌦2

|gss|
�
�1

FM ! (2|2gssn+ ⌦|)1/2 for 2gssn+ ⌦ ! 0�. 15.

thus identifying the mean-field critical exponent z⌫ = 1/2. At the critical point the disper-

sion relation is linear with a spin speed of sound cs =
p

|gss|n/m. It is worth reminding

that the spin spectrum for Bose-Bose mixture becomes quadratic at the transition point to

the immiscible regime. In the regime of phase separation the concept of a bulk spin mode

does not make sense anymore.

3.2.1. Z2 Hamiltonian for Quantum Fluctuations. While the spin spectrum is gapless both

for ⌦ = 0 and at the critical point, the corresponding long wavelength modes behave

very di↵erently in the two cases. For ⌦ = 0 the linear low-k energy mode is dominated

by relative phase fluctuations reflecting its Goldstone (U(1)-symmetry-restoring) origin.

On the other hand at the critical point the low energy mode is dominated by relative

population (polarisation) fluctuations, which reflects the critical nature nature of the para-

to-ferromagnetic-like transition. Such a behaviour, and more generally the behaviour of the

www.annualreviews.org • 7

gap

gap

0 0.2 0.4 0.6 0.8 1.0
k

0

0.2

0.4

0.6

0.8

1.0

1.2

ε

k
0

ω
1

ω
2

0 0.2 0.4 0.6 0.8 1.0
k

0

0.2

0.4

0.6

0.8

1.0

1.2

ε

ω
1

ω
2

0 0.2 0.4 0.6 0.8 1.0
k

0

0.5

1.0

1.5

ε

ω
1

ω
2

Figure 2

Spectrum of a Rabi coupled gas...

also a Goldstone gapless mode (16). The gapped mode is also refereed to as the magnetic

mode and it has the typical feature of the Z2 critical theory (11). Indeed as in the standard

theory of second order phase transitions the gap closes at the critical point and it has a

di↵erent behaviour in the two phase, namely

�P =
q

2n⌦��1

P ! (2gssn+ ⌦)1/2 for 2gssn+ ⌦ ! 0+ 14.

�FM =

s
2⌦2

|gss|
�
�1

FM ! (2|2gssn+ ⌦|)1/2 for 2gssn+ ⌦ ! 0�. 15.

thus identifying the mean-field critical exponent z⌫ = 1/2. At the critical point the disper-

sion relation is linear with a spin speed of sound cs =
p

|gss|n/m. It is worth reminding

that the spin spectrum for Bose-Bose mixture becomes quadratic at the transition point to

the immiscible regime. In the regime of phase separation the concept of a bulk spin mode

does not make sense anymore.

3.2.1. Z2 Hamiltonian for Quantum Fluctuations. While the spin spectrum is gapless both

for ⌦ = 0 and at the critical point, the corresponding long wavelength modes behave

very di↵erently in the two cases. For ⌦ = 0 the linear low-k energy mode is dominated

by relative phase fluctuations reflecting its Goldstone (U(1)-symmetry-restoring) origin.

On the other hand at the critical point the low energy mode is dominated by relative

population (polarisation) fluctuations, which reflects the critical nature nature of the para-

to-ferromagnetic-like transition. Such a behaviour, and more generally the behaviour of the

www.annualreviews.org • 7



gap due to  
single-particle

Feynman 
criterion for the  

density response

Sd(s)(k) = S1
d(s)(k) + S2

d(s)(k)

Static structure factor across the transition



Measuring the dispersion relation via  
“Faraday wave spectroscopy”

Observation of Massless and Massive Collective Excitations with Faraday Patterns in

a Two-Component Superfluid

R. Cominotti,⇤ A. Berti,⇤ A. Farolfi, A. Zenesini,† G. Lamporesi,‡ I. Carusotto, A. Recati,§ and G. Ferrari
INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento,

and Trento Institute for Fundamental Physics and Applications, INFN, 38123 Povo, Italy.

(Dated: December 21, 2021)

We report on the experimental measurement of the dispersion relation of the density and spin
collective excitation modes in an elongated two-component superfluid of ultracold bosonic atoms.
Our parametric spectroscopic technique is based on the external modulation of the transverse con-
finement frequency, leading to the formation of density and spin Faraday waves. We show that the
application of a coherent coupling between the two components reduces the phase symmetry and
gives a finite mass to the spin modes.

The concept of collective excitations is a cornerstone
for our understanding of the physics of condensed mat-
ter systems. In particular, arguments based on their dis-
persion relation have provided first insight on the mi-
croscopic origin of superfluidity in liquid Helium [1]. In
the specific case of dilute atomic Bose-Einstein conden-
sates (BEC), the Bogoljubov theory, based on a linearized
quantum theory around a condensate, provides quantita-
tive predictions for the dispersion relation, with a gap-
less (massless) sonic behaviour at small wave vectors fol-
lowed by a quadratic single-particle one at larger wave
vectors [2].

The situation gets more interesting in the case of two-
component superfluids, whose collective excitation spec-
trum consists of two gapless branches for the sponta-
neously broken U(1)⇥U(1) symmetry due to the conser-
vation of particle number in each component. For equal
masses and interaction constants of the two components,
the two branches are associated to oscillations of the total
density or of the density di↵erence, the so-called density
and spin modes [3]. At low k, both branches have a lin-
ear dispersion, yet with generally distinct values of the
speed of sound. If the particle number in each component
is not conserved, e.g. by applying a field that coherently
couples the two components, exciting the condensate rel-
ative phase requires an energy cost. As a result, while the
massless nature of the total density mode is protected by
the Goldstone theorem associated to the remaining U(1)
symmetry, the spin mode acquires a finite mass [4].

Precise information on the Bogoljubov dispersion of
single-component condensates was extracted using Bragg
spectroscopy [5]. Parametric excitation of a superfluid
was pioneered using a time-dependent modulation of
the optical lattice depth [6–9], by acting on the trans-
verse potential of an elongated harmonically trapped
BEC [10, 11] or through a modulation of the interaction
constant [12–14]. Distinct spin and density sound veloc-
ities were measured in a two-component sodium system
by locally perturbing the system with spin sensitive or
insensitive potential [15]. Two-dimensional bosonic su-
perfluids [16] and strongly interacting superfluids [17, 18]

were also recently investigated.
In this Letter, we apply the parametric excitation tech-

nique to the novel case of a two-component BEC of ultra-
cold sodium atoms in two spin states. A well-controlled
generation of Faraday waves in both the density and in
the spin channel allows us to perform a first quantitative
and complete measurement of the dispersion relation of
the two branches of collective density and spin excita-
tions.
In an intuitive way, one can understand the parametric

excitation process as the emission of a pair of phonons (of
frequency !M/2 and opposite wave vectors ±k) by some
classical external drive at !M , as sketched in Fig. 1. The
two modes are then visible as patterns with periodicity
2⇡/k in space and oscillating in time with !M , the so-
called Faraday waves (see Fig. 2(b)).
As pictorially shown in Fig. 1, the parametric process

k

w
cd

cs

Massless density excitation
Massless spin excitation

WR=0

k

w
cd

Massless density excitation
Massive spin excitation

WR≠0

wM

wM/2

wp

FIG. 1. (a) Generation mechanism of excitation pairs in the
density and spin branches of a two-component system. The
external excitation at !M is converted into two excitations
with opposite wave vector and half the energy. In the ab-
sence of coupling between the two components, ⌦R = 0 (left),
two symmetries are preserved and both modes have a linear
behaviour, with density speed of sound cd and spin speed
of sound cs. When a coherent coupling is present, ⌦R 6= 0
(right), one of the two symmetries is broken, introducing a
curvature in the spin dispersion relation, which makes the
excitation acquire a mass.
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is active on both density and spin channels (hereafter
labeled as d and s). In particular, energy-momentum
conservation predicts di↵erent values for the wave vector
k of the emitted density and spin excitations. Concretely,
for a coherently-coupled BEC of atoms with mass m,
the dispersion relations read (see, e.g., [3] and references
therein)

!d(k) =

s
~k2
2m

✓
2µd

~ +
~k2
2m

◆
(1)

!s(k) =

s✓
~k2
2m

+ ⌦R

◆✓
2µs

~ +
~k2
2m

+ ⌦R

◆
. (2)

Here µd (µs) is the e↵ective density (spin) chemical po-
tential, which takes into account the geometry of the sam-
ple [19], and ⌦R is the Rabi frequency quantifying the
strength of the coherent coupling, that breaks the rela-
tive atom number conservation. For small k and ⌦R = 0,
Eq. (1) and Eq. (2) show the sonic behaviour !d,s(k) '
cd,s|k| with di↵erent speeds of sound cd,s =

p
µd,s/m.

The coherent coupling ⌦R has no e↵ect on the density
branch, while a frequency gap opens in the spin branch,
which then turns massive, !s(k) ' !p + ~k2/(2M),
with an e↵ective mass M = 2m!p⌦R/(!2

p + ⌦2
R) and

a frequency cut-o↵ set by the so-called plasma frequency
!p =

p
⌦R(⌦R + 2µs/~).

We start our experiments by preparing a BEC of 106
23Na atoms in the |F,mF i = |1,�1i internal state, F be-
ing the total atomic angular momentum and mF its pro-
jection on the quantization axis, set by a uniform mag-
netic field [20]. The BEC (with negligible thermal com-
ponent) is held in a cylindrically symmetric single-beam
optical trap with trapping frequencies !?/2⇡ = 1kHz
and !x/2⇡ = 10Hz, leading to a Thomas-Fermi profile
with radii r? = 3µm and rx = 300µm, for the transverse
and longitudinal directions, respectively.

The two-component BEC is then prepared through an
adiabatic rapid passage (ARP) sequence [21, 22], which
coherently transfers half of the atomic population to the
|1, 1i state, using a two-photon microwave transition [19].
At the end of the ARP, the microwave drive is either
completely switched o↵ (experiments in Fig. 2-3) or kept
on at the desired value of the coherent coupling between
the two components (experiments in Fig. 4).

As done in Ref. [10], we induce Faraday waves by mod-
ulating the transverse trapping frequency as !?(t) =
!?(0)[1+↵ sin(!M t)], with frequency !M and amplitude
↵ 2 [0.38 � 0.6] [Fig. 2(a)]. The modulation is applied
for a time t 2 [50 � 400]ms. Since !x ⌧ !M < !?,
the transverse size adiabatically changes in time following
the periodic compression and decompression of the po-
tential. In this way no transverse excitation is generated.
Conversely, axial modes can be excited, leading to longi-
tudinal (1D) Faraday waves [23, 24]. At the end of the
modulation, the trapping potential is suddenly removed

FIG. 2. Density and spin Faraday patterns. (a) Sketch of
the experimental configuration. The transverse trapping fre-
quency is modulated in time at frequency !M , periodically
compressing the elongated condensate. (b) The parametri-
cally generated excitations appear as a spatial pattern with a
well-defined period along the axis of the condensate. (c) Den-
sity (red) and spin (blue) 2D experimental patterns and cor-
responding integrated 1D profiles for !M/2⇡ = 400Hz (left)
and !M/2⇡ = 200Hz (right).

and the atoms in the |1,�1i (|1,+1i) state are selectively
imaged after a short time of flight (TOF) of 2ms (3ms)
[Fig. 2(b)]. Due to the short duration of the TOF stage,
our very elongated condensate expands only in the trans-
verse directions, leaving the axial distribution practically
unchanged. We can therefore integrate the absorption
images displayed in Fig. 2(b) over the transverse direc-
tions to extract the 1D densities n± in the |1,±1i spin
states and, from these, the total density (n+ + n�) and
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two di↵erent values of the modulation frequency. De-
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(PSD) of the 1D profiles as:
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ikx dx

����
2
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To suppress inhomogeneous broadening e↵ects, we re-
strict the analysis to the central 300 µm of the condensate
[white region in Fig. 2(c)].
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FIG. 3. PSD of density (a) and spin (b) excitations as a func-
tion of the modulation frequency. Lines indicate theoretical
predictions (1-2) for the dispersion relations (continuous) and
higher harmonics (dashed) (see text), with ⌦R = 0 and no
fitting parameters. The grey areas following the lines corre-
spond to one-standard deviation confidence interval originat-
ing from the uncertainty in the atomic density. Insets show
the time oscillations (in cycle number units) of the fringe vis-
ibility for !M/2⇡ = 200Hz. The dot-dashed line in panel (a)
indicates the position of the spin branch, where a spurious
signal, due to the cross-talk between spin and density modes,
is present.

Examples of the time-evolution of the PSD are shown
in the insets of Fig. 3(a-b). The PSD displays periodic
oscillations at specific values of k, with the same fre-
quency of the modulation. This behaviour is character-
istic of Faraday waves and in close agreement with the
theoretical predictions for a single-component condensate
[23, 24]. The conclusions of this temporal analysis sug-
gest that a maximum signal is obtained when the mod-
ulation sequence is terminated at a minimum of !? and
the atoms are then immediately released. While the posi-
tion of the peak is stable, its height is strongly dependent
on the chosen values of the modulation strength and du-
ration. In order to optimize the visibility of the features
for all the modulation frequencies, the duration or am-
plitude of the modulation is empirically optimized. This
protocol allows us to obtain the PSD as a function of the
modulation frequency !M and the wave vector k of the
induced pattern reported as colorplots in Fig. 3 and in
Fig. 4.

The values of k for which the pattern is strongest follow
extremely well the theoretically predicted dispersion re-
lations Eqs. (1-2) with ⌦R = 0. Here, the only non-trivial
parameter is the BEC peak density n0 of the 3D distribu-
tion, which is independently calibrated by measuring the
plasma frequency of the two-component BEC at the cen-
ter of the cloud [19, 22], leading to the estimated chemical
potentials, µd/h = 3kHz and µs/h = 145Hz.

FIG. 4. PSD of the spin excitations in the presence of a co-
herent coupling. In (a) !p/2⇡ = 120 Hz, ⌦R/2⇡ = 33Hz and
µs/h = 225Hz, in (b) !p/2⇡ = 175 Hz, ⌦R/2⇡ = 80Hz and
µs/h = 151Hz. Lines indicate theoretical predictions (1-2)
for the dispersion relations (continuous) and higher harmonics
(dashed) (see text). The grey areas following the lines corre-
spond to one-standard deviation confidence interval originat-
ing from the uncertainty in the atomic density. Insets show
the corresponding PSD of the density channel (una↵ected by
the coupling). The dot-dashed line in panel (b) indicates the
position of the density branch, where a spurious signal, due
to the cross-talk between spin and density modes, is present.

In the density channel, the k position of the peak
depends linearly on the modulation frequency as k '

!M/(2cd), since all the probed frequencies are well in
the sonic region of the dispersion relation, !M ⌧ µd/~.
In contrast, in the spin channel the linear dependence
k ' !M/(2cs) is restricted to modulation frequencies
!M . 2µs/~, whereas for larger !M , a deviation from
the linear behaviour is observed, in agreement with the
supersonic nature of the Bogoljubov dispersion.

We notice that a residual signature of the spin modes
is visible on the density spectra and vice versa [see dot-
dashed lines in Fig. 3(a) and Fig. 4(b)] This originates
from a weak coupling between the spin and density modes
due to slight imbalance of the density in the two spin
states, as well as from some cross-talk between the two
spin components in the imaging technique [22].

We turn now to the analogous measurement performed
in the presence of the coherent coupling, ⌦R 6= 0. In or-
der to observe collective behaviors in the spin channel,
we need to have ~⌦R < 2µs, a condition which ensures
also that the adiabaticity condition is fulfilled, having
!p ⌧ !?. Operating in this regime is experimentally
possible thanks to the µG-level stability in the magnetic
field that is provided by the magnetic shielding surround-
ing our setup [19, 25]. This magnetic field stability cor-
responds to a frequency stability of the atomic resonance
at the level of a few Hz.

Ω = 0 Ω ≠ 0
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In contrast, in the spin channel the linear dependence
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!M . 2µs/~, whereas for larger !M , a deviation from
the linear behaviour is observed, in agreement with the
supersonic nature of the Bogoljubov dispersion.

We notice that a residual signature of the spin modes
is visible on the density spectra and vice versa [see dot-
dashed lines in Fig. 3(a) and Fig. 4(b)] This originates
from a weak coupling between the spin and density modes
due to slight imbalance of the density in the two spin
states, as well as from some cross-talk between the two
spin components in the imaging technique [22].

We turn now to the analogous measurement performed
in the presence of the coherent coupling, ⌦R 6= 0. In or-
der to observe collective behaviors in the spin channel,
we need to have ~⌦R < 2µs, a condition which ensures
also that the adiabaticity condition is fulfilled, having
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The results for two di↵erent Rabi frequency are sum-
marized in Fig. 4. In order to have a good visibility of
the dominant mode in density and spin, di↵erent values
of the amplitude and modulation time have to be used for
the data taken at ⌦R/2⇡ = 33Hz [Fig. 4(a)] and 80Hz
[Fig. 4(b)].

In the density channel (shown in the insets of Fig. 4),
the k position of the peak depends again linearly on !M

(continuous line). On the other hand, in the spin chan-
nel, an appreciable signal is only visible starting from
a cut-o↵ frequency, consistent with twice the measured
plasma frequency. Above this point, the k position of the
peak remains in very good agreement with the expected
massive dispersion relation of the spin excitations (con-
tinuous black line). For this choice of parameters, the
e↵ective mass of the spin excitation is about 0.25 and
0.75 times the atomic mass, respectively for panel (a)
and (b) of Fig. 4.

After describing our main result on the dispersion re-
lations as obtained from the dominant signal in the PSD,
in the following we focus on the origin of the weaker sig-
nals in Fig. 3 and Fig. 4. There one can clearly see
additional features at !M = 2!s,d(k)/2 and even at
!M = 2!s,d(k)/3 (dashed lines). We first verified that
such signals are not originated by residual anharmonic-
ity of the optical trap modulation [19].

A physical explanation for such an observation can be,
instead, obtained by modelling the parametric emission
using a 1D BEC, whose chemical potential is µ = gn,
with g the interaction strength and n the density. The
e↵ect of the modulation applied in the experiment, can
be alternatively induced by modulating the e↵ective cou-
pling constant, g(t) = g[1+ f(t)], with f(t) = ⌘ sin(!M t)
and |⌘| ⌧ 1. Within Bogoljubov perturbation theory,
the dynamics of the excitations is described by the time
dependent Hamiltonian

bH(t) =
X

k 6=0

⇣
~!(k)+F (k, t)

⌘
b̂†k b̂k+

X

k>0

F (k, t)
⇣
b̂†kb

†
�k+h.c.

⌘
,

(4)

where b̂k (b̂†k) annihilates (creates) a quasi-particle of
momentum k and ~!(k) is the quasi-particle energy. The
term F (k, t) = µS(k)f(t) is proportional to static struc-
ture factor S(k) of the BEC, which is related to the
probability that a density probe can transfer a momen-
tum k to the system. According to Eq. (4), the periodic
modulation generates pairs of counter-propagating quasi-
particles of momenta ±k out of the Bogoljubov vacuum.
The time evolution of the quasi-particle creation and an-
nihilation operator due to the Hamiltonian Eq. (4) can be
shown to be equivalent to a set of parametrically driven
harmonic oscillators, described by the Mathieu equation
[19, 26]:

ẍk + !(k)
h
!(k) + 2⌘µS(k) sin(!M t)/~

i
xk = 0. (5)

This equation is known to show instability (resonance)
regions around !M = 2!(k)/l, with l a positive integer
number. The larger l the smaller the region and the
instability amplification coe�cient (see, e.g., [27]), there-
fore the smaller the visibility for the same modulation
amplitude. In a two-component BEC, we have indepen-
dent emission in both the spin and density channels.
Both of them are described by Eq. (5), upon considering
the proper !(k)d,s and S(k)d,s. This theoretical model
explains also the origin of sub-harmonics seen in the PSD.

In conclusion, in this work we have made use of a para-
metric excitation technique to perform a detailed mea-
surement of the dispersion relation of the longitudinal
density and spin collective excitations of an elongated
two-component BEC. The accuracy and flexibility of our
spectroscopic technique directly hint at its application to
more complex phenomena in quantum mixtures. Specif-
ically, in the case of an interspecies interaction larger
than the intraspecies one, we could study spin excitations
when crossing the ferromagnetic phase (see, e.g., [3] and
reference therein). Another relevant application of our
technique would be the study of the dispersion relations
in the various phases of spin-orbit coupled mixtures. Par-
ticularly interesting is the rotonization of the spectrum
and the appearence of a new Goldstone mode in the so-
called stripe phase (see [28] and reference therein).
It is also worth mentioning that the parametric ex-

citation of the spin modes in our system is essentially
equivalent to the so-called parallel pumping amplifica-
tion, which has been taking a very important role in
magnonics (see, e.g., [29]). In this respect, a byprod-
uct of the present work, is to provide a further evidence
that our platform, as already shown in [30], provides new
insights in the dynamics of magnetic materials.
From a yet di↵erent perspective, analog models [31]

based on two-component atomic BECs are a promising
platform for quantitative studies of quantum field
theories on curved space-times, such as cosmological
particle creation and analog Hawking radiation [32–35].
In particular, the control on the mass of the spin
excitations, that was demonstrated here via coherent
coupling, is of great interest in view of extending this
research to the case of massive fields interacting with the
gravitational background. On a longer run, the complex
dynamics that is obtained when the externally-imposed
modulation of the trap parameters is replaced with an
excitation of the transverse degrees of freedom of the
BEC, may provide information on back-reaction phe-
nomena of the quantum field theory on the background
space-time [36].
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Coherently Coupled Bose Condensates

We consider a two component Bose gas with an interconversion term (Rabi coupling)
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U(1)⇥ Z2

In the weakly interacting regime at T=0 the system  
is well described within mean-field theory by a  

spinor order parameter

The dynamics of the classical fields are given by coupled Gross-Pitaevskii equations.  
They can be recast in a very convenient as the equation of motion  

for the relevant variables describing the gas, namely the density and the spin-density.
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Coherently Coupled Bose Condensates
density:  

spin-density:
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", 

⇤
#) · ( ", #)

T = n" + n#

with 
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|s(r)| = n(r)

They satisfy what can be called collision-less spin hydrodynamic equations [1]:

k
�1 divergent behavior of the spin structure factor, consistently with the divergent behavior

of the magnetic polarizability Eq.(12). Such a critical behaviour of the spin fluctuations has

been predicted to lead to a strong damping of the (density) Goldstone phonons. Indeed,

while the Bogoulyubov approach predicts an infinite life-time for the elementary excitations,

the phonon modes can decay into two lower energy phonons leading to the so called Belyaev

damping which scales as �ddd(k) ! k
5 at small momenta. On the other hand the closing of

the gap opens a new decay channel, where a density mode can decay into two spin modes,

yielding an enhanced damping which scales as �dss(k) ! k (31).

3.3. Hydrodynamic formulation and internal Josephson e↵ect

In the previous Sections we have discussed the ground state properties of Rabi coupled

gases and the small amplitude oscillations around equilibrium. We provide a more general

description of the mean-field dynamics of the spinor gas, by developing the hydrodynamic

formulation of the Gross-Pitaevskii equations. This formulation emphasizes in a explicit

way the role of the spin density. In s = 1/2 spinors the spin density components are defined

by si(r) = ( ⇤
", 

⇤
#)�i( ", #)

T , with �i, i = x, y, z the Pauli matrices. In particular

sx =
p
n2 � s2z cos�r, sy =

p
n2 � s2z sin�r and the relation |s(r)| = n(r) holds. The

velocity field, defined as the total current divided by the density, takes the simple form

v(r) =
j(r)
n

=
~

2mni

X

�=",#

( ⇤
�r � � �r ⇤

�) =
~
2m

(r�d + sz/nr�r), 21.

where �d(r) = �" ± �# is the total (relative) phase. Due to the spinor nature of the

wave function the velocity field v(r) is not in general irrotational, but satisfies the relation

r⇥ v = ~/(2m)r(sz/n)⇥r�r, corresponding to the analogous of the Mermin-Ho relation

(32) originally introduced for describing the superfluid A-phase of 3He. Eventually the

hydrodynamics equations can be written as (see, e.g., (33)):

ṅ+ div(nv) = 0, 22.

mv̇ +r
⇣

mv2

2
+ µ+ sz

n h+ V � ~2r2pn
2m

p
n

+ ~2|rs|2
8mn2

⌘
= 0, 23.

ṡ+
P

↵=x,y,z @↵(js,↵) = H(s)⇥ s, 24.

where, for completeness, we have included a possible external trapping potential V .

The first equation is the standard continuity equation for the particle number conser-

vation and the second one is the Euler equation, with the chemical potential µ and the

internal magnetic field h given by

µ = gddn� ~⌦
2

n

n2 � s2z
sx ,

h = gsssz +
~⌦
2

sz

n2 � s2z
sx .

25.

Notice that there is no problem with the limiting case sz ! ±n, i.e. a fully polarised mixture

since the term µ+hsz/n = gddn+ gsssz +~⌦sx/(2n) entering in the second Euler equation

is well defined for any sz. In the lower energy states, where sx =
p
n2 � s2z, and h = 0

the above equations reduce to Eq. 9. and Eq. 10. and the corresponding susceptibilities are

given by �
�1 = @h/@sz. As pointed out in (33), despite the possible presence of rotational

components in the velocity field v, the time derivative v̇ turns out to be irrotational.
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where the superfluid and the spin currents read:
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js,↵ = v↵s�
~
2m

⇣ s

n
⇥ @↵s

⌘
, ↵ = x, y, z ,

[1] T. Nikuni, J.E. Williams, J. Low Temp. Phys. 133, 323 (2003)

and the non-linear magnetic field is
<latexit sha1_base64="HVpo96Ip6ml9hBJYX9PRyj6gQHs="></latexit>

H(s) = (�⌦, 0, (g � g"#)sz/~)
break SU(2) symmetry

advection vectorial nature

irrotational 
(remind: 

Mermin-Ho 
A-phase He-3)



The spin sector and the equivalent magnetic system

A Landau-Lifshitz  
magnetic functional 
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E(S) /
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��

2
|rS|2 +B · S+ S2

z

⌘
dV

<latexit sha1_base64="e3ycNLhNxYamOhaJBBdcmINPBhQ="></latexit>

� =
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, B = (⌦, 0, �(n)),  / (g12 � g)



The spin sector and the equivalent magnetic system
Our system is harmonically trapped in an elongated potential



The spin sector and the equivalent magnetic system
From local measurement we can extract the phase diagram

Magnetisation and Hysteresis Susceptibility and magnetic Fluctuations

Theory (c)-(d) and purple points: noisy/dissipative GPE - Truncated Wigner



The spin sector and the equivalent magnetic system
From local measurement we can extract the phase diagram

Magnetisation and Hysteresis Susceptibility and magnetic Fluctuations

Theory (c)-(d) and purple points: noisy/dissipative GPE - Truncated Wigner

NOTE: accurate 
measurements of the 

susceptibility and of the 
fluctuations would open to 

tests of the fluctuation-
dissipation theorem in the 

quantum regime.



Metastability and Bubble Creation
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V = nZ2 � 2⌦(1� Z2)1/2 � 2�e↵Z
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Ec =
~n
4

Z ⇢
~
2m

(rZ)2

1� Z2
+ V

�
dx

The magnetic sector can be described by a  
scalar field theory with (in the ferromagnetic regime) 

a potential with a local and global minimum

Is it possible to study the decay to the ground state  
by starting in the metastable one? 

Or to use Coleman wording to study the 
False vacuum decay?  

[S. Coleman, PRD 15, 2929 (1977); C. G. Callan and S. Coleman, PRD 
16, 1762 (1977); A. D. Linde, Nucl. Phys.B 216, 421 (1983)]



Metastability and Bubble Creation
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The magnetic sector can be described by a  
scalar field theory with (in the ferromagnetic regime) 

a potential with a local and global minimum

Is it possible to study the decay to the ground state  
by starting in the metastable one? 

Or to use Coleman wording to study the 
False vacuum decay?  

[S. Coleman, PRD 15, 2929 (1977); C. G. Callan and S. Coleman, PRD 
16, 1762 (1977); A. D. Linde, Nucl. Phys.B 216, 421 (1983)]



Metastability and Bubble Creation
From the general of False Vacuum Decay the exponential behaviour of the decay rate can be inferred  
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1/⌧ ⇠ eẼc/T Ẽcwith the critical (istanton) bubble field configuration 

NOTE:  
we indeed observe orders of magnitude change in the bubble formation 

DISCLAIMER: 
instanton theory provides only the qualitative behaviour 
(Temperature, quantum fluctuations, noise, complex fieId…still a lot to do)
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Beliaev Decay across the phase transition

Bogolyubov modes have finite life time.  
For a single component gas 

the lowest order decaying processes is due to a 
three phonon vertex leading to Beliaev decay

3
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k � q

V
ddd
k,q,k�q

V
dss
k,q,k�q

FIG. 2: Possible three mode vertices

linear and dominated by relative amplitude fluctuations
⇧s, which becomes critical, since the instability is due
to the system breaking Z2 and trying to build a finite
polarisation.

III. BELIAEV DECAY FOR

TWO-COMPONENT BOSE GAS

At the quadratic Bogoliubov level the modes are well
defined. Finite lifetime comes by including higher order
terms which represent interaction among various modes.
In particular the third order term represents the so-called
Beliaev decay of one excitation into two new excitations
[13]. In a single component weakly interacting Bose gas
the decay rate � of phonons at low momentum k is very
small �(k) / k

5 (see Table I).
In the case of a 2-component Bose gas further decay

processes are in principle possible since, e.g., a density
mode can decay into two spin modes. At the phase tran-
sition point the spin modes change their character. We
show in the following that this leads to a strong enhance-
ment of the Beliaev decay rate. In particular we antici-
pate here that, as shown in Table I, the Goldstone mode
is still well defined for a mixture with a decay rate which
scales like k

5/2. For a coherently coupled gas instead the
Goldstone mode is not properly defined since the decay
rate scale like its energy, i.e., �(k) / k.

A. Symmetries and the general structure of the

three-mode vertices

To obtain the vertices of the possible decay processes
we have to expand Eq. (2) to third order. The number
of non-zero terms is pretty small due to the symmetries
of the system. In the paramagnetic phase due to the Z2

symmetry all the terms with an odd number of spin fields
have to be zero, since they are odd under exchange of the

two component. Therefore the density mode can decay
either in (i) two density modes or in (ii) two spin modes,
as schematically represented in Fig. (2). Moreover due to
the total density U(1) symmetry the process (i) can occur
only via ⇧d|r⇧d|2, ⇧3

d and ⇧d|r�d|2, which lead to the
standard Beliaev decay. The possible terms related to
process (ii) are only ⇧d|r�s|2 and ⇧sr�dr�s for ⌦ = 0,
while also the terms ⇧d⇧2

s and ⇧d�
2
s are present for ⌦ 6=

0. For instance the term ⇧d⇧2
s gives rise to the following

vertex:

� ⌦

2n2
Ud,q1Us,q2Us,q3 (9)

As we show below the one-loop correction due to such
a vertex is responsible for the breaking of the Goldstone
mode at the critical point for the ferromagnetic-like tran-
sition.

B. Results

TABLE I: Beliaev decay of the density Bogoliubov mode

system �(k) (D=dimension) dominant term
1-comp. Bose gas 0 (D=1), k2D�1 (D> 1)
2-comp. Bose gas k2 (D=1), k2D�1 (D> 1)
⌦ = 0 PS point kD/2+1 ⇧sr�sr�d

⌦ 6= 0 FM transition kD�2 ⇧d⇧
2
s

The decay rate is given by the imaginary part of the
self-energy for the density mode. We calculate the self-
energy simply at the one-loop level, which coincides with
a Fermi-Golden rule calculation. The general expression
for one of the above mentioned process reads
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Z
d
3q|Vk,q,k�q|2�(!d
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s
q �!

s
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where V is the vertex of the process and PmV the number
of possible equivalent diagrams.

Since we are interested in the decay rate at low mo-
mentum we can consider only the most relevant terms in
the di↵erent regimes as reported in Table I. For compari-
son we also report the result for a single-component Bose
gas.
a. Mixture ⌦ = 0. In the case of mixture ⌦ = 0 and

away from the phase separation g 6= g12 one has the ordi-
nary Beliaev decay, where the pre-factor is renormalised
due to the decay of density in two spin phonons. The
most relevant term at low momentum are the ⇧d(r�d)2

for the three density phonon vertex and ⇧d(r�s)2 and
⇧sr�sr�d for the density into two spin phonon vertex.
The decay rate reads

�(k) ' 3k
5(1 + h(cd/cs))

640nm⇡
(11)

3

k

q

k � q

k

q

k � q

V
ddd
k,q,k�q

V
dss
k,q,k�q

FIG. 2: Possible three mode vertices

linear and dominated by relative amplitude fluctuations
⇧s, which becomes critical, since the instability is due
to the system breaking Z2 and trying to build a finite
polarisation.
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At the quadratic Bogoliubov level the modes are well
defined. Finite lifetime comes by including higher order
terms which represent interaction among various modes.
In particular the third order term represents the so-called
Beliaev decay of one excitation into two new excitations
[13]. In a single component weakly interacting Bose gas
the decay rate � of phonons at low momentum k is very
small �(k) / k

5 (see Table I).
In the case of a 2-component Bose gas further decay

processes are in principle possible since, e.g., a density
mode can decay into two spin modes. At the phase tran-
sition point the spin modes change their character. We
show in the following that this leads to a strong enhance-
ment of the Beliaev decay rate. In particular we antici-
pate here that, as shown in Table I, the Goldstone mode
is still well defined for a mixture with a decay rate which
scales like k

5/2. For a coherently coupled gas instead the
Goldstone mode is not properly defined since the decay
rate scale like its energy, i.e., �(k) / k.

A. Symmetries and the general structure of the

three-mode vertices

To obtain the vertices of the possible decay processes
we have to expand Eq. (2) to third order. The number
of non-zero terms is pretty small due to the symmetries
of the system. In the paramagnetic phase due to the Z2

symmetry all the terms with an odd number of spin fields
have to be zero, since they are odd under exchange of the

two component. Therefore the density mode can decay
either in (i) two density modes or in (ii) two spin modes,
as schematically represented in Fig. (2). Moreover due to
the total density U(1) symmetry the process (i) can occur
only via ⇧d|r⇧d|2, ⇧3

d and ⇧d|r�d|2, which lead to the
standard Beliaev decay. The possible terms related to
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while also the terms ⇧d⇧2
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where V is the vertex of the process and PmV the number
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Since we are interested in the decay rate at low mo-
mentum we can consider only the most relevant terms in
the di↵erent regimes as reported in Table I. For compari-
son we also report the result for a single-component Bose
gas.
a. Mixture ⌦ = 0. In the case of mixture ⌦ = 0 and

away from the phase separation g 6= g12 one has the ordi-
nary Beliaev decay, where the pre-factor is renormalised
due to the decay of density in two spin phonons. The
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At the quadratic Bogoliubov level the modes are well
defined. Finite lifetime comes by including higher order
terms which represent interaction among various modes.
In particular the third order term represents the so-called
Beliaev decay of one excitation into two new excitations
[13]. In a single component weakly interacting Bose gas
the decay rate � of phonons at low momentum k is very
small �(k) / k

5 (see Table I).
In the case of a 2-component Bose gas further decay

processes are in principle possible since, e.g., a density
mode can decay into two spin modes. At the phase tran-
sition point the spin modes change their character. We
show in the following that this leads to a strong enhance-
ment of the Beliaev decay rate. In particular we antici-
pate here that, as shown in Table I, the Goldstone mode
is still well defined for a mixture with a decay rate which
scales like k

5/2. For a coherently coupled gas instead the
Goldstone mode is not properly defined since the decay
rate scale like its energy, i.e., �(k) / k.

A. Symmetries and the general structure of the

three-mode vertices

To obtain the vertices of the possible decay processes
we have to expand Eq. (2) to third order. The number
of non-zero terms is pretty small due to the symmetries
of the system. In the paramagnetic phase due to the Z2

symmetry all the terms with an odd number of spin fields
have to be zero, since they are odd under exchange of the

two component. Therefore the density mode can decay
either in (i) two density modes or in (ii) two spin modes,
as schematically represented in Fig. (2). Moreover due to
the total density U(1) symmetry the process (i) can occur
only via ⇧d|r⇧d|2, ⇧3

d and ⇧d|r�d|2, which lead to the
standard Beliaev decay. The possible terms related to
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while also the terms ⇧d⇧2
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s are present for ⌦ 6=

0. For instance the term ⇧d⇧2
s gives rise to the following
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As we show below the one-loop correction due to such
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terms which represent interaction among various modes.
In particular the third order term represents the so-called
Beliaev decay of one excitation into two new excitations
[13]. In a single component weakly interacting Bose gas
the decay rate � of phonons at low momentum k is very
small �(k) / k

5 (see Table I).
In the case of a 2-component Bose gas further decay

processes are in principle possible since, e.g., a density
mode can decay into two spin modes. At the phase tran-
sition point the spin modes change their character. We
show in the following that this leads to a strong enhance-
ment of the Beliaev decay rate. In particular we antici-
pate here that, as shown in Table I, the Goldstone mode
is still well defined for a mixture with a decay rate which
scales like k

5/2. For a coherently coupled gas instead the
Goldstone mode is not properly defined since the decay
rate scale like its energy, i.e., �(k) / k.

A. Symmetries and the general structure of the

three-mode vertices

To obtain the vertices of the possible decay processes
we have to expand Eq. (2) to third order. The number
of non-zero terms is pretty small due to the symmetries
of the system. In the paramagnetic phase due to the Z2

symmetry all the terms with an odd number of spin fields
have to be zero, since they are odd under exchange of the

two component. Therefore the density mode can decay
either in (i) two density modes or in (ii) two spin modes,
as schematically represented in Fig. (2). Moreover due to
the total density U(1) symmetry the process (i) can occur
only via ⇧d|r⇧d|2, ⇧3

d and ⇧d|r�d|2, which lead to the
standard Beliaev decay. The possible terms related to
process (ii) are only ⇧d|r�s|2 and ⇧sr�dr�s for ⌦ = 0,
while also the terms ⇧d⇧2

s and ⇧d�
2
s are present for ⌦ 6=

0. For instance the term ⇧d⇧2
s gives rise to the following

vertex:

� ⌦

2n2
Ud,q1Us,q2Us,q3 (9)

As we show below the one-loop correction due to such
a vertex is responsible for the breaking of the Goldstone
mode at the critical point for the ferromagnetic-like tran-
sition.

B. Results

TABLE I: Beliaev decay of the density Bogoliubov mode

system �(k) (D=dimension) dominant term
1-comp. Bose gas 0 (D=1), k2D�1 (D> 1)
2-comp. Bose gas k2 (D=1), k2D�1 (D> 1)
⌦ = 0 PS point kD/2+1 ⇧sr�sr�d

⌦ 6= 0 FM transition kD�2 ⇧d⇧
2
s

The decay rate is given by the imaginary part of the
self-energy for the density mode. We calculate the self-
energy simply at the one-loop level, which coincides with
a Fermi-Golden rule calculation. The general expression
for one of the above mentioned process reads
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where V is the vertex of the process and PmV the number
of possible equivalent diagrams.

Since we are interested in the decay rate at low mo-
mentum we can consider only the most relevant terms in
the di↵erent regimes as reported in Table I. For compari-
son we also report the result for a single-component Bose
gas.
a. Mixture ⌦ = 0. In the case of mixture ⌦ = 0 and

away from the phase separation g 6= g12 one has the ordi-
nary Beliaev decay, where the pre-factor is renormalised
due to the decay of density in two spin phonons. The
most relevant term at low momentum are the ⇧d(r�d)2

for the three density phonon vertex and ⇧d(r�s)2 and
⇧sr�sr�d for the density into two spin phonon vertex.
The decay rate reads

�(k) ' 3k
5(1 + h(cd/cs))

640nm⇡
(11)
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where h(r) is a sixth order polynomial. At the phase sep-
aration point the most relevant term is only ⇧sr�sr�d

as can be seen by putting ⌦ and gs to zero in Eq. (7)
and one gets a strong enhancement of the phonon decay
which now reads

�(k) =
(mcdk)5/2

48nm⇡
. (12)

Still the density phonon mode is well defined at low mo-
menta since �k/!k ' k

3/2 ! 0.
b. Coherent coupling ⌦ 6= 0. When the coherent

coupling is on, the spin sector is gapped, therefore away
from the transition point and at zero temperature it
does not contribute to the phonon decay which is sim-
ple due the standard Beliaev process ⇧d(r�d)2, leading
to �(k) = 3k5

/(640nm⇡).
At the ferromagnetic transition the situation is very

di↵erent. The gap in the spin channel closes and the spec-
trum becomes linear at small momentum, i.e., !s(k) =
cs|k| with mc

2
s = (g12�g)n = ⌦c where ⌦c is the value of

the coherent coupling at the transition point. A density
phonon can now decay into two spin ones. The latter
are critical at the transition and, as already mentioned,
dominated by the relative amplitude fluctuations, since
the system is on the verge of polarization. The most rel-
evant term becomes ⇧d⇧2

s, whose contribution leads to a
critical decay rate

�(k) =
(mcs)4k

4nm⇡
, (13)

making the Goldstone modes not well defined.

IV. FORCE ON AN IMPURITY - FRICTION

Landau theory of superfluidity leads to the existence
of a finite critical velocity, below which the flow is dissi-
pationless. A moving object weakly interacting with the
fluid feels a friction force only if its speed is larger than
the Landau critical velocity. For homogeneous ultra-cold
gases the situation is quite clear and the critical velocity
is due to Cherenkov phonon emission. If phonons have a
finite life-time a friction force is present for any speed of
the moving impurity.

The dissipation of energy due to time dependent poten-
tial can be generally written in terms of dynamic struc-
ture factor S(k, !) as

Ė = �
Z

dk

(2⇡)3

Z 1

0

d!

2⇡
!S(k, !)|W (k, !)|2, (14)

where W (k, !) is the Fourier transform of the exter-
nal perturbation. Considering a delta-like infinite mass
impurity moving at a constant speed V, we can write
W (r, t) = ��(r � Vt) where � is the coupling between
the impurity and the gas, which leads to W (q,!) =
2⇡��(! � q · V).

Accounting for the finite phonon lifetime �(k) at the
on-shell level corresponds in writing the dynamic struc-
ture factor as

S(k, !) = n|Ud(k)|2 �(k)

(! � !
d
k)2 + �(k)2

. (15)

Therefore the expression for dissipated energy per unit
time reads

P =
2⇡

~ �
2

Z
dk

(2⇡)3
n|Ud(k)|2 �(k)

(k · V � !
d
k)2 + �(k)2

k ·V.

(16)
Considering that at low speed |V| the most relevant
contribution comes from momenta k < k̄ ⌧ 1/⇠d with
⇠d = ~/mcd the density healing length, we find that the
dissipated energy depends quadratically on the speed of
the impurity and scale very di↵erently far from the tran-
sition and at the transition point, namely

P = � �
2

12⇡2⇠6d

✓
V

cd

◆2
8
<

:

3
160 (k̄⇠d)8, ⌦ > ⌦c

(cscd)
4

(c4d+c4s)
2 (k̄⇠d)4, ⌦ = ⌦c

(17)

V. CONCLUSION

In conclusion we have shown that two-component Bose
gas present an interesting scenario to study the breaking
of Goldstone modes. In particular when the system as
a U(1) ⇥ Z2 symmetry the Goldstone mode, related to
the phase of the order parameter, is not well defined at
the critical point for breaking the discrete symmetry Z2.
When the system has instead a U(1) ⇥ U(1) ⇥ Z2 sym-
metry the Goldstone modes are strongly a↵ected at the
Z2 transition point, but still well defined in the limit of
large wave lenghts.

Our analysis can be extended to two and one dimen-
sional systems, at least at the level of an e↵ective low
energy theory for mode coupling. For a two dimensional
gas Beliaev analysis can be carried out without any prob-
lem. For the density channel far for any instabilities the
leading contribution is the same as for a single compo-
nent Bose gas and it is proportional to k

3. For a mixture,
i.e., ⌦ = 0, the decay rate at the phase separation point
is bigger being proportional to k

2, but still the phonons
are well defined. Instead for ⌦ 6= 0 at the ferromagnetic
transition point one has a constant contribution at low
momenta.

For a one dimensional gas some remarks are due. First
of all, the single component Bose gas is properly de-
scribed by a Lieb-Liniger model. The system is integrable
and therefore the modes do not decay. Our system is in-
stead not integrable and therefore the density modes even
far from any instability should have a finite life-time due
to three density phonon processes. However the simple
one-loop approximation failed in this case since energy
and momentum conservation coincide. It was indeed first
recognised by Andreev[14] and extended in the context
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and the LHY correction can be written as
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which is the main result of the present work, where it
is clear how the density dependence of the LHY cor-
rections now depends on the relative value between the
Rabi coupling and and the chemical potential detuning
(g � g"#)n. The two terms on the r.h.s. of Eq. (16)
correspond to the contributions coming from the Ep,�
and Ep,+ modes, respectively. For (balance) mixtures,
when ⌦ = 0, the density dependence of two contribu-
tions is the same, the integral equals 4/15 and the LHY
correction is like the one of two independent conden-
sate with interaction (g ± g"#)/2. In the case of large
Rabi coupling, ⌦ � (g � g"#)n the integral in Eq. (16)
reads (⇡/8)

p
⌦/(g � g"#)n, therefore changing the usual

LHY 2.5-body contribution n
5/2 to also a part which

renormalises the two body mean-field energy interaction
/ (g + g"#)n2.

LHY versus two- and three-body interaction

We analyse here the relation of the LHY correction de-
termined above with the two- and three-body properties
of the dressed atoms. To explain it we consider the semi-
analytic case ⌦ � (g � g"#)n. In this case the beyond
mean-field equation of states reads
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1

2

"
g + g"#

2
+

p
⌦

2
p
2⇡

✓
g � g"#

2

◆2
#
n
2

8

15⇡2

✓
g + g"#

2
n

◆5/2

+
1

8
p
2⇡

p
⌦

✓
g � g"#

2
n

◆3

(17)

where we include only the first two term in the expan-
sion of the integral in Eq. (16) with respect to the large
parameter ⌦/(g�g"#)n. Therefore aside of a renormalisa-
tion of the 2-body scattering properties, one has a term
that can be associated with an induced three-body in-
teraction. Both terms turn out to be exactly equal to
the interaction strengths derived analytically in Ref. [3]
by solving the two- and three-body problems. This sug-
gest that LHY analysis can be use to derive in a easier
way the three-body interaction in the more general non-
symmetric case, which is the most relevant experimental
case (for example, 39K).

Should we check and plot three body for a generic case?
maybe around the Z2 symmetric one?

From Eq. (17) it is clear that the LHY corrections due
to the internal level dressing can be verified and it plays

figLHY.pdf

Figure 2: (color online) LHY spin contribution as a function

of the relevant parameter ⌦/(g � g"#)n. Black: full; gray:

2-body; red: 3-body

a dominant role occurs for g = �g"# > 0. Physically,
the man-field interaction vanishes and the compressional
mode Ep,� becomes free-particle-like and therefore does
not contribute to the equation of state. The spin mode
Ep,+ has instead a finite sti↵ness and give the only con-
tribution to the equation of states, which reads

ELHY ⇡ (�g"#)2
p
⌦

⇡
p
2

n
2 +

(�g"#)3p
2⇡

p
⌦
n
3
. (18)

It has been shown [4] that LHY can stabilise a collaps-
ing mixture, i.e., g"# < �g. Recent experiments have in-
deed been reported where meta-stable droplet have been
observed Can we put Taruell,Fattori private comm?.

Discuss the fate of the droplets: shift of the critical
point and three body stabilization?

Third, it may be interesting to consider the intermedi-
ate case ⌦ ⇠ 2(g�g"#)n and see if the beyond mean-field
contribution can lead to any new physics.

2-body properties

Here we briefly review the 2-body scattering proper-
ties of dressed 2-level atoms. This is better done in
the dressed atom basis and as before in the Z2 symmet-
ric case. Introducing the fields  ± = ( " ±  #)/2 the

The LHY correction to the mean-field equation is obtained as by expanding the 
energy functional to second order in the fluctuations around the mean-field 

solution and considering the zero-point energy:  

Due to the in-phase fluctuations:  
like LHY for a single component 

Due to the spin fluctuations: the gap introduce a new scaling. 
1. Without Rabi one obtains standard LHY just from two independent modes 
2. For                         strong change. From a 2.5-body to 2+3-body interaction: 
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a dominant role occurs for g = �g"# > 0. Physically,
the man-field interaction vanishes and the compressional
mode Ep,� becomes free-particle-like and therefore does
not contribute to the equation of state. The spin mode
Ep,+ has instead a finite sti↵ness and give the only con-
tribution to the equation of states, which reads
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It has been shown [4] that LHY can stabilise a collaps-
ing mixture, i.e., g"# < �g. Recent experiments have in-
deed been reported where meta-stable droplet have been
observed Can we put Taruell,Fattori private comm?.

Discuss the fate of the droplets: shift of the critical
point and three body stabilization?

Third, it may be interesting to consider the intermedi-
ate case ⌦ ⇠ 2(g�g"#)n and see if the beyond mean-field
contribution can lead to any new physics.

2-body properties

Here we briefly review the 2-body scattering proper-
ties of dressed 2-level atoms. This is better done in
the dressed atom basis and as before in the Z2 symmet-
ric case. Introducing the fields  ± = ( " ±  #)/2 the
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Both terms are exactly equal to a coupled STM calculation for 2 and 3 atoms. 
LHY correction is much easier and therefore it could be even used to get results for 
2 and 3 body interaction strengths in more general cases.
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and the LHY correction can be written as
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which is the main result of the present work, where it
is clear how the density dependence of the LHY cor-
rections now depends on the relative value between the
Rabi coupling and and the chemical potential detuning
(g � g"#)n. The two terms on the r.h.s. of Eq. (16)
correspond to the contributions coming from the Ep,�
and Ep,+ modes, respectively. For (balance) mixtures,
when ⌦ = 0, the density dependence of two contribu-
tions is the same, the integral equals 4/15 and the LHY
correction is like the one of two independent conden-
sate with interaction (g ± g"#)/2. In the case of large
Rabi coupling, ⌦ � (g � g"#)n the integral in Eq. (16)
reads (⇡/8)

p
⌦/(g � g"#)n, therefore changing the usual

LHY 2.5-body contribution n
5/2 to also a part which

renormalises the two body mean-field energy interaction
/ (g + g"#)n2.

LHY versus two- and three-body interaction

We analyse here the relation of the LHY correction de-
termined above with the two- and three-body properties
of the dressed atoms. To explain it we consider the semi-
analytic case ⌦ � (g � g"#)n. In this case the beyond
mean-field equation of states reads
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where we include only the first two term in the expan-
sion of the integral in Eq. (16) with respect to the large
parameter ⌦/(g�g"#)n. Therefore aside of a renormalisa-
tion of the 2-body scattering properties, one has a term
that can be associated with an induced three-body in-
teraction. Both terms turn out to be exactly equal to
the interaction strengths derived analytically in Ref. [3]
by solving the two- and three-body problems. This sug-
gest that LHY analysis can be use to derive in a easier
way the three-body interaction in the more general non-
symmetric case, which is the most relevant experimental
case (for example, 39K).

Should we check and plot three body for a generic case?
maybe around the Z2 symmetric one?

From Eq. (17) it is clear that the LHY corrections due
to the internal level dressing can be verified and it plays
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of the relevant parameter ⌦/(g � g"#)n. Black: full; gray:

2-body; red: 3-body

a dominant role occurs for g = �g"# > 0. Physically,
the man-field interaction vanishes and the compressional
mode Ep,� becomes free-particle-like and therefore does
not contribute to the equation of state. The spin mode
Ep,+ has instead a finite sti↵ness and give the only con-
tribution to the equation of states, which reads

ELHY ⇡ (�g"#)2
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2 +
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It has been shown [4] that LHY can stabilise a collaps-
ing mixture, i.e., g"# < �g. Recent experiments have in-
deed been reported where meta-stable droplet have been
observed Can we put Taruell,Fattori private comm?.

Discuss the fate of the droplets: shift of the critical
point and three body stabilization?

Third, it may be interesting to consider the intermedi-
ate case ⌦ ⇠ 2(g�g"#)n and see if the beyond mean-field
contribution can lead to any new physics.

2-body properties

Here we briefly review the 2-body scattering proper-
ties of dressed 2-level atoms. This is better done in
the dressed atom basis and as before in the Z2 symmet-
ric case. Introducing the fields  ± = ( " ±  #)/2 the
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Both terms are exactly equal to a coupled STM calculation for 2 and 3 atoms. 
LHY correction is much easier and therefore it could be even used to get results for 
2 and 3 body interaction strengths in more general cases.

Therefore if the interspecies interaction is                               the mean-field energy  
as well as the LHY for the in-phase vanishes and the EoS reads: 
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of a�� entering the MF term.

We find that our model quantitatively reproduces our
experimental results (see Fig. 2). The initial atom num-
ber 1.05 ⇥ 105 have been adjusted to match the experi-
mental data and corresponds within 5% to a calibration
using the condensation temperature (which precision is
⇠20%). The initial peak density is n ⇠ 5⇥ 1020 m�3. A
three-body loss coe�cient K���/3! = 4⇥10�28 cm6.s�1

has been adjusted to match our observed ⇠ 30% atom
loss during the expansions [38]. As an example, for a
value ⌦/2⇡ = 10 kHz, ⌦̃/(�2g"#n) ⇡ 1 and the initial
two-body and three-body energies per particle are found
to be 20Hz and 3.2Hz, respectively.
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FIG. 2: Thomas-Fermi radius of the condensate after 75ms of
expansion as a function of the Rabi coupling strength. Each
point is obtained by averaging 15 fluorescence images and the
error bars correspond to the single shot standard deviation.
The curves correspond to quasi-1D extended Gross-Pitaevskii
simulations (see text). Red dotted curve: BMF description;
black solid curve: BMF description with the addition of mag-
netic field noise; green dashed curve: BMF description re-
stricted to the two-body term.

Finally, we can also repeat the expansion measurement
while removing the RF coupling field at the end of the
sweep such that we are left with two uncoupled conden-
sates. The losses then dominantly take place in state
|#i and contrary to the coupled case, ↵ quickly deviates
from its initial value �. Moreover, we observe after a
Stern-Gerlach separation that the two clouds behave dif-
ferently in the expansion (see Fig. 3). The |#i condensate
does not expand much whereas the |"i condensate ex-
hibits a double structure with a low energy central part.
This behavior is reminiscent of previous observations in
droplet configuration where excess |"i atoms are expelled
from the droplet region [13, 14, 33]. In addition, we find
that the condensate 1D Thomas-Fermi radius in state |#i
is 31µm, a value that is significantly lower than the ex-
pected radius of 57µm for our parameters in the single
component simulation with ⌦ ! 0, i.e. with the BMF
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FIG. 3: Density profiles for |"i (black) and |#i (red) atoms
after 75ms of expansion at ⌦ = 0. The blue dashed curve is
a 1D Thomas-Fermi fit of the density profile in state |#i.

energy density scaling with n
5/2. This di↵erence indi-

cates a significant role of transient MF e↵ects in the ex-
pansion dynamics of the central region. Here, |"i atoms,
which are more abundant than expected and which re-
quire some time to escape, create an excessive e↵ective
trapping for |#i atoms forcing their slower expansion.

In conclusion, we have studied both theoretically
and experimentally, the BMF equation of state of a
coherently-coupled two-component BEC in the asymmet-
ric case at the special point (3) where the MF energy
vanishes. The BMF energy density as a function of
n interpolates between the usual / n

5/2 LHY form in
the uncoupled limit to a qualitatively di↵erent behav-
ior in the strong-coupling regime where one can intro-
duce a hierarchie of e↵ective BMF N -body interactions
with N = 2, 3, ... We quantitatively verify our theoretical
findings in an experiment where the BMF energy gov-
erns the condensate expansion and can thus be accurately
measured. Our results open the path to the creation of
coherently-coupled quantum droplets in which the two-
body interaction (MF+BMF) is compensated by BMF
three-body e↵ects [22]. Interestingly, a coherent Rabi
coupling helps to preserve the spin composition and thus
prevents the system from dynamically drifting away from
the point of vanishing mean field and thus facilitates di-
rect measurements of the BMF equation of state.

We thank L. Tarruell for useful discussions. This
research has been supported by CNRS, Ministère de
l’Enseignement Supérieur et de la Recherche, Labex
PALM, Region Ile-de-France in the framework of DIM
Sirteq, Paris-Saclay in the framework of IQUPS, ANR
Droplets (19-CE30-0003), Simons foundation (award
number 563916: localization of waves). AR acknowledge
financial support from Provincia Autonoma di Trento,
the FISh project of the Istituto Nazionale di Fisica Nucle-
are, and the Italian MIUR under the PRIN2017 project
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where  ̂�r is the annihilation Bose field operator, ⇠ =
�(��z + ⌦�x)/2 is the single particle spin Hamiltonian
written in terms of the Pauli matrices acting in the |"i-
|#i space, and g��0 = 4⇡a��0 are the coupling constants
for the �-�0 interaction with the scattering lengths a��0 .
In Eq. (1) and in the rest of the paper we adopt the units
~ = m = 1, where m is the mass of the particles.

Assuming zero-temperaure and weak interactions, we
follow the usual Bogoliubov procedure by separating the
dominant condensate contribution and writing the field
operator as  ̂�r =

p
n� + �̂�r, where n� are the conden-

sate densities and �̂�r annihilate particles with nonzero
momenta. Neglecting �̂ and substituting  ̂�r =

p
n�

into Eq. (1) we obtain the MF energy density

EMF =
�

2

1� ↵
2

1 + ↵2
n� ⌦↵

1 + ↵2
n+

g""↵
4 + g## + 2g"#↵2

(1 + ↵2)2
n
2

2
,

(2)
where n = n" + n# and ↵ =

p
n"/n#. In the limit-

ing case of vanishing density (or interactions), EMF gets
minimized for ↵ = ↵0 = �/⌦ +

p
1 + �2/⌦2, consis-

tent with the condensation in the dressed state |�i =
(↵0 |"i + |#i)/

p
1 + ↵

2

0
, which is the ground state of ⇠.

The coe�cient in front of n2
/2 in Eq. (2) is then the MF

coupling constant corresponding to the scattering length
a�� = (a""↵4

0
+a##+2a"#↵2

0
)/(1+↵

2

0
)2 [23]. For a"" > 0,

a## > 0, and a"# < 0, a�� exhibits a minimum as a
function of � (or ↵0). We are interested in the particular
configuration of the scattering lengths (controlled by the
magnetic field) and the RF drive parameters where this
minimum touches zero. This translates into two condi-
tions:

�a = 0 and ↵0 = �, (3)

where we have introduced the scattering length detun-
ing �a = a"# +

p
a""a## and the interaction asymmetry

parameter � = (a##/a"")1/4. Note that for finite n the
energy EMF, upon minimization with respect to ↵, is not,
in general, a quadratic function of n since the optimal po-
larization parameter ↵ does depend on n. In particular,
the system can feature a three-body attraction already
on the MF level [28]. However, the minimum of a�� is
a special point where both terms on the right-hand side
of Eq. (2) are minimized at ↵ = ↵0 independent of n. At
this point EMF is thus quadratic in n. If, in addition, we
tune �a to zero [configuration (3)], the minimum of a��
also vanishes and the condensate becomes noninteracting
on the MF level.

We shall now discuss the influence of BMF e↵ects on
the equation of state. In the Bogoliubov approach the
leading BMF term is obtained by expanding the Hamil-
tonian (1) up to quadratic terms in �̂� and by summing
the zero point energies of the corresponding Bogoliubov
modes. In the symmetric case (a"" = a## and � = 0) the
calculation has been performed in Ref. [25]. The general
asymmetric case is technically more di�cult because of

cumbersome expressions for the Bogoliubov modes [29].
However, under the conditions (3), these expressions sim-
plify and read

Ep,� = p
2
/2,

Ep,+ =
q

(p2/2 + ⌦̃)(p2/2 + ⌦̃� 2g"#n),

where p is the momentum and ⌦̃ = ⌦(↵0+1/↵0)/2. The
BMF energy density can then be reduced to the form [29]

EBMF =
8(�g"#n)5/2

15⇡2
I

 
⌦̃

�2g"#n

!
, (4)

with I(y) =
15

4

Z
1

0

p
x(1� x)(x+ y)dx.

Equation (4) remains a good approximation for the BMF
energy density as long as |�a/a"#| ⌧ 1 and |↵0 � �| ⌧ 1.
The function I(y) is a monotonically growing function,
which tends to 1 for y = ⌦̃/(�2g"#n) ! 0. This is the
limit of two uncoupled condensates where Eq. (4) reduces
to the LHY form, responsible for the BMF stabilization of
quantum droplets in binary mixtures [12]. In the opposite
limit I(y) can be expanded in powers of 1/y ⌧ 1, the first
two leading terms being I(y) ⇡ (15⇡/128)(1/

p
y+4

p
y).

The substitution of this expansion into Eq. (4) gives

EBMF ⇡

p
⌦̃

2
p
2⇡

g
2

"#
n
2

2
+

3

4
p
2⇡
p
⌦̃
|g"#|3

n
3

6
, (5)

which is qualitatively di↵erent from the LHY n
5/2 scal-

ing. The two terms in Eq. (5) can be interpreted as a
BMF-renormalized two-body interaction and an emer-
gent three-body term, respectively. In the symmetric
case, the three-body term agrees with the exact three-
body calculation [22], if the latter is taken in the regime

where the characteristic length scale 1/
p
⌦̃, associated to

the drive, is much larger than a��0 . Curiously, the three-

body coupling constant g3 = 3|g"#|3/(4⇡
p

2⌦̃) which we
have obtained here by using the many-body Bogoliubov
approach would be significantly more di�cult to calculate
in the asymmetric case by using the general three-body
formalism of Ref. [22].
We now turn to the experimental measurement of the

BMF energy. The latter, in a situation where the MF
interaction is cancelled, is directly measured through
the released energy in a one-dimensional expansion ex-
periment. We work with the second and third lowest
Zeeman states of the lowest manifold of 39K, namely
|"i = |F = 1,mF = �1i and |#i = |F = 1,mF = 0i. At
a magnetic field of 56.830(1)G, the three relevant scat-
tering lengths are a"" = 33.4 a0, a## = 83.4 a0 and
a"# = �53.2 a0, where a0 is the atomic Bohr radius [30].
The minimum of a�� is then �0.2 a0. We have checked
that the corresponding residual MF energy is a small

Experimental results vs extended Gross-Pitaevskii equation (eGPE) 

Black line:
full LHY equation of state 

in the eGPE 
including experimental noise

[L. Lavoine, A. Hammond, AR, D. Petrov, T. Bourdel, PRL 127, 203402 (2021)]
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Vortices in coherently coupled BECs

Phase domain walls: simple picture [Son & Stephanov PRA ’02]
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Vortices in coherently coupled BECs



Tylutky, AR, Pitaevskii, Stringari, PRA (2016) -  
see also K. Kasamatsu, M. Tsubota, and M. Ueda, PRL 93, 250406 (2004).  
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FIG. 4: Vortex pair precessing around the centre of the trap. Example with the distance 2d = 5.57
q

h̄
m!?

and ⌦R = 0.5!?.

The left and middle columns (a. - d.) show the density and phase profiles of the precessing vortices at !?t = 6. Density-density
interaction between species g12 = 0. (e.) The domain wall is seen as a jump in the phase 'A = '1 � '2. The width is of
the order of

p
h̄/m⌦Rabi ⇠ 1.41⇠. (f.) Interference of the two condensates. Along the domain wall the wave functions have

opposite phases, and the interference is destructive.

FIG. 5: Angular velocity of the precessing vortex pair as a function of the vortex distance. The Rabi coupling ⌦R = 0.5!?.
The angular velocity increases as ⇠ 0.71/2d, as in h̄!rot = �

2nd . The bottom panel presents the angular momentum per particle

hL(i)
z /Ni = �ih̄

R
d2x ⇤

i @' i/N as a function of the distance between the vortex cores. The black dashed line depicts the
theoretical prediction of the Eq (4). Density-density interaction between species g12 = 0.

density a

density b

phase a

phase b

relative phase

Vortices in coherently coupled BECs: dimers



Magnus force = surface tension

Tylutky, AR, Pitaevskii, Stringari, PRA (2016)
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2d the vortex pair. For example, using the above pa-
rameters, one finds dwall/⇠ = 28.3 and dwall/2d = 0.54
(blue curve in Fig. 2). The red curve in the same figure
this ratio instead corresponds to dwall/2d = 1.52. If the
width dwall of the domain wall is much larger than the
size of the vortex pair (corresponding to very small values
of ⌦R) the e↵ect of the Rabi coupling should be treated
using a perturbative approach [16].

Numerical results In Fig. 1 we show the typical be-
havior of the relative phase of a vortex pair in the pres-
ence of a 2D harmonic trap, obtained by solving numeri-
cally the coupled Gross-Pitaevskii Eqs. (1), with g12 = 0.
The structure of the domain wall is clearly visible. The
result shown in the figure is obtained as follows: first, we
symmetrically imprint two vortices, one in each compo-
nent, far away from the trap’s center; then we perform
an imaginary time evolution, during which the domain
wall in the relative phase forms and the vortices start
approaching each other, with the energy of the system
decreasing. We stop the simulation at a certain point, in
order to produce a vortex pair of the desired size. This
configuration serves as the initial condition for a sub-
sequent real time evolution, in which the pair exhibits
precession. The configuration in Fig. 1 shows the phase
after a short precession time, the small asymmetry in the
shape of the wall being caused by the rotation.

FIG. 1: (color online) a) Relative phase ✓1�✓2 of the two com-
ponents near a vortex pair in the presence of Rabi coupling
⌦R = 0.5!?. We can see, that the phase jump between the
two vortices is confined along the narrow domain wall, con-
necting the vortices. The dotted line shows the circle around
which the phase is calculated in the right panel. b) Phases
✓1 (blue solid line) and ✓2 (red dotted line) along a circle
centered in the vortex of the first component. The phase ✓1
makes a 2⇡ winding around a vortex, with half of the jump
concentrated in a short interval of the polar angle ↵. The
phase ✓2 is instead single valued. This phase profile is typical
of an isolated half-vortex in the first component.

Fig. 1 shows explicitly the behavior of the phases of the
two components calculated around the contour shown in
the left panel, around the vortex of the spin component
1. The figure clearly reveals the 2⇡ jump in the relative
phase ✓2 � ✓1 near the domain wall.

By solving the Gross-Pitaevskii equation in real time
one can investigate the precession of the vortex pair and
evaluate the precession frequency ⌦prec whose depen-

dence on the Rabi coupling ⌦R is reported in Fig. 2 for
di↵erent values of the vortex size d. Its dependence on
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FIG. 2: (color online) Dependence of ⌦prec on the Rabi cou-
pling ⌦R for di↵erent values of the vortex separation 2d. The
numerical solution of the GP equations (component 1 - bul-
lets (�), component 2 - triangles (O)) are in a good agreement
with the analytical expression, Eq. (5), (solid lines) for large
values of 2d. For smaller separations, the data can still be
fitted with the ⇠

p
⌦R relation (dashed lines), but the coe�-

cient deviates from the one of Eq. (5). The insert is a zoom
of the figure for small values ⌦R, where ⌦prec changes sign.

d, for a fixed value of ⌦R is instead shown in Fig. 3. The
results of the numerical calculations are found to agree
reasonably well with the predictions (5) of the macro-
scopic model discussed in the first part of the paper (see
full lines in the figures). A expected, the discrepancies
become smaller if the condition dwall ⌧ d is better sat-
isfied.

In the introduction we have emphasized the fact that,
in the presence of Rabi coupling, vortices cannot exist
as single objects, but only in pairs. This is actually the
case for a uniform gas. In the presence of harmonic trap-
ping, single vortex lines can also exist as the domain wall
will cost a finite amount of energy, fixed by the size of
the atomic cloud. We have explored single vortex con-
figurations by considering a vortex line (corresponding
to the component 1) located at some distance from the
center of the trap. The domain wall which minimizes the
energy than corresponds to the shortest line connecting
the vortex to the external region outside the Thomas-
Fermi radius, where the density of the atomic cloud is
practically vanishing (see Fig. 4). By solving the GP
equations (1) in real time we have found that the vortex
line in component 1 exhibits the precession according to
the macroscopic prediction (2)-(4) with 2Ev replaced by
Ev and Ewall calculated along the domain wall. How-
ever we soon find the appearance of a second vortex in
component 2, attached to the second end of the wall,
emerging from the border, where its energy cost is van-
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FIG. 3: (color online) Dependence of the precession frequency
⌦prec (component 1 - bullets (�), component 2 - triangles (O))
on 1/2d (in units of

p
m!?/~). The solid lines correspond to

the prediction of Eq. (5). As in the Fig. 2, the agreement is
good as long as the distance 2d separating the two vortices is
su�ciently large.

ishingly small. The two vortices then start rotating one
with respect to the other. Eventually the original vor-
tex of the component 1 reaches the border of the atomic
cloud to disappear and reappear again after a while (see
also Ref. [17]).

The results presented above were obtained under the
assumption g12 = 0 for the inter-component interac-
tion parameter. If g12 is small compared to the inter-
component coupling constants g11 = g22 = g, we find
that the influence of g12 on the precession is almost neg-
ligible, the main role being played by the long-range sur-
face tension force. This behavior is consistent with the
fact that stable molecules, even for relatively large val-
ues of g12, have a very small size. New features take
instead place for larger values of g12. In particular, if g12
is close to g one can identify a critical value for the Rabi
coupling, given by the expression ⌦crit =

1
3 (g12 � g)n/~

[7]. If ⌦R > ⌦crit the domain wall becomes unstable, the
solution of the GP equations corresponding to a local
maximum of energy, rather than to a local minimum.
However, even for ⌦R < ⌦crit a long domain wall is
metastable with respect to decay into smaller fragments,
resulting in the creation of new vortex pairs appearing at
the ends of the new fragments. This fragmentation is the
analog of string breaking in quantum chromodynamics.
The probability of such a fragmentation becomes larger
and larger as one approaches the critical value ⌦crit. In
Fig. 5 we show the result of the fragmentation of a do-
main wall obtained at ⌦R = 0.6⌦crit, with ⌦crit calcu-
lated in the center of the trap, starting from a domain
wall initially created symmetrically with respect to the
center of the trap and then allowed to evolve through
the time !?t = 1.7. The figure clearly shows the appear-

ance of fragments of di↵erent size, connecting vortices of
di↵erent components.

FIG. 4: (color online) Relative phase distribution around a
single half-vortex in a two component coherently-coupled sys-
tem. The vortex builds a domain wall that is attached to the
nearest point of the edge of the cloud. The phase distribu-
tion corresponds to the evolution time of !?t = 0.2. Then,
the vortex starts precessing and induces the appearance of a
second vortex in the component 2.

Conclusions We expect that our predictions for the
precession of half-vortex pairs and for the fragmentation
of the corresponding domain wall at large Rabi coupling
will stimulate new measurements on coherently coupled
Bose-Einstein condensates. Experimentally, pairs of half-
vortices, connected by a domain wall, can be created by
the proper imprinting of the relative phase of the two
condensates. The shape of the domain wall connecting
the two vortical lines is in principle observable using het-
erodyne methods giving rise to visible interference in the
domain wall region. The precession e↵ect could be mea-
sured using real time detection techniques (see, for ex-
ample, [18]).
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An elongated inhomogeneous system:  
1) Local Josephson oscillations

1) We first prove the local BJJ in an elongated inhomogeneous cloud in the Josephson 
oscillation regime. 1D spin dynamics with Thomas-Fermi profile and “large” Rabi coupling

2

depth of the optical trap adiabatically. The final trap
geometry is elongated, with axial and radial trap fre-
quencies of !x/2⇡ ⇡ 10Hz and !⇢/2⇡ between 500(10)
and 1000(10)Hz. The density of the sample follows the

Thomas-Fermi distribution n3D = n3D
0 (1� ⇢2

R2
⇢
� x2

R2
x
) and

the radial and axial sizes are given by the Thomas-Fermi
radii R⇢ and Rx.

A two-photon Raman microwave transition to the
|1,+1i (later referred as |"i) is suddenly introduced [see
Fig.1(b)]. The two microwave frequencies are detuned
by � from the state |2, 0i. The e↵ective Rabi coupling ⌦
between |#i and |"i is inversely proportional to � and we
use the latter to tune ⌦ while keeping the single-photon
Rabi frequencies fixed to 5.0(1) kHz. The two-photon
coupling can be detuned from the |1,±1i transition by
�, that we tune by varying the magnetic field. An ad-
ditional microwave radiation (20 kHz blue-detuned from
the |1, 0i ! |2, 0i transition and with Rabi frequency of
7.9(1) kHz) introduces a quadratic Zeeman shift on the
|1, 0i to suppress spin-changing collisions [22]. The two-
photon coupling and the dressing are generated by two
out-of-vaccum half-dipole antennas fed by 100W ampli-
fiers. We routinely calibrate the magnetic field and the
Rabi coupling by driving Rabi dynamics in a very dilute
thermal cloud.

After applying the coherent coupling for a given time
t, the atoms are released from the optical trap. After
a short time of flight, the states |1,±1i are separately
transferred by microwave pulses to the stretched states
|2,±2i and independently imaged by absorption imaging.

III. THEORETICAL MODEL

We are interested in studying the dynamics of the mag-
netization of the atomic cloud, and its coherence in a
non-uniform trap. In this respect, it is convenient to de-
scribe the BEC in terms of its (position-dependent) total
density n3D and its spin-density s on the Bloch Sphere,
where, in particular, sz describes the population di↵er-
ence in the |"i and |#i states and |s| = n3D. Neglecting
both density and spin currents, the total density is con-
stant and the spin dynamics is described by the nonlinear
precession equation [18, 23, 24]

ṡ(r) = H(s)⇥ s(r). (1)

The e↵ective magnetic field H(s) is ⌦x̂+ (� + �g
~ sz)ẑ,

where x̂ and ẑ refer to the versor of the Bloch sphere.
H(s) is due to the presence of several SU(2) symme-
try breaking terms: the homogeneous transverse mi-
crowave Rabi coupling ⌦, the linear detuning � and the
nonlinear detuning �g

~ sz arising from the di↵erence be-
tween the intra- and interspecies interaction constants
�g. For sodium atoms, states |"i and |#i have equal

intrastate coupling constants g�1 = g+1 = g and inter-
state coupling constant g�1,+1, with a positive di↵erence
�g = g � g�1,+1. This leads to a full miscibility of the
spin mixture [22, 25, 26]. The nonlinear term in H is
referred to as magnetic anisotropy in the context of fer-
romagnetism and as a capacitive term in the context of
Bose-Josephson dynamics (see also below).
In the case of strongly-elongated cylindrically-

symmetric Thomas-Fermi profile (also referred later as
1D regime, see Sec. IV), spin dynamics occurs only in
the axial direction. By integrating in the radial plane,
we can describe the dynamics of the spin along the ax-
ial direction x introducing the 1D spin-density s(x), such
that

|s(x)| = n(x) = n0(1� x2/R2
x). (2)

The spin-density obeys the following 1D version of
Eq.(1):

ṡ(x) =

0

@
⌦
0

� + sz(x)

1

A⇥ s(x), (3)

where the nonlinear coupling strength is

 =
5

6~
�g

⇡R2
⇢

, (4)

and is related to the 3D density through

n0 =
2

3~n
3D
0 �g. (5)

The nonlinear term n0 can be calculated from the ex-
perimental parameters (atom number and trap frequen-
cies), but the accuracy remain poor. In the following
sections we show how we extract it from the dynamics in
di↵erent ways.
We recall here that, locally, Eq. (1) and Eq. (3) are

equivalent to the so-called Bose-Josephson (BJ) junction
equations [27], which are written in terms of the normal-
ized magnetization Z(x) = sz/n and of the relative phase
�(x) = arctan(sy/sx). In such a context, it has been re-
alized that Eq. (1) has di↵erent dynamical regimes. In
the particular case of � = 0, for ⌦ > |n| the dynam-
ics resembles Rabi oscillations for any initial state. For
⌦ < |n|, instead, a self-trapped regime appears around
the points Z = ±

p
1� ⌦2/(n)2, � = ⇡, where the mag-

netization never changes sign. For ⌦ < |n|/2, the initial
states Z = ±1 are also self-trapped.
Equation 1 does not take into account neither density

nor spin currents. The e↵ects of these currents can be im-
plemented by means of a full hydrodynamics description
of the system [28]. For the measurements here presented,
the contribution is negligible as they become dominant
only for longer waiting time then the one here considered.

in the Josephson regime
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!J(x) =
p

⌦(⌦+ n(x))
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We report on the experimental characterization of a spatially extended Josephson junction realized
with a coherently-coupled two-spin-component superfluid, trapped in an elongated potential. We
study how dimensionality and inhomogeneity a↵ect the control of the local magnetization and
identify a protocol for the preparation of the whole system in the ground state.

I. INTRODUCTION

Superfluid mixtures have recently attracted a renewed
interest thanks to the ability of cooling and manipulating
multi-component atomic gases. In particular, the pres-
ence of coherent population transfer deeply modifies the
physics of the mixtures and have been widely studied
and experimentally realized both in double-well poten-
tials and in coherently-coupled two spin states. The rich-
ness of these systems resides in the possibility to study
phenomena spanning from nonlinear dynamics [1–4] to
non-classical states [5–9]. In most of the cases, the mix-
tures are treated and behave as point-like entities, with
frozen spatial degrees of freedom [10, 11].

Spatially extended systems require more sophisticated
theoretical approaches which incorporate, among many,
dephasing–rephasing dynamics e↵ects [12, 13] and local
squeezing [14]. Experimentally, more stringent condi-
tions are required to have full control and precise de-
tection over an extended system. Up-to-now this has so
far not been fully investigated. Pioneering works have
been reported on one-dimensional (1D) systems study-
ing the dynamics in the large-coupling regime [15, 16],
the phase transition dynamics [17] and in the case where
interactions and coupling compete, creating inhomoge-
neous magnetic-like heterostructures [18].

While it is not an issue for single-mode systems, the
creation of a spatially-uniform coherent initial condition
for an extended inhomogeneous sample is a di�cult task
because of inhomogeneity-induced nonlinear e↵ects. Dis-
tant parts of the system can react di↵erently to the exter-
nal driving, depending on local properties of the system
as, for example, atomic density or external field inhomo-
geneities. A strong Rabi coupling could overcome issues
related to the inhomogeneity, but requires very strong
fields that cannot always be experimentally realized due
to technical limitation or unwanted couplings or losses to
other atomic states.

Here we present a characterization of the techniques
used to initialize an e↵ective spin 1/2 elongated system
in a homogeneous state. Section II introduces the ex-
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perimental system and in Sec. IV we study its e↵ec-
tive dimensionality. Section III sets the theoretical frame
for an e↵ectively 1D system. In Sec. V, we study how
density e↵ects prevents to produce a homogeneous state.
We report on an adiabatic method that optimizes the
achievement of a uniform state in Sec. VI. Finally, we
present characterization measurements on plasma oscil-
lations (Sec. VII) and on the loss of coherence of the
sample (Sec. VIII).

II. THE EXPERIMENTAL SYSTEM

In our apparatus we start with a thermal cloud of 23Na
atoms in a hybrid trap [19, 20] in the |F,mF i = |1,�1i
state (later referred as |#i), where F is the total atomic
angular momentum and mF its projection on the quanti-
zation axis. The atoms are then transferred into a crossed
optical trap where a uniform magnetic field is applied
along the z-axis with a Larmor frequency of 913.9(1) kHz.
The shot-to-shot stability [21] of the magnetic field is at
the level of a few µG over tens of minutes of continuous
experimental cycling.
Evaporative cooling lowering the depth of the optical

trap leads to a BEC with up to N=3 ⇥ 106 atoms with
negligible thermal component. The exact atom number is
known with an uncertainty of about 20%, inferred from
the calibration of the imaging system. The final trap
frequencies are tuned to di↵erent values increasing the

FIG. 1. (a) The trapped cloud presents an elongated and
cylindrically symmetric shape. The cloud profile in the x
direction follows the Thomas-Fermi inverted parabola. (b)
Level scheme and microwave radiations used to couple the
two states |1,±1i. � represents the detuning between the
two-photon coupling and the |1,±1i energy di↵erence. � is
the detuning from the virtual state |2, 0i.
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lations (Sec. VII) and on the loss of coherence of the
sample (Sec. VIII).

II. THE EXPERIMENTAL SYSTEM

In our apparatus we start with a thermal cloud of 23Na
atoms in a hybrid trap [19, 20] in the |F,mF i = |1,�1i
state (later referred as |#i), where F is the total atomic
angular momentum and mF its projection on the quanti-
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known with an uncertainty of about 20%, inferred from
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FIG. 1. (a) The trapped cloud presents an elongated and
cylindrically symmetric shape. The cloud profile in the x
direction follows the Thomas-Fermi inverted parabola. (b)
Level scheme and microwave radiations used to couple the
two states |1,±1i. � represents the detuning between the
two-photon coupling and the |1,±1i energy di↵erence. � is
the detuning from the virtual state |2, 0i.
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N = 3⇥ 106
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the south pole of the Bloch sphere. Due to the inhomo-
geneous nonlinear interaction, the magnetization has a
position-dependent evolution. However, if � is adiabati-
cally reduced to zero, at the end of the ARP, the whole
system will reach Z = 0 simultaneously, independent of
the value of the local nonlinear parameter, as sketched in
Fig.4(d).

In our experiment, we start from a polarized sample
in |#i, turn on a coupling with ⌦ = 2⇡ ⇥ 273(1)Hz with
an initial detuning � ⇡ 2⇡ ⇥ 3 kHz. For experimental
convenience, and taking advantage from the dependence
of � on the magnetic field B, the sweep of the detuning
is performed by keeping constant microwave frequencies
and by varying the strength of the magnetic field in 50ms
with a nonlinear ramp. The ramp is stopped to a variable
final �f and in Fig. 4(a) we plot the magnetization of the
sample as a function of the coordinate x and �f .

The magnetization at � = 0 of the ARP procedure
is less sensitive to magnetic field fluctuations, since, ex-
panding Eq. (8) near Z = 0, one gets

@Z

@�
=

1

⌦+ n
(9)

that is lowered by the nonlinear term. Figure 4(b) shows
how the final value of the magnetization is sensitive to the

FIG. 4. Adiabatic Rapid Passage (a) Local magnetization
after a ARP as a function of the final detuning �f . (b) Mag-
netization at positions x ⇡ 0 (blue) and x ⇡ Rx (orange).
Line is a sigmoidal function fitted to the data. (c) Nonlinear
parameter extracted from the derivative of the sigmoidal fit.
The shaded area refers to the prediction of n(x) obtained
from the atom number and trap frequencies. (d) Blue and
orange arrows correspond to high and low density regions, re-
spectively. The second one is rotated from z to x as a single
atom would, while the first one has an initial larger velocity
and a final smaller velocity because the nonlinear e↵ect of in-
teractions. However, the nonlinear e↵ects compensates along
the path and they arrive simultaneously on the equator.

FIG. 5. Plasma oscillations. (a) The plasma oscillation are
precession around the x-axis, where the vector ⌦ lays. (b)
Evolution of the magnetization for the initial state Z = 0 and
� = 0.1⇡, showing plasma oscillations. (c) Plasma oscillation
frequency at x ⇡ 0 for di↵erent values of ⌦. The line is a
fit according to Eq. 10, hence providing the n parameter at
the position where the plasma frequency is measured. (d)
Local nonlinear parameter extracted from plasma oscillation
frequency. The shaded area refers to the prediction of n(x)
obtained from the atom number and trap frequencies.

final detuning, with a smaller sensitivity in the central
part of the system (blue points) rather than at the edges
(orange).
Remarkably this method allows for a clean prepara-

tion of the extended system in a uniform Z = 0 state,
at the expected value �f = 0. This result is not trivial
as the magnetization varies indeed with di↵erent veloc-
ity for each spatial coordinates. However the symmetric
dynamics on the Bloch sphere leads the magnetization to
reach zero at the same instant for the whole cloud. Note
that the e�ciency of the full rotation is increased by the
nonlinear term.
By fitting the dynamics of the magnetization for each

position x with a sigmoid function, we can extract the
slope of the magnetization as a function of � and hence
n applying Eq. (9) [see Fig. 4(c)]. We obtain n0/2⇡ =
210(20) Hz (compared to n0/2⇡ = 170(20) Hz from den-
sity). The error bars include statistical error on the fit
and systematic uncertainties coming from imaging pro-
cedure (uncertainty on the state population) and from a
non-perfect adiabaticity of the process. Systematic con-
tributions strongly enhance the uncertainty on the value
of n compared to the one obtained in Sec. V.

VII. PLASMA OSCILLATIONS

In the presence of coherent coupling and at � = 0, the
ground-state of the system is uniformly Z = 0, � = 0.
For small deviations near the ground-state, the Joseph-
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The shaded area refers to the prediction of n(x) obtained
from the atom number and trap frequencies. (d) Blue and
orange arrows correspond to high and low density regions, re-
spectively. The second one is rotated from z to x as a single
atom would, while the first one has an initial larger velocity
and a final smaller velocity because the nonlinear e↵ect of in-
teractions. However, the nonlinear e↵ects compensates along
the path and they arrive simultaneously on the equator.

FIG. 5. Plasma oscillations. (a) The plasma oscillation are
precession around the x-axis, where the vector ⌦ lays. (b)
Evolution of the magnetization for the initial state Z = 0 and
� = 0.1⇡, showing plasma oscillations. (c) Plasma oscillation
frequency at x ⇡ 0 for di↵erent values of ⌦. The line is a
fit according to Eq. 10, hence providing the n parameter at
the position where the plasma frequency is measured. (d)
Local nonlinear parameter extracted from plasma oscillation
frequency. The shaded area refers to the prediction of n(x)
obtained from the atom number and trap frequencies.

final detuning, with a smaller sensitivity in the central
part of the system (blue points) rather than at the edges
(orange).
Remarkably this method allows for a clean prepara-

tion of the extended system in a uniform Z = 0 state,
at the expected value �f = 0. This result is not trivial
as the magnetization varies indeed with di↵erent veloc-
ity for each spatial coordinates. However the symmetric
dynamics on the Bloch sphere leads the magnetization to
reach zero at the same instant for the whole cloud. Note
that the e�ciency of the full rotation is increased by the
nonlinear term.
By fitting the dynamics of the magnetization for each

position x with a sigmoid function, we can extract the
slope of the magnetization as a function of � and hence
n applying Eq. (9) [see Fig. 4(c)]. We obtain n0/2⇡ =
210(20) Hz (compared to n0/2⇡ = 170(20) Hz from den-
sity). The error bars include statistical error on the fit
and systematic uncertainties coming from imaging pro-
cedure (uncertainty on the state population) and from a
non-perfect adiabaticity of the process. Systematic con-
tributions strongly enhance the uncertainty on the value
of n compared to the one obtained in Sec. V.

VII. PLASMA OSCILLATIONS

In the presence of coherent coupling and at � = 0, the
ground-state of the system is uniformly Z = 0, � = 0.
For small deviations near the ground-state, the Joseph-

5

the south pole of the Bloch sphere. Due to the inhomo-
geneous nonlinear interaction, the magnetization has a
position-dependent evolution. However, if � is adiabati-
cally reduced to zero, at the end of the ARP, the whole
system will reach Z = 0 simultaneously, independent of
the value of the local nonlinear parameter, as sketched in
Fig.4(d).

In our experiment, we start from a polarized sample
in |#i, turn on a coupling with ⌦ = 2⇡ ⇥ 273(1)Hz with
an initial detuning � ⇡ 2⇡ ⇥ 3 kHz. For experimental
convenience, and taking advantage from the dependence
of � on the magnetic field B, the sweep of the detuning
is performed by keeping constant microwave frequencies
and by varying the strength of the magnetic field in 50ms
with a nonlinear ramp. The ramp is stopped to a variable
final �f and in Fig. 4(a) we plot the magnetization of the
sample as a function of the coordinate x and �f .

The magnetization at � = 0 of the ARP procedure
is less sensitive to magnetic field fluctuations, since, ex-
panding Eq. (8) near Z = 0, one gets

@Z

@�
=

1

⌦+ n
(9)

that is lowered by the nonlinear term. Figure 4(b) shows
how the final value of the magnetization is sensitive to the

FIG. 4. Adiabatic Rapid Passage (a) Local magnetization
after a ARP as a function of the final detuning �f . (b) Mag-
netization at positions x ⇡ 0 (blue) and x ⇡ Rx (orange).
Line is a sigmoidal function fitted to the data. (c) Nonlinear
parameter extracted from the derivative of the sigmoidal fit.
The shaded area refers to the prediction of n(x) obtained
from the atom number and trap frequencies. (d) Blue and
orange arrows correspond to high and low density regions, re-
spectively. The second one is rotated from z to x as a single
atom would, while the first one has an initial larger velocity
and a final smaller velocity because the nonlinear e↵ect of in-
teractions. However, the nonlinear e↵ects compensates along
the path and they arrive simultaneously on the equator.

FIG. 5. Plasma oscillations. (a) The plasma oscillation are
precession around the x-axis, where the vector ⌦ lays. (b)
Evolution of the magnetization for the initial state Z = 0 and
� = 0.1⇡, showing plasma oscillations. (c) Plasma oscillation
frequency at x ⇡ 0 for di↵erent values of ⌦. The line is a
fit according to Eq. 10, hence providing the n parameter at
the position where the plasma frequency is measured. (d)
Local nonlinear parameter extracted from plasma oscillation
frequency. The shaded area refers to the prediction of n(x)
obtained from the atom number and trap frequencies.

final detuning, with a smaller sensitivity in the central
part of the system (blue points) rather than at the edges
(orange).
Remarkably this method allows for a clean prepara-

tion of the extended system in a uniform Z = 0 state,
at the expected value �f = 0. This result is not trivial
as the magnetization varies indeed with di↵erent veloc-
ity for each spatial coordinates. However the symmetric
dynamics on the Bloch sphere leads the magnetization to
reach zero at the same instant for the whole cloud. Note
that the e�ciency of the full rotation is increased by the
nonlinear term.
By fitting the dynamics of the magnetization for each

position x with a sigmoid function, we can extract the
slope of the magnetization as a function of � and hence
n applying Eq. (9) [see Fig. 4(c)]. We obtain n0/2⇡ =
210(20) Hz (compared to n0/2⇡ = 170(20) Hz from den-
sity). The error bars include statistical error on the fit
and systematic uncertainties coming from imaging pro-
cedure (uncertainty on the state population) and from a
non-perfect adiabaticity of the process. Systematic con-
tributions strongly enhance the uncertainty on the value
of n compared to the one obtained in Sec. V.

VII. PLASMA OSCILLATIONS

In the presence of coherent coupling and at � = 0, the
ground-state of the system is uniformly Z = 0, � = 0.
For small deviations near the ground-state, the Joseph-

Central JJ frequency as  
a function of Rabi coupling

1)
x



Coherently coupled BEC and Josephson junction dynamics 

The last Eq. 25. is the most interesting one, since it determines the spin dynamics. The

LHS is the continuity equation due to the Noether theorem for the SU(2) symmetry. The

spin current is a tensor which contains two contributions:

js,↵ = v↵s�
~
2m

⇣
s

n
⇥ @↵s

⌘
, ↵ = x, y, z 27.

where the first term corresponds to the classical spin advection and the second is the current

due to the spin-twist. One can notice that the second term comes from the particle nature

of the system and for this reason its contribution to the equation of motion is called quatum

torque. The SU(2) symmetry in our system is broken down to Z2 symmetry by the e↵ective

field on the RHS of Eq. 25. H(s) = (⌦, 0, 2gsssz), due to the presence of the Rabi coupling

(linear field along the spin x axis) and to the di↵erence between the intra- and inter-species

coupling constant (the non-linear e↵ective filed along the z axis).

If the dynamics is such that the density and the superfluid velocity are constant, the

system is described only by Eq.(25). The latter is formally equivalent to the so-called

Landau-Lifshitz equation (LLE) for the magnetisation dynamics in magnetic materials (see,

e.g., (21)). Experimentally such analogy has not been explored due to technical problem in

having a low and stable Rabi coupling, in order to see the interplay between the x and z

component of the e↵ective magnetic field H. Very recently the possibility of describing the

system with the Landau-Lifshitz equations have been experimentally verified and used to

study the breaking of the (local) Josephson (see below) dynamics generated at the bifurca-

tion point between a region in the self-trapped regime and a region in Josephson oscillation

regime (22).

3.3.1. Internal Josephson Junction and Cross-Hohenberg instabilities. The general equa-

tion of motion are quite complicated (and numerically is easier to solve the coupled Gross-

Pitaevskii equations) and are mainly used to describe the linear response of the systems.

However out-of-equilibruim configurations have been theoretically and experimentally thor-

oughly explored in the case when the orbital degrees of freedom are frozen, which is ob-

tained by confining enough the gas in such a way that essentially only a single orbital state

f(r) is occupied during all the evolution. The dynamics of the gas reduces to the one of

the global spin S =
R
sd

3
r, whose dynamics is described by Ṡ = (⌦, 0,�Sz) ⇥ S, with

� = 2gss
R
d
3
rf(r)2. The latter are the so-called Bose Josephson junction (BJJ) equations

(23), which are usually written in terms of the relative magnetization Z = N"�N# and the

phase in the x-y plane �r as:

Ż = �⌦
p

1� Z2 sin�r 28.

�̇r = �NZ +
Zp

1� Z2
sin�r. 29.

The BJJ equations, which are essentially non-linear Rabi equations, depending on the initial

condition and on the ratio ⇤ = �N/⌦ can show a number of di↵erent dynamical regimes,

and we refer the reader to original theory Refs. (23, 24) and the experimental Ref. (12).

Here we just remind that a peculiar regime the so-called self-trapping regime for which

sign(Z(t)) = sign(Z(0)).

We want to discuss here the role of the spatial degrees of freedom on the stability of

the BJJ stationary point (24) or better, in our case, of the stationary points of Eq. 25.

when the spin current. Th stationary points show a number of dynamical instability of the

Cross-Hohenberg type (25, 26):
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lines in Fig. 1(c). For vanishing interaction between
the particles, ! ¼ 0, this corresponds to resonant Rabi
oscillations of N independent particles. The situation
changes drastically for !> 1 since the F! fixed point
undergoes a supercritical pitchfork bifurcation implying
that F! becomes unstable while two new stable fixed

points F" ¼ ½"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ ð1=!2Þ

p
;!' are formed [Fig. 1(c)].

For our system this implies that a single trajectory around
F! splits up in two distinct trajectories around the new
fixed points F", which are delimited by a separatrix.

For a quantitative experimental study of the bifurcation
phenomenon, we study the temporal mean imbalance for
two fixed initial preparations. In the Rabi regime (!< 1)
initial preparations with " ¼ ! and z ¼ "z0 correspond-
ing to points north or south of the equator (see the inset in
Fig. 2) lead to dynamics with a vanishing temporal mean
population imbalance. This results from the fact that both

preparations share the same trajectory; i.e., no separatrix
exists. This is distinct to the Josephson regime where initial
preparations that are enclosed by the separatrix lead to
different trajectories resulting in nonvanishing mean im-
balances. This is demonstrated quantitatively in Fig. 2,
where the resulting temporal mean imbalances for the
initial preparation points ð"0:454;!Þ are shown. The ex-
perimental data clearly reveal the topological change in the
system’s phase space. It is in quantitative agreement with
the analytical predictions (solid lines) [22] calculated by
using independently measured parameters (see [24]).
To put this bifurcation measurement in a more general

context, we examine the whole phase portrait of the system
for characteristic values of ! across the Rabi to Josephson
transition. The nonlinear interaction # is set by a Feshbach
resonance at 9.1 G [25] and is kept constant for all experi-
ments. Different regimes of ! are explored by changing
the linear coupling strength " adjusted by the intensity of
the radio-frequency radiation. We check the resonant cou-
pling condition by regular reference measurements [24].
The measurement of the dynamics with shot noise limited
precision is feasible in our experiment since we prepare the
initial condition on the quantum mechanical uncertainty
level, i.e., coherent spin states [26]. The initial state prepa-
ration is done in a two-step process. The population im-
balance zðt ¼ 0Þ is controlled by the duration of a short
two-photon pulse applied to the particles in state jai. The
dynamics is initiated by a nonadiabatic change of the

FIG. 2 (color online). Direct observation of the symmetry
breaking in the dynamics due to the bifurcation. Two initial
states symmetric in the upper and lower hemisphere (see the
inset) lead to qualitatively different dynamics in the Rabi and
Josephson regime, respectively. In the Rabi regime both initial
states share the same trajectory around the stable fixed point F!,
and the temporal mean imbalance vanishes in both cases. By
increasing ! exceeding the critical value, a separatrix is formed
and the chosen initial preparations lead to two distinct trajecto-
ries separated by this separatrix. The dynamical modes are
characterized by a nonvanishing mean population imbalance.
The solid line represents the theoretical prediction.

FIG. 1 (color online). Interacting many-particle system as a
model system for bifurcation physics. (a) 87Rb offers two hy-
perfine states jai (blue) and jbi (red) which are linearly coupled
via a two-photon transition with Rabi frequency " and which
allow for adjusting the interparticle interaction # via a Feshbach
resonance. (b) The many-particle state is represented on a
generalized Bloch sphere, and its uncertainty area for our ex-
perimental parameters is shown, revealing that a mean field
description is adequate. Points on the sphere represent popula-
tion difference z (z direction) and relative phase " between the
two internal states in the same spatial mode. (c) Trajectories on
the Bloch sphere below and above the bifurcation value of the
ratio ! ¼ #N=". The typical supercritical pitchfork bifurcation
scenario occurs; i.e., a stable fixed point bifurcates in two new
stable fixed points while the original becomes unstable. The
arrows indicate the direction of flow close to these points.
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the vector on the Bloch sphere (Fig. 1b). The precession
happens around a direction that depends on the local
properties. While standard magnetic materials quickly
align along one axis (grey vector in Fig. 1c) because of
dissipation, our nondissipative atomic system allows to
study a longer dynamical evolution.

The atomic gas can be described with a two-component
order parameter  (x) = ( +1, �1)T , where  ↵ is the
macroscopic wave function of the Bose-Einstein con-
densate in the state ↵ = ±1. The tight confinement
along two spatial directions makes the spatial dynam-
ics to be essentially one-dimensional along the x direc-
tion (see Methods). Therefore, the state of the system
is fully described by the density matrix ( ⇤ ⌦  )(x) =
{ ⇤

↵(x) �(x)}↵,�=±1. The density matrix is composed
by a scalar part, n = Tr( ⇤ ⌦  ), corresponding to the
total density of the condensate, and by the spin-density
s = Tr(� ⇤ ⌦  ), with |s| = n and � representing the
vector of Pauli matrices. Hereafter vector quantities are
defined in the Bloch sphere (see Fig. 1b).

In general the dynamics is described by coupled di↵er-
ential equations for n, s and the velocity field v = j/n,
where j is the atom density current. Since the total atom
number is a conserved quantity, n satisfies the continuity
equation, with the purely advective current j: ṅ+@xj=0.
The equation of motion of s reflects the possibility of
twisting the spin and the absence of spin conservation,
both features due to the combination of the coherent
Rabi coupling and the lack of SU(2) symmetry of the
non-driven system. The Rabi coupling is described by
the linear transverse field ⌦Rx̂. The lack of SU(2) sym-
metry leads to a nonlinear field sz ẑ, with  proportional
to the di↵erence between intra- and intercomponent in-
teractions, �g, and including the e↵ect of the dimensional
reduction. The spin equation of motion can be written
as

ṡ+ @xjs = H(s)⇥ s, (1)

where we introduce the e↵ective magnetic field H =
⌦Rx̂+ sz ẑ. The spin current

js = vs+
~

2mn
@xs⇥ s (2)

is composed of two terms: the first corresponds to the
spin advection, while the second is the quantum torque,
which depends on the atomic mass m. Remarkably, the
quantum torque originates as a pure quantum e↵ect, van-
ishing when ~ is set to zero, or equivalently when the
atoms cannot move (see classical analogue in Ref.[8]).

The equation of motion for the spin density, Eq.(1),
in the absence of spin advection, is equivalent to a non-
dissipative LLE. Therefore, if the density and velocity
dynamics can be neglected, the dynamics of a coherently-
coupled Bose gas mimics the magnetization dynamics in
a magnetic sample, where the quantum torque plays the
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FIG. 2. Quantum torque e↵ect at the domain wall. a,
Main local oscillation frequency ⌦ of the relative magnetiza-
tion Z as a function of the position in the gas. The insets show
the time evolution of Z(t) for four di↵erent spatial points. b,
Spatial variation of the magnetic anisotropy. The red line
marks the critical value. c-d, Time evolution of the magne-
tization across the cloud according to LLE without (c) and
with (d) quantum torque contribution. Four di↵erent spatial
points are considered: deep in the self-trapped regime (A),
weakly self-trapped (B), weakly oscillating regime (C) and
deep in the oscillating regime (D). Continuous and dashed
lines in the inset of a correspond to the time evolution with-
out and with the quantum torque term, respectively. Note
that in B and C, coherence is lost due to the excitation of
short wavelength magnetic waves just after a few Rabi pe-
riods. In all figures, time, frequency and energy units are
related to ⌦R. The spatial unit is Rx.

role of the exchange term. Since the quantum torque
depends on the gradient of s, it plays a crucial role in the
presence of magnetic interfaces. Often in literature the
e↵ective field in the LLE includes the torque as well.

Taking advantage of the absence of dissipative terms
in Eq. (1), we study the long time dynamics of systems
with far-from-equilibrium initial configurations. Before

critical slowing down

The system is very far from equilibrium… 
and it is clear that the local density 

approximation for the BJJ cannot be the proper 
description any longer 

what will happen?

Manipulation of an elongated internal Josephson junction of bosonic atoms

A. Farolfi,⇤ A. Zenesini,† R. Cominotti, D. Trypogeorgos,‡ A. Recati, G. Lamporesi, and G. Ferrari
INO-CNR BEC Center, Dipartimento di Fisica, Università di Trento and TIFPA-INFN, 38123 Povo, Italy

(Dated: June 4, 2021)

We report on the experimental characterization of a spatially extended Josephson junction realized
with a coherently-coupled two-spin-component superfluid, trapped in an elongated potential. We
study how dimensionality and inhomogeneity a↵ect the control of the local magnetization and
identify a protocol for the preparation of the whole system in the ground state.

I. INTRODUCTION

Superfluid mixtures have recently attracted a renewed
interest thanks to the ability of cooling and manipulating
multi-component atomic gases. In particular, the pres-
ence of coherent population transfer deeply modifies the
physics of the mixtures and have been widely studied
and experimentally realized both in double-well poten-
tials and in coherently-coupled two spin states. The rich-
ness of these systems resides in the possibility to study
phenomena spanning from nonlinear dynamics [1–4] to
non-classical states [5–9]. In most of the cases, the mix-
tures are treated and behave as point-like entities, with
frozen spatial degrees of freedom [10, 11].

Spatially extended systems require more sophisticated
theoretical approaches which incorporate, among many,
dephasing–rephasing dynamics e↵ects [12, 13] and local
squeezing [14]. Experimentally, more stringent condi-
tions are required to have full control and precise de-
tection over an extended system. Up-to-now this has so
far not been fully investigated. Pioneering works have
been reported on one-dimensional (1D) systems study-
ing the dynamics in the large-coupling regime [15, 16],
the phase transition dynamics [17] and in the case where
interactions and coupling compete, creating inhomoge-
neous magnetic-like heterostructures [18].

While it is not an issue for single-mode systems, the
creation of a spatially-uniform coherent initial condition
for an extended inhomogeneous sample is a di�cult task
because of inhomogeneity-induced nonlinear e↵ects. Dis-
tant parts of the system can react di↵erently to the exter-
nal driving, depending on local properties of the system
as, for example, atomic density or external field inhomo-
geneities. A strong Rabi coupling could overcome issues
related to the inhomogeneity, but requires very strong
fields that cannot always be experimentally realized due
to technical limitation or unwanted couplings or losses to
other atomic states.

Here we present a characterization of the techniques
used to initialize an e↵ective spin 1/2 elongated system
in a homogeneous state. Section II introduces the ex-
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perimental system and in Sec. IV we study its e↵ec-
tive dimensionality. Section III sets the theoretical frame
for an e↵ectively 1D system. In Sec. V, we study how
density e↵ects prevents to produce a homogeneous state.
We report on an adiabatic method that optimizes the
achievement of a uniform state in Sec. VI. Finally, we
present characterization measurements on plasma oscil-
lations (Sec. VII) and on the loss of coherence of the
sample (Sec. VIII).

II. THE EXPERIMENTAL SYSTEM

In our apparatus we start with a thermal cloud of 23Na
atoms in a hybrid trap [19, 20] in the |F,mF i = |1,�1i
state (later referred as |#i), where F is the total atomic
angular momentum and mF its projection on the quanti-
zation axis. The atoms are then transferred into a crossed
optical trap where a uniform magnetic field is applied
along the z-axis with a Larmor frequency of 913.9(1) kHz.
The shot-to-shot stability [21] of the magnetic field is at
the level of a few µG over tens of minutes of continuous
experimental cycling.
Evaporative cooling lowering the depth of the optical

trap leads to a BEC with up to N=3 ⇥ 106 atoms with
negligible thermal component. The exact atom number is
known with an uncertainty of about 20%, inferred from
the calibration of the imaging system. The final trap
frequencies are tuned to di↵erent values increasing the

FIG. 1. (a) The trapped cloud presents an elongated and
cylindrically symmetric shape. The cloud profile in the x
direction follows the Thomas-Fermi inverted parabola. (b)
Level scheme and microwave radiations used to couple the
two states |1,±1i. � represents the detuning between the
two-photon coupling and the |1,±1i energy di↵erence. � is
the detuning from the virtual state |2, 0i.
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perimental system and in Sec. IV we study its e↵ec-
tive dimensionality. Section III sets the theoretical frame
for an e↵ectively 1D system. In Sec. V, we study how
density e↵ects prevents to produce a homogeneous state.
We report on an adiabatic method that optimizes the
achievement of a uniform state in Sec. VI. Finally, we
present characterization measurements on plasma oscil-
lations (Sec. VII) and on the loss of coherence of the
sample (Sec. VIII).

II. THE EXPERIMENTAL SYSTEM

In our apparatus we start with a thermal cloud of 23Na
atoms in a hybrid trap [19, 20] in the |F,mF i = |1,�1i
state (later referred as |#i), where F is the total atomic
angular momentum and mF its projection on the quanti-
zation axis. The atoms are then transferred into a crossed
optical trap where a uniform magnetic field is applied
along the z-axis with a Larmor frequency of 913.9(1) kHz.
The shot-to-shot stability [21] of the magnetic field is at
the level of a few µG over tens of minutes of continuous
experimental cycling.
Evaporative cooling lowering the depth of the optical

trap leads to a BEC with up to N=3 ⇥ 106 atoms with
negligible thermal component. The exact atom number is
known with an uncertainty of about 20%, inferred from
the calibration of the imaging system. The final trap
frequencies are tuned to di↵erent values increasing the

FIG. 1. (a) The trapped cloud presents an elongated and
cylindrically symmetric shape. The cloud profile in the x
direction follows the Thomas-Fermi inverted parabola. (b)
Level scheme and microwave radiations used to couple the
two states |1,±1i. � represents the detuning between the
two-photon coupling and the |1,±1i energy di↵erence. � is
the detuning from the virtual state |2, 0i.
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Emulating Landau-Lifshitz equations

Spin current

The last Eq. 25. is the most interesting one, since it determines the spin dynamics. The

LHS is the continuity equation due to the Noether theorem for the SU(2) symmetry. The

spin current is a tensor which contains two contributions:

js,↵ = v↵s�
~
2m

⇣
s

n
⇥ @↵s

⌘
, ↵ = x, y, z 27.

where the first term corresponds to the classical spin advection and the second is the current

due to the spin-twist. One can notice that the second term comes from the particle nature

of the system and for this reason its contribution to the equation of motion is called quatum

torque. The SU(2) symmetry in our system is broken down to Z2 symmetry by the e↵ective

field on the RHS of Eq. 25. H(s) = (⌦, 0, 2gsssz), due to the presence of the Rabi coupling

(linear field along the spin x axis) and to the di↵erence between the intra- and inter-species

coupling constant (the non-linear e↵ective filed along the z axis).

If the dynamics is such that the density and the superfluid velocity are constant, the

system is described only by Eq.(25). The latter is formally equivalent to the so-called

Landau-Lifshitz equation (LLE) for the magnetisation dynamics in magnetic materials (see,

e.g., (21)). Experimentally such analogy has not been explored due to technical problem in

having a low and stable Rabi coupling, in order to see the interplay between the x and z

component of the e↵ective magnetic field H. Very recently the possibility of describing the

system with the Landau-Lifshitz equations have been experimentally verified and used to

study the breaking of the (local) Josephson (see below) dynamics generated at the bifurca-

tion point between a region in the self-trapped regime and a region in Josephson oscillation

regime (22).

3.3.1. Internal Josephson Junction and Cross-Hohenberg instabilities. The general equa-

tion of motion are quite complicated (and numerically is easier to solve the coupled Gross-

Pitaevskii equations) and are mainly used to describe the linear response of the systems.

However out-of-equilibruim configurations have been theoretically and experimentally thor-

oughly explored in the case when the orbital degrees of freedom are frozen, which is ob-

tained by confining enough the gas in such a way that essentially only a single orbital state

f(r) is occupied during all the evolution. The dynamics of the gas reduces to the one of

the global spin S =
R
sd

3
r, whose dynamics is described by Ṡ = (⌦, 0,�Sz) ⇥ S, with

� = 2gss
R
d
3
rf(r)2. The latter are the so-called Bose Josephson junction (BJJ) equations

(23), which are usually written in terms of the relative magnetization Z = N"�N# and the

phase in the x-y plane �r as:

Ż = �⌦
p

1� Z2 sin�r 28.

�̇r = �NZ +
Zp

1� Z2
sin�r. 29.

The BJJ equations, which are essentially non-linear Rabi equations, depending on the initial

condition and on the ratio ⇤ = �N/⌦ can show a number of di↵erent dynamical regimes,

and we refer the reader to original theory Refs. (23, 24) and the experimental Ref. (12).

Here we just remind that a peculiar regime the so-called self-trapping regime for which

sign(Z(t)) = sign(Z(0)).

We want to discuss here the role of the spatial degrees of freedom on the stability of

the BJJ stationary point (24) or better, in our case, of the stationary points of Eq. 25.

when the spin current. Th stationary points show a number of dynamical instability of the

Cross-Hohenberg type (25, 26):

10

the correct equation reads

Dissipationless Landau Lifshitz Equation (LLE, 1935)

3

FIG. 2. Quantum torque e↵ect at the interface. a, Main
local oscillation frequency ⌦ of the relative magnetization Z as
a function of the position in the gas. The softening of the pre-
cession frequency at xc marks the transition between the two
dynamical regimes. The insets show the time evolution of Z(t)
for four di↵erent spatial points. b, Spatial variation of the mag-
netic anisotropy. The red line marks the critical value. c-d,
Time evolution of the magnetization across the cloud according
to LLE without (c) and with (d) quantum torque contribution.
Four di↵erent spatial points are considered: deep in the self-
trapped regime (A), weakly self-trapped (B), weakly oscillating
regime (C) and deep in the oscillating regime (D). Continuous
and dashed lines in the inset of a correspond to the time evolu-
tion without and with the quantum torque term, respectively.
Note that in B and C, the local dynamics is disrupted due to the
excitation of short wavelength magnetic waves. e-g, Profiles of
Z, |js|/ncs, with 2mc2s = ~n, and |@xjS |/ |H⇥s|max calculated
for ⌦Rt =0.7, 0.8, 0.9, 1, 1.5 around the interface breaking (black
to gray).

the magnetization oscillates between sz = ±n with a frequency ⌦ (see the dynamics in C and D in Fig. 2b and74

associated continuous line in insets), a.k.a. Josephson oscillations; (ii) for ⌦R < |n/2|, the system enters the so-75

called self-trapped regime [7, 11], where the spin precesses such that �n  sz(t)  max(sz) < 0. In the self-trapped76

regime, Z never changes sign (see the dynamics in A and B in Fig. 2b). Interestingly, the precession frequency – not77

only the amplitude – drastically changes across the transition, as shown in Fig. 2a, with a softening of the precession78

frequency at the transition point.79

A harmonically trapped gas shows a density reduction from the center outwards, n(x) = n0(1 � x2/R2
x) (black80

line in Fig. 2b). Thanks to this inhomogeneity, we can realize systems that present simultaneously both behaviors in81

spatially di↵erent regions, thus showing a sharp transition in space at the interfaces. If the central density n0 is large82

enough for the system to be locally in the self-trapped regime, there exists a position xc that separates this region83

from the low-density one, where Rabi-like oscillations of the magnetization occur.84

When the system is prepared in an initially fully polarised state |1,�1i, after about 1/⌦R, the formation of magnetic85

interfaces takes place at xc. In the absence of spin current, the interfaces would stand between the two dynamically86

di↵erent regions, which would follow standard Josephson dynamics. However, quantum torque becomes relevant at87

the interfaces and breaks the JJ dynamics. Figures 2c and 2d show the theoretical evolution of the magnetization88

throughout the sample, respectively without and with the quantum torque term.89

Figure 2e-g compare the profiles of Z, js and @xjs near the interface for 5 consecutive times (from black to gray).90
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netic anisotropy. The red line marks the critical value. c-d,
Time evolution of the magnetization across the cloud according
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Equation of motion for the “hydrodynamic” quantities  
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They clearly illustrate that, while the magnetization gradient rises at the interface, the current rapidly increases and91

its spatial derivative peaks. When the quantum torque term becomes of the order of |H ⇥ s|, it counteracts the92

magnetization gradient forming magnetic waves with short wavelength.93

Other systems of atomic mixtures have been studied in this context, but none observed both regions in a single94

sample and the sharp interface separating them. Either self-trapped or oscillating regimes were observed in “zero”-95

dimensional (single mode) systems both with Rabi- [11] and tunnel-coupling [12]. Complex dynamics was observed96

in elongated, inhomogeneous BECs in the presence of Rabi coupling [13, 14]. Double-well potentials were also used97

to investigate Josephson dynamics both in bosonic [15–18] and fermionic [19, 20] gases.98

Figure 3a shows the experimental measurement of the magnetization. We let the system evolve in the presence of99

coherent coupling with ⌦R = 0.33 |n0| for a variable time t and we separately image the two spin populations. This100

allows us to extract the local magnetization (see Methods). For each experimental run, we integrate the magnetization101

of the elongated atomic sample in the radial directions and obtain Z(x). Combining the measurements of Z(x) at102

di↵erent times t, we reconstruct the full dynamics. As predicted by theory, the system spatially explores two completely103

di↵erent regimes, depending on the ratio between the driving frequency ⌦R and |n(x)|. At short time, we observe104

the creation of two magnetic interfaces at positions ±xc, where the condition ⌦R = n(xc)/2 is matched. The105

magnetization in the central region slightly oscillates, never changing sign, while in the outer part atoms undergo full106

oscillations at a frequency close to ⌦R. As time goes on, the interfaces break, the self-trapped region becomes smaller107

and smaller and strongly fluctuating regions are created and grow in size. In Fig 3b we report the corresponding108

results obtained with the full hydrodynamic simulation, that we numerically implement by solving the equation of109

motion for  , represented by two coupled Gross-Pitaevskii equations [21]. Figure 3f-h and ExtendedDataFig.1 show110

that the density and the superfluid velocity terms are irrelevant for the dynamics. Therefore for our protocol, the LLE111

FIG. 3. Evolution of the magnetization. a, Measured magnetization along the non-uniform 1D gas as a function of time
in the presence of a small coupling (⌦R = 2⇡⇥ 118 Hz= 0.33 |n0|). Panel b shows the full 1D hydrodynamic simulation of the
same system. At the interface, around the critical position xc (black bars), we observe a net change in the behavior from the
oscillating to the self-trapped regime. The width of the bars is evaluated considering the uncertainties in n and Rx. Between
the two regions, a new one, characterized by a strong fluctuation of the magnetization, emerges and grows. c-e, Measured
density profile of each component (red, blue), normalized to the local total density (gray), for ⌦Rt = 2⇡, 3⇡ and 5⇡. f-h, Same
as c-e, but evaluated numerically. Notice that the experimental profiles are taken after a short expansion (see Methods) that
enhances the density modulation.
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provides a very good description of the system dynamics. We impute the di↵erence between experimental data and112

simulation to a possible mismatch between the actual parameters in the experiment and those used in the simulations.113

Deep in both the oscillating and self-trapped regions one can see a smooth spatial variation. In the strongly fluctuating114

region, instead, the magnetization varies on a very small length scale, as visible also in the measured (Fig. 3c-e) and115

numerically simulated (Fig. 3f-h) density profiles.116

Figure 4a and Fig. 4b show the normalized standard deviation from the mean value over 5 µm, for the magnetization117

of Fig. 3(a,b). We restrict the analysis in the central region, where the density is relatively homogeneous. The standard118

deviation exhibits a jump from a low (blue) to a nonzero value (yellow) as the self-trapped regime is consumed by the119

fluctuating regions. The front of the magnetic wave moves into the self-trapped regions with approximately constant120

velocity of about 3.1(1)mm/s (continuous line). In the region where the wavefront propagates, this value is larger121

than the local spin sound velocity cs ' 1.7mm/s (dashed), while it remains well below the local density sound velocity122

cd ' 9.2mm/s (dot-dashed). We estimate the two velocities from 2mc2s = ~n, and mc2 = ~n(g/�g), respectively,123

where g is the intra-component interaction (see Methods).124

Figure 4c shows a measurement of the correlation of the magnetization CZZ(�x) given by
R
sz(x)sz(x+�x)/

R
sz(x)2.125

The magnetization presents no spatial features at short times, while in the fluctuating regime it decays on a lengthscale126

of 2µm (standard deviation of the gaussian fitting function). This value is compatible with the simulations (1.6µm),127

corrected by the finite experimental resolution of the imaging system. We do not appreciate any significant change128

of correlations in the fluctuating regions in time nor space.129

The density profiles (Fig. 3c-h), the fact that the speed of the magnetic wave front is larger than typical Landau130

spin critical velocity (Fig. 4), and the strong fluctuations in the downstream, suggest that these excitations are131

closely related to magnetic shock waves [22–24]. Shock waves have been studied in single component ultracold132

systems [25, 26] and very recently, in the presence of spin-orbit coupling [27]. However, the LLE in the presence of133

both transverse magnetic field and anisotropy are not integrable and have been shown to present a chaotic behavior134

[28]. Therefore our protocol could excite a new kind of magnetic shock waves with a chaotic character, leading to135

a turbulent behavior of the magnetization that might have connections with a spin glass [29]. Even on the pure136

theoretical side, such kind of waves have never been studied and deserve further analysis.137

FIG. 4. Velocity of the breaking front. Standard deviation of the magnetization in 5 µm-wide windows (heatmap). The
fluctuating region expands in the self-trapped region at constant speed across the condensate. The white continuous line is a
linear fit corresponding to a velocity v = 3.1(1)mm/s (experimental data, a) and v = 2.3(1)mm/s (numerical data, b). The
dashed and dot-dashed lines show the slope corresponding to the local spin sound cs and sound velocity c. Correlation of
magnetization. c, We measure the spatial autocorrelation of the magnetization for di↵erent regions of the sample. In the
self-trapped and oscillating regions, the long-range order of the sample is maintained. In the excited region, the coherence
drops to zero at ⇡ 5 µm.

Note: total density (and total current,  
not shown) pretty much constant,  
thus the LLE description can be  
safely applied  

Question: What is generated by the torque?  
Dispersive magnetic shock wave? (shape and constant front speed)  

Turbulence?

The correlation looks very much  
as for a quenched  
anti-ferromagnet

Need more theoretical and experimental investigations…
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We create and study persistent currents in a toroidal two-component Bose gas, consisting of 87Rb atoms

in two different spin states. For a large spin-population imbalance we observe supercurrents persisting for

over two minutes. However, we find that the supercurrent is unstable for spin polarization below a well-

defined critical value. We also investigate the role of phase coherence between the two spin components

and show that only the magnitude of the spin-polarization vector, rather than its orientation in spin space,

is relevant for supercurrent stability.
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Persistent currents are a hallmark of superfluidity and
superconductivity, and have been studied in liquid helium
and solid state systems for decades. More recently, it
has become possible to trap an atomic Bose-Einstein
condensate (BEC) in a ring geometry [1–8] and induce
rotational superflow in this system [3,5,7,8]. This offers
new possibilities for fundamental studies of superfluidity in
a flexible experimental setting. Both long-lived superflow
[5,7] and quantized phase slips corresponding to singly
charged vortices crossing the superfluid annulus have
been observed [7,8].

So far experiments on persistent currents in atomic
BECs were limited to spinless, single-component conden-
sates. Extending such studies to multicomponent systems,
in particular those involving two or more spin states
[9–11], is essential for understanding superfluids with a
vectorial order parameter and for applications in atom
interferometry [12,13]. Persistent flow in a two-component
Bose gas has been studied theoretically [14–17] but many
issues remain open. Even the central question of whether,
and under what conditions, this system supports persistent
currents has not been settled.

In this Letter, we study the stability of supercurrents in a
toroidal two-component gas consisting of 87Rb atoms in
two different spin states. For a large spin-population imbal-
ance we observe superflow persisting for over two minutes
and limited only by the atom-number decay. However at a
small population imbalance the onset of supercurrent
decay occurs within a few seconds. We demonstrate the
existence of a well-defined critical spin polarization sepa-
rating the stable- and unstable-current regimes. We also
study the connection between spin coherence and super-
flow stability, and show that in our system only the modu-
lus of the spin-polarization vector is relevant for the
stability of the supercurrent. The existence of a critical
population imbalance was anticipated in Refs. [15–17], but
quantitative comparison with our measurements will
require further theoretical work.

Our setup is outlined in Fig. 1(a). We load a BEC of
N " 105 atoms into an optical ring trap of radius 12 !m,

created by intersecting a 1070 nm ‘‘sheet’’ laser beam and
an 805 nm ‘‘tube’’ beam [7]. The sheet beam confines the
atoms to the horizontal plane with a trapping frequency of
350 Hz. In plane, the tube beam confines the atoms to the
ring with a trapping frequency of 50 Hz. The trap depth is
about twice the BEC chemical potential,!0=h " 0:6 kHz,
and varies azimuthally by <10%.
Our tube trapping beam is a Laguerre-Gauss LG3 laser

mode in which each photon carries orbital angular
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FIG. 1 (color online). Preparation and detection of supercur-
rent in a two-component gas. (a) The ring trap is formed by a
horizontal ‘‘sheet’’ beam and a vertical Laguerre-Gauss (LG)
‘‘tube’’ beam. B is the external magnetic field. (b) Supercurrent
is induced by a Raman transfer of atoms between two spin states,
j"i and j#i, using the LG beam and an auxiliary Gaussian (G)
beam. During the transfer each atom absorbs 3@ of angular
momentum from the LG beam. Two-component gas is created
by coupling j"i and j#i states with an rf field. The characteristic
rotational energy is Er=h " 0:4 Hz. (c) Time-of-flight image of
the atoms, with spin states separated using a Stern-Gerlach
gradient. The rotational state q is deduced from the radius R
characterizing the central hole in the density distribution. The
image shown was taken after t ¼ 4 s of rotation; the longitudinal
spin polarization is Pz ¼ 0:44 and q ¼ 3 for both spin states.
(d) Histogram of "900 measurements of R at various Pz and t.
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the atoms, with spin states separated using a Stern-Gerlach
gradient. The rotational state q is deduced from the radius R
characterizing the central hole in the density distribution. The
image shown was taken after t ¼ 4 s of rotation; the longitudinal
spin polarization is Pz ¼ 0:44 and q ¼ 3 for both spin states.
(d) Histogram of "900 measurements of R at various Pz and t.
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momentum 3@. We use the same beam to induce a super-
current via a two-photon Raman process [3,7,18]. We
briefly (200 !s) pulse on an auxiliary TEM00 Gaussian
beam, copropagating with the LG beam, to transfer all
atoms between two spin states, j"i and j#i [Fig. 1(b)].
Each atom absorbs angular momentum 3@ from the LG
beam and we thus create a (single-component) current
corresponding to a vortex of charge q ¼ 3 trapped at the
ring centre. Such current can persist for over a minute and
decays in quantized q ! q" 1 steps, corresponding to 2"
phase slips in the BEC wave function [7].

The j"i and j#i states also define the spin space for our
two-component experiments. To create a two-component
current we prepare a pure jq ¼ 3; #i state and then couple
j"i and j#i by a radio frequency (rf) field, which carries no
orbital angular momentum and does not affect the motional
state of the atoms. The j"i and j#i are two F ¼ 1 hyperfine
ground states, mF ¼ 1 and 0, respectively. The mF ¼ "1
state is detuned from Raman and rf resonances by the qua-
dratic Zeeman shift in an external magnetic field B of 10 G.

After preparing a rotating (q ¼ 3) cloud in a specific
spin state, we let it evolve in the ring trap for a time t and
then probe it by absorption imaging after 29 ms of time-
of-flight expansion. We separate the two spin components
with a Stern-Gerlach gradient and directly measure the
longitudinal spin-polarization Pz ¼ ðN" " N#Þ=ðN" þ N#Þ,
where N" (N#) is the number of atoms in the j"i (j#i) state
[Fig. 1(c)]. The rotational state, 0 & q & 3, is seen in the
size R of the central hole in the atomic distribution [7],
arising due to a centrifugal barrier [3]. As shown in
Fig. 1(d), the R values are clearly quantized [7,8], allowing
us to determine q with >99% fidelity [19].

In Fig. 2 we illustrate the dramatic difference between
superflow stability in a Pz ¼ 1 single-component gas and a
Pz ¼ 0 two-component system. The two different Pz states
are created, respectively, by a (140 !s) " and a (70 !s)
"=2 rf pulse at t ¼ 0. In the pure j"i state [Fig. 2(a)] the
current persists for over two minutes, with the BEC always
remaining in the q ¼ 3 state for '90 s. In contrast, at
Pz ¼ 0 [Fig. 2(b)] the first phase slip occurs within 5 s
and the current completely decays within 20 s. During the
decay we always observe the two spin components to be in
the same q state.

Supercurrent stability generally depends on the number
of condensed atoms [5,7] and at Pz ¼ 0 the atom number
per spin state is halved. However, from the N-decay curves
in Fig. 2(c) we see that this alone cannot explain the
difference in superflow stability. At Pz ¼ 1 rotation still
persists for N ' 104 while at Pz ¼ 0 it stops already
at N > 4( 104. Moreover, if we apply a "=2 rf pulse at
t ¼ 0 but then immediately remove all the j"i atoms from
the trap with a resonant light pulse, the current again
persists for over a minute. This unambiguously confirms
that in Fig. 2(b) the superflow is inhibited by the presence
of both spin components.

We now turn to a quantitative study of the supercurrent
stability as a function of the spin-population imbalance
(Fig. 3). We tune Pz by varying the length!t of the rf pulse
applied at t ¼ 0, and measure the q state of the majority
(j"i) spin component as a function of t. Whenever the
radius R is fittable for the minority component we get the
same q for both spin components in >99% of cases.
However, for N# < 104 we cannot determine q for the
minority component.
Based on '1600 measurements of qðPz; tÞ, in Fig. 3

we reconstruct the complete current stability diagram for
0 & Pz & 1 [20]. The contour plot of hqðPz; tÞi is obtained
by spline interpolation through a 3D mesh of data points
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FIG. 2 (color online). Single- versus two-component super-
current. (a) In a pure j"i state (Pz ¼ 1) supercurrent persists
for over 2 min, with no phase slips occurring for '90 s. (b) At
Pz ¼ 0 the first phase slip occurs within 5 s and we observe no
rotation beyond 20 s. (c) Total atom number decay for Pz ¼ 1
(open symbols) and Pz ¼ 0 (solid symbols). Dashed lines are
double-exponential fits.
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FIG. 3 (color online). Supercurrent stability in a partially spin-
polarized gas. The statistically averaged supercurrent state, hqi,
of the majority spin component is shown as a function of Pz and
the evolution time t. The contour plot is based on '1600
measurements of qðPz; tÞ. The transition between stable- and
unstable-current regimes occurs at 0:6<Pz < 0:7. In the stable
regime the current eventually decays due to the atom-number
decay.
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momentum 3@. We use the same beam to induce a super-
current via a two-photon Raman process [3,7,18]. We
briefly (200 !s) pulse on an auxiliary TEM00 Gaussian
beam, copropagating with the LG beam, to transfer all
atoms between two spin states, j"i and j#i [Fig. 1(b)].
Each atom absorbs angular momentum 3@ from the LG
beam and we thus create a (single-component) current
corresponding to a vortex of charge q ¼ 3 trapped at the
ring centre. Such current can persist for over a minute and
decays in quantized q ! q" 1 steps, corresponding to 2"
phase slips in the BEC wave function [7].

The j"i and j#i states also define the spin space for our
two-component experiments. To create a two-component
current we prepare a pure jq ¼ 3; #i state and then couple
j"i and j#i by a radio frequency (rf) field, which carries no
orbital angular momentum and does not affect the motional
state of the atoms. The j"i and j#i are two F ¼ 1 hyperfine
ground states, mF ¼ 1 and 0, respectively. The mF ¼ "1
state is detuned from Raman and rf resonances by the qua-
dratic Zeeman shift in an external magnetic field B of 10 G.

After preparing a rotating (q ¼ 3) cloud in a specific
spin state, we let it evolve in the ring trap for a time t and
then probe it by absorption imaging after 29 ms of time-
of-flight expansion. We separate the two spin components
with a Stern-Gerlach gradient and directly measure the
longitudinal spin-polarization Pz ¼ ðN" " N#Þ=ðN" þ N#Þ,
where N" (N#) is the number of atoms in the j"i (j#i) state
[Fig. 1(c)]. The rotational state, 0 & q & 3, is seen in the
size R of the central hole in the atomic distribution [7],
arising due to a centrifugal barrier [3]. As shown in
Fig. 1(d), the R values are clearly quantized [7,8], allowing
us to determine q with >99% fidelity [19].

In Fig. 2 we illustrate the dramatic difference between
superflow stability in a Pz ¼ 1 single-component gas and a
Pz ¼ 0 two-component system. The two different Pz states
are created, respectively, by a (140 !s) " and a (70 !s)
"=2 rf pulse at t ¼ 0. In the pure j"i state [Fig. 2(a)] the
current persists for over two minutes, with the BEC always
remaining in the q ¼ 3 state for '90 s. In contrast, at
Pz ¼ 0 [Fig. 2(b)] the first phase slip occurs within 5 s
and the current completely decays within 20 s. During the
decay we always observe the two spin components to be in
the same q state.

Supercurrent stability generally depends on the number
of condensed atoms [5,7] and at Pz ¼ 0 the atom number
per spin state is halved. However, from the N-decay curves
in Fig. 2(c) we see that this alone cannot explain the
difference in superflow stability. At Pz ¼ 1 rotation still
persists for N ' 104 while at Pz ¼ 0 it stops already
at N > 4( 104. Moreover, if we apply a "=2 rf pulse at
t ¼ 0 but then immediately remove all the j"i atoms from
the trap with a resonant light pulse, the current again
persists for over a minute. This unambiguously confirms
that in Fig. 2(b) the superflow is inhibited by the presence
of both spin components.

We now turn to a quantitative study of the supercurrent
stability as a function of the spin-population imbalance
(Fig. 3). We tune Pz by varying the length!t of the rf pulse
applied at t ¼ 0, and measure the q state of the majority
(j"i) spin component as a function of t. Whenever the
radius R is fittable for the minority component we get the
same q for both spin components in >99% of cases.
However, for N# < 104 we cannot determine q for the
minority component.
Based on '1600 measurements of qðPz; tÞ, in Fig. 3

we reconstruct the complete current stability diagram for
0 & Pz & 1 [20]. The contour plot of hqðPz; tÞi is obtained
by spline interpolation through a 3D mesh of data points

20s 

5s t=3s 40s 80s 120s 20s 

(a) 

(b) 

3s 5s 

(c)

0 50 100
Time (s) 

 A
to

m
 n

um
be

r 
(1

03 )

0

40

80

q=3 q=2 q=0 

FIG. 2 (color online). Single- versus two-component super-
current. (a) In a pure j"i state (Pz ¼ 1) supercurrent persists
for over 2 min, with no phase slips occurring for '90 s. (b) At
Pz ¼ 0 the first phase slip occurs within 5 s and we observe no
rotation beyond 20 s. (c) Total atom number decay for Pz ¼ 1
(open symbols) and Pz ¼ 0 (solid symbols). Dashed lines are
double-exponential fits.
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FIG. 3 (color online). Supercurrent stability in a partially spin-
polarized gas. The statistically averaged supercurrent state, hqi,
of the majority spin component is shown as a function of Pz and
the evolution time t. The contour plot is based on '1600
measurements of qðPz; tÞ. The transition between stable- and
unstable-current regimes occurs at 0:6<Pz < 0:7. In the stable
regime the current eventually decays due to the atom-number
decay.
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and where we have defined hσ = !2k2/(2m) + gσnσ , with
σ = a,b. Diagonalization of L gives four eigenvalues and
four corresponding eigenvectors. Notice that since the linear
operator is not Hermitian the frequencies might be complex
(indeed, when they become complex they give rise to a
dynamical instability, which is further discussed in Sec. III C).
In general, two of the eigenvalues have a positive norm,
defined as |Ua|2 − |Va|2 + |Ub|2 − |Vb|2, while the other two
have a negative norm. The relative sign of the amplitudes Ua

and Ub (and correspondingly Va and Vb) determines whether
the modes are in phase (density mode) or out of phase
(spin-density mode). For real frequencies, both modes are
gapless and soundlike at low k and are characterized by the
density and the spin speeds of sound. The full spectrum of (8)
has been solved in several references [21–24], with different
scopes, and the general expression is cumbersome.

Let us review here two physical situations where the
frequencies acquire a simple analytical form (the general
solutions are discussed in Secs. III B and III C). The first case
corresponds to vσ = 0, that is the binary mixture at rest, and
the dispersion relation takes the well-known form [25]

!ωd(s) =

√
!2k2

2m

(
!2k2

2m
+ 2mc2

d(s)

)
, (9)

where the density (d) and spin (s) speeds of sound are given
by

c2
d(s) =

gana + gbnb ±
√

(gana − gbnb)2 + 4nanbg
2
ab

2m
, (10)

where nσ = |#σ |2 are the equilibrium densities of the two
components σ = a,b, and the + and − signs correspond
to cd and cs , respectively. From Eq. (9) one sees that,
as already mentioned above, the excitation frequencies of
both modes assume a linear dispersion ωd(s) = cd(s)k at low
quasimomentum k. For repulsive interactions, which is the
case under consideration, we have cd ! cs . Figure 1 shows the
behavior of cd and cs as a function of Pz. For completeness
the single-component speeds of sound, cσ =

√
gσnσ /m, for

σ = a,b, are also shown. To plot these velocities, the densities
entering Eq. (10) have been calculated using a Thomas-Fermi
approximation (see Appendix). In the limit of Pz → 1 the

FIG. 1. (Color online) Spin, density, and single-component
speeds of sound. For concreteness, the densities have been calculated
in Thomas-Fermi approximation (see the Appendix).

FIG. 2. (Color online) Bogoliubov excitation spectrum for den-
sity (ωd ) and spin (ωs) modes. The symbols correspond to the
discretized values of k (see text) arising from the ring geometry. For
concreteness, the densities have been calculated in Thomas-Fermi
approximation (see the Appendix).

density mode is dominated by the majority component and
ca → cd , while the spin mode is dominated by the minority
component and cb → cs . Notice also from Eq. (10) that at
the demixing transition point, i.e., gab = gc

ab, the spin speed
of sound vanishes for any polarization Pz, or equivalently the
susceptibility of the mixture diverges. Stability of persistent
currents in this critical regime has been addressed in Refs. [6,8]
for a 1D ring and in Ref. [7] in two dimensions.

The second case is for va = vb = v. It is easy to see this
gives rise to a shift in the frequencies by the quantity v · k,
which has the role of a classical Doppler shift. An example of
the behavior of the dispersion relations in this case is shown
in Fig. 2, calculated for Thomas-Fermi density profiles (see
the Appendix). It can be seen that since the density mode
is higher in energy, the effect of a nonzero velocity is small
for our close-to-critical situation. In contrast, the dispersion
relation of the spin mode is much more sensitive, and adding a
nonzero velocity has strong consequences. In particular, for a
large-enough velocity the energy of the excitation can become
negative, leading to an energetic instability, which as shown
in Sec. III is responsible to a great extent for the decay of
the persistent currents. Notice that in Fig. 2, for convenience,
we show the spectrum for velocity values |v| = v = 2πκ!/m,
corresponding to the quanta of circulation, κ , one would have
in a ring geometry.

B. Corrections to the speed of sound due to confinement

In the last paragraph we derived the speeds of sound for a
uniform medium. When the system is confined the excitations
still have a soundlike character provided the width of the cloud
is large enough in the propagation direction and small enough
in the transverse directions [26,27]. In this section we discuss
the corrections to the frequencies [Eq. (9)] that arise from a
2D ring geometry.

The first correction comes from the discretization of
quasimomentum due to the multiply connected geometry,
according to k = &/R0, with & the quantization number of the
quasimomentum (k = &/R0) and R0 the radius of the ring. To
exemplify this correction, the discrete values of k accessible to
the system are represented as symbols in Fig. 2. The effect of
this correction on the stability criterion for persistent currents
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in component b decay. This decay is indeed induced by the
crossing of vortices across the ring, as can be seen in the
density snapshots of Fig. 5, for the majority (upper row) and
the minority (lower row) components. These snapshots show
the dynamical process explained above very clearly: First, the
spin instability kicks in as out-of-phase density oscillations in
the azimuthal direction, as seen in panels (a) and (b); since the
minority component is more sensitive to this perturbation, its
density oscillations grow enough to allow the penetration of
vortices inside the ring, panels (c) and (d); finally, after losing
angular momentum, the system is stabilized through the new
stability criterion shown in Fig. 4, panels (e) and (f).

Before ending our discussion of the partially stable region,
let us comment on the 1D limit. In this case the solutions of
Eq. (7) are exact, in the sense that there is no renormalization
factor accounting for the external degrees of freedom. The
effect of going to the 1D limit is to increase the width of the
partially stable region. This can be seen in Table I, where we
compare the width obtained from numerical simulations of the
1D GP equations with that of the 2D GP equations (in units of
the corresponding sound velocities at Pz = 0). Therefore, the
partially stable region is not a feature of an extended geometry,
but it is present also in 1D systems. The universality of the 1D
limit makes this result relevant to coupled Luttinger liquids
(see, e.g., [35,36]).

C. Dynamical instability

The energetic instability discussed above, although being
the relevant one when the two superfluids have the same

TABLE I. Width of the partially stable region.

Pz #1D/c1D
s #/cs

0.10 0.2398 0.0000
0.20 0.2398 0.0000
0.30 0.4797 0.1911
0.60 0.9594 0.5734
0.90 1.4391 0.9557
0.95 1.6789 1.5291

velocity, is not the only mechanism that can trigger decay of
persistent currents in a binary mixture. Indeed, when |va − vb|
exceeds some threshold the eigenfrequencies corresponding to
the spin-density mode acquire an imaginary part, leading to an
exponential growth of the spin excitations that makes the flow
dynamically unstable. The existence of a dynamical instability
for different flow velocities is a more general result and it is due
to the breaking of Galilean invariance. This has been recently
discussed in spin-orbit coupled condensates [37]. In the context
of binary mixtures, this instability is known as counterflow
instability and has been addressed both experimentally [38,39]
and theoretically [21–24]. The structure of the complex eigen-
frequencies is illustrated in the top panels of Fig. 6: The real
part (left panel) is nonzero in the limit of small k, in contrast
to the case of the demixing instability driven by interspecies
interaction.

To better characterize how the dynamical instability appears
in a toroidal trap, we have performed real-time simulations of
Eqs. (1) and (2), imposing initial winding numbers κa = 20,
κb = 0, which correspond to a velocity va much larger than the
critical velocity (Fig. 3, dashed line). The initial state consists
of the converged solutions of the GP equations describing the
mixture at rest, to which we have added an initial vortexlike
phase following Eq. (17).

Selected snapshots of the majority component density
are shown in Fig. 6, showing three different regimes: a
first stage, with radial breathing (as recently discussed in
[16] for a one-component BEC); a second stage, where
the spin instability kicks in and deforms the condensates;
and a third stage, in which vortices enter the BECs and
stabilize the angular momentum at L(a)

z = L(b)
z = Lz/2. The

maxima in the density of one component coincide with the
minima in the other, thus confirming that the instability is
driven by the spin-density mode. Notice that in absence
of dissipation the total angular momentum is conserved;
however, adding a small imaginary term in the left-hand side
of Eqs. (1) and (2) we obtain dissipative dynamics where
both energy and angular momentum decrease in time and
vortices are then able to fully cross the torus (after a certain
time).
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Persistent currents are a hallmark of superfluidity and
superconductivity, and have been studied in liquid helium
and solid state systems for decades. More recently, it
has become possible to trap an atomic Bose-Einstein
condensate (BEC) in a ring geometry [1–8] and induce
rotational superflow in this system [3,5,7,8]. This offers
new possibilities for fundamental studies of superfluidity in
a flexible experimental setting. Both long-lived superflow
[5,7] and quantized phase slips corresponding to singly
charged vortices crossing the superfluid annulus have
been observed [7,8].

So far experiments on persistent currents in atomic
BECs were limited to spinless, single-component conden-
sates. Extending such studies to multicomponent systems,
in particular those involving two or more spin states
[9–11], is essential for understanding superfluids with a
vectorial order parameter and for applications in atom
interferometry [12,13]. Persistent flow in a two-component
Bose gas has been studied theoretically [14–17] but many
issues remain open. Even the central question of whether,
and under what conditions, this system supports persistent
currents has not been settled.

In this Letter, we study the stability of supercurrents in a
toroidal two-component gas consisting of 87Rb atoms in
two different spin states. For a large spin-population imbal-
ance we observe superflow persisting for over two minutes
and limited only by the atom-number decay. However at a
small population imbalance the onset of supercurrent
decay occurs within a few seconds. We demonstrate the
existence of a well-defined critical spin polarization sepa-
rating the stable- and unstable-current regimes. We also
study the connection between spin coherence and super-
flow stability, and show that in our system only the modu-
lus of the spin-polarization vector is relevant for the
stability of the supercurrent. The existence of a critical
population imbalance was anticipated in Refs. [15–17], but
quantitative comparison with our measurements will
require further theoretical work.

Our setup is outlined in Fig. 1(a). We load a BEC of
N " 105 atoms into an optical ring trap of radius 12 !m,

created by intersecting a 1070 nm ‘‘sheet’’ laser beam and
an 805 nm ‘‘tube’’ beam [7]. The sheet beam confines the
atoms to the horizontal plane with a trapping frequency of
350 Hz. In plane, the tube beam confines the atoms to the
ring with a trapping frequency of 50 Hz. The trap depth is
about twice the BEC chemical potential,!0=h " 0:6 kHz,
and varies azimuthally by <10%.
Our tube trapping beam is a Laguerre-Gauss LG3 laser

mode in which each photon carries orbital angular
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FIG. 1 (color online). Preparation and detection of supercur-
rent in a two-component gas. (a) The ring trap is formed by a
horizontal ‘‘sheet’’ beam and a vertical Laguerre-Gauss (LG)
‘‘tube’’ beam. B is the external magnetic field. (b) Supercurrent
is induced by a Raman transfer of atoms between two spin states,
j"i and j#i, using the LG beam and an auxiliary Gaussian (G)
beam. During the transfer each atom absorbs 3@ of angular
momentum from the LG beam. Two-component gas is created
by coupling j"i and j#i states with an rf field. The characteristic
rotational energy is Er=h " 0:4 Hz. (c) Time-of-flight image of
the atoms, with spin states separated using a Stern-Gerlach
gradient. The rotational state q is deduced from the radius R
characterizing the central hole in the density distribution. The
image shown was taken after t ¼ 4 s of rotation; the longitudinal
spin polarization is Pz ¼ 0:44 and q ¼ 3 for both spin states.
(d) Histogram of "900 measurements of R at various Pz and t.
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Persistent currents are a hallmark of superfluidity and
superconductivity, and have been studied in liquid helium
and solid state systems for decades. More recently, it
has become possible to trap an atomic Bose-Einstein
condensate (BEC) in a ring geometry [1–8] and induce
rotational superflow in this system [3,5,7,8]. This offers
new possibilities for fundamental studies of superfluidity in
a flexible experimental setting. Both long-lived superflow
[5,7] and quantized phase slips corresponding to singly
charged vortices crossing the superfluid annulus have
been observed [7,8].

So far experiments on persistent currents in atomic
BECs were limited to spinless, single-component conden-
sates. Extending such studies to multicomponent systems,
in particular those involving two or more spin states
[9–11], is essential for understanding superfluids with a
vectorial order parameter and for applications in atom
interferometry [12,13]. Persistent flow in a two-component
Bose gas has been studied theoretically [14–17] but many
issues remain open. Even the central question of whether,
and under what conditions, this system supports persistent
currents has not been settled.

In this Letter, we study the stability of supercurrents in a
toroidal two-component gas consisting of 87Rb atoms in
two different spin states. For a large spin-population imbal-
ance we observe superflow persisting for over two minutes
and limited only by the atom-number decay. However at a
small population imbalance the onset of supercurrent
decay occurs within a few seconds. We demonstrate the
existence of a well-defined critical spin polarization sepa-
rating the stable- and unstable-current regimes. We also
study the connection between spin coherence and super-
flow stability, and show that in our system only the modu-
lus of the spin-polarization vector is relevant for the
stability of the supercurrent. The existence of a critical
population imbalance was anticipated in Refs. [15–17], but
quantitative comparison with our measurements will
require further theoretical work.

Our setup is outlined in Fig. 1(a). We load a BEC of
N " 105 atoms into an optical ring trap of radius 12 !m,

created by intersecting a 1070 nm ‘‘sheet’’ laser beam and
an 805 nm ‘‘tube’’ beam [7]. The sheet beam confines the
atoms to the horizontal plane with a trapping frequency of
350 Hz. In plane, the tube beam confines the atoms to the
ring with a trapping frequency of 50 Hz. The trap depth is
about twice the BEC chemical potential,!0=h " 0:6 kHz,
and varies azimuthally by <10%.
Our tube trapping beam is a Laguerre-Gauss LG3 laser

mode in which each photon carries orbital angular
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FIG. 1 (color online). Preparation and detection of supercur-
rent in a two-component gas. (a) The ring trap is formed by a
horizontal ‘‘sheet’’ beam and a vertical Laguerre-Gauss (LG)
‘‘tube’’ beam. B is the external magnetic field. (b) Supercurrent
is induced by a Raman transfer of atoms between two spin states,
j"i and j#i, using the LG beam and an auxiliary Gaussian (G)
beam. During the transfer each atom absorbs 3@ of angular
momentum from the LG beam. Two-component gas is created
by coupling j"i and j#i states with an rf field. The characteristic
rotational energy is Er=h " 0:4 Hz. (c) Time-of-flight image of
the atoms, with spin states separated using a Stern-Gerlach
gradient. The rotational state q is deduced from the radius R
characterizing the central hole in the density distribution. The
image shown was taken after t ¼ 4 s of rotation; the longitudinal
spin polarization is Pz ¼ 0:44 and q ¼ 3 for both spin states.
(d) Histogram of "900 measurements of R at various Pz and t.
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momentum 3@. We use the same beam to induce a super-
current via a two-photon Raman process [3,7,18]. We
briefly (200 !s) pulse on an auxiliary TEM00 Gaussian
beam, copropagating with the LG beam, to transfer all
atoms between two spin states, j"i and j#i [Fig. 1(b)].
Each atom absorbs angular momentum 3@ from the LG
beam and we thus create a (single-component) current
corresponding to a vortex of charge q ¼ 3 trapped at the
ring centre. Such current can persist for over a minute and
decays in quantized q ! q" 1 steps, corresponding to 2"
phase slips in the BEC wave function [7].

The j"i and j#i states also define the spin space for our
two-component experiments. To create a two-component
current we prepare a pure jq ¼ 3; #i state and then couple
j"i and j#i by a radio frequency (rf) field, which carries no
orbital angular momentum and does not affect the motional
state of the atoms. The j"i and j#i are two F ¼ 1 hyperfine
ground states, mF ¼ 1 and 0, respectively. The mF ¼ "1
state is detuned from Raman and rf resonances by the qua-
dratic Zeeman shift in an external magnetic field B of 10 G.

After preparing a rotating (q ¼ 3) cloud in a specific
spin state, we let it evolve in the ring trap for a time t and
then probe it by absorption imaging after 29 ms of time-
of-flight expansion. We separate the two spin components
with a Stern-Gerlach gradient and directly measure the
longitudinal spin-polarization Pz ¼ ðN" " N#Þ=ðN" þ N#Þ,
where N" (N#) is the number of atoms in the j"i (j#i) state
[Fig. 1(c)]. The rotational state, 0 & q & 3, is seen in the
size R of the central hole in the atomic distribution [7],
arising due to a centrifugal barrier [3]. As shown in
Fig. 1(d), the R values are clearly quantized [7,8], allowing
us to determine q with >99% fidelity [19].

In Fig. 2 we illustrate the dramatic difference between
superflow stability in a Pz ¼ 1 single-component gas and a
Pz ¼ 0 two-component system. The two different Pz states
are created, respectively, by a (140 !s) " and a (70 !s)
"=2 rf pulse at t ¼ 0. In the pure j"i state [Fig. 2(a)] the
current persists for over two minutes, with the BEC always
remaining in the q ¼ 3 state for '90 s. In contrast, at
Pz ¼ 0 [Fig. 2(b)] the first phase slip occurs within 5 s
and the current completely decays within 20 s. During the
decay we always observe the two spin components to be in
the same q state.

Supercurrent stability generally depends on the number
of condensed atoms [5,7] and at Pz ¼ 0 the atom number
per spin state is halved. However, from the N-decay curves
in Fig. 2(c) we see that this alone cannot explain the
difference in superflow stability. At Pz ¼ 1 rotation still
persists for N ' 104 while at Pz ¼ 0 it stops already
at N > 4( 104. Moreover, if we apply a "=2 rf pulse at
t ¼ 0 but then immediately remove all the j"i atoms from
the trap with a resonant light pulse, the current again
persists for over a minute. This unambiguously confirms
that in Fig. 2(b) the superflow is inhibited by the presence
of both spin components.

We now turn to a quantitative study of the supercurrent
stability as a function of the spin-population imbalance
(Fig. 3). We tune Pz by varying the length!t of the rf pulse
applied at t ¼ 0, and measure the q state of the majority
(j"i) spin component as a function of t. Whenever the
radius R is fittable for the minority component we get the
same q for both spin components in >99% of cases.
However, for N# < 104 we cannot determine q for the
minority component.
Based on '1600 measurements of qðPz; tÞ, in Fig. 3

we reconstruct the complete current stability diagram for
0 & Pz & 1 [20]. The contour plot of hqðPz; tÞi is obtained
by spline interpolation through a 3D mesh of data points
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FIG. 2 (color online). Single- versus two-component super-
current. (a) In a pure j"i state (Pz ¼ 1) supercurrent persists
for over 2 min, with no phase slips occurring for '90 s. (b) At
Pz ¼ 0 the first phase slip occurs within 5 s and we observe no
rotation beyond 20 s. (c) Total atom number decay for Pz ¼ 1
(open symbols) and Pz ¼ 0 (solid symbols). Dashed lines are
double-exponential fits.
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FIG. 3 (color online). Supercurrent stability in a partially spin-
polarized gas. The statistically averaged supercurrent state, hqi,
of the majority spin component is shown as a function of Pz and
the evolution time t. The contour plot is based on '1600
measurements of qðPz; tÞ. The transition between stable- and
unstable-current regimes occurs at 0:6<Pz < 0:7. In the stable
regime the current eventually decays due to the atom-number
decay.
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momentum 3@. We use the same beam to induce a super-
current via a two-photon Raman process [3,7,18]. We
briefly (200 !s) pulse on an auxiliary TEM00 Gaussian
beam, copropagating with the LG beam, to transfer all
atoms between two spin states, j"i and j#i [Fig. 1(b)].
Each atom absorbs angular momentum 3@ from the LG
beam and we thus create a (single-component) current
corresponding to a vortex of charge q ¼ 3 trapped at the
ring centre. Such current can persist for over a minute and
decays in quantized q ! q" 1 steps, corresponding to 2"
phase slips in the BEC wave function [7].

The j"i and j#i states also define the spin space for our
two-component experiments. To create a two-component
current we prepare a pure jq ¼ 3; #i state and then couple
j"i and j#i by a radio frequency (rf) field, which carries no
orbital angular momentum and does not affect the motional
state of the atoms. The j"i and j#i are two F ¼ 1 hyperfine
ground states, mF ¼ 1 and 0, respectively. The mF ¼ "1
state is detuned from Raman and rf resonances by the qua-
dratic Zeeman shift in an external magnetic field B of 10 G.

After preparing a rotating (q ¼ 3) cloud in a specific
spin state, we let it evolve in the ring trap for a time t and
then probe it by absorption imaging after 29 ms of time-
of-flight expansion. We separate the two spin components
with a Stern-Gerlach gradient and directly measure the
longitudinal spin-polarization Pz ¼ ðN" " N#Þ=ðN" þ N#Þ,
where N" (N#) is the number of atoms in the j"i (j#i) state
[Fig. 1(c)]. The rotational state, 0 & q & 3, is seen in the
size R of the central hole in the atomic distribution [7],
arising due to a centrifugal barrier [3]. As shown in
Fig. 1(d), the R values are clearly quantized [7,8], allowing
us to determine q with >99% fidelity [19].

In Fig. 2 we illustrate the dramatic difference between
superflow stability in a Pz ¼ 1 single-component gas and a
Pz ¼ 0 two-component system. The two different Pz states
are created, respectively, by a (140 !s) " and a (70 !s)
"=2 rf pulse at t ¼ 0. In the pure j"i state [Fig. 2(a)] the
current persists for over two minutes, with the BEC always
remaining in the q ¼ 3 state for '90 s. In contrast, at
Pz ¼ 0 [Fig. 2(b)] the first phase slip occurs within 5 s
and the current completely decays within 20 s. During the
decay we always observe the two spin components to be in
the same q state.

Supercurrent stability generally depends on the number
of condensed atoms [5,7] and at Pz ¼ 0 the atom number
per spin state is halved. However, from the N-decay curves
in Fig. 2(c) we see that this alone cannot explain the
difference in superflow stability. At Pz ¼ 1 rotation still
persists for N ' 104 while at Pz ¼ 0 it stops already
at N > 4( 104. Moreover, if we apply a "=2 rf pulse at
t ¼ 0 but then immediately remove all the j"i atoms from
the trap with a resonant light pulse, the current again
persists for over a minute. This unambiguously confirms
that in Fig. 2(b) the superflow is inhibited by the presence
of both spin components.

We now turn to a quantitative study of the supercurrent
stability as a function of the spin-population imbalance
(Fig. 3). We tune Pz by varying the length!t of the rf pulse
applied at t ¼ 0, and measure the q state of the majority
(j"i) spin component as a function of t. Whenever the
radius R is fittable for the minority component we get the
same q for both spin components in >99% of cases.
However, for N# < 104 we cannot determine q for the
minority component.
Based on '1600 measurements of qðPz; tÞ, in Fig. 3

we reconstruct the complete current stability diagram for
0 & Pz & 1 [20]. The contour plot of hqðPz; tÞi is obtained
by spline interpolation through a 3D mesh of data points
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FIG. 2 (color online). Single- versus two-component super-
current. (a) In a pure j"i state (Pz ¼ 1) supercurrent persists
for over 2 min, with no phase slips occurring for '90 s. (b) At
Pz ¼ 0 the first phase slip occurs within 5 s and we observe no
rotation beyond 20 s. (c) Total atom number decay for Pz ¼ 1
(open symbols) and Pz ¼ 0 (solid symbols). Dashed lines are
double-exponential fits.
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FIG. 3 (color online). Supercurrent stability in a partially spin-
polarized gas. The statistically averaged supercurrent state, hqi,
of the majority spin component is shown as a function of Pz and
the evolution time t. The contour plot is based on '1600
measurements of qðPz; tÞ. The transition between stable- and
unstable-current regimes occurs at 0:6<Pz < 0:7. In the stable
regime the current eventually decays due to the atom-number
decay.
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Experiment

BUT if the RF is kept on the current is stable for over 1 minute 



Conclusion

The Rabi coupling strongly modified the physics of two component 
Bose gas at the few and many body level.

1. ITF-like (or phi^4) Ferromagnetic Transition (2D not-at-all MF)  
2. Vortex dimer and string breaking (QCD-like) - Y.Shin 
3. (tunable) LHY corrections from 2.5 to 3-body corrections 
4. Peculiar spin collective modes (breaking of f-sum rule) 
5. Goldstone mode decay at the FM transition 
6. Simulator of Magnetic Models (Continuous and Lattice) 
7. Massive Hawking Radiation and boomerang effect 
….. 

Coherently coupled Bose gas more…
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Elementary excitations

Only Na+Nb is conserved: The system is a single condensate  
with a 2-component (spinor) wave function 

Ground state breaks one cont. symmetry U(1):  

1 gapless Goldstone modes: no cost to change the phase of the order parameter 

1 gapped mode: due to the cost of changing the relative phase   
(explicit U(1) symmetry breaking)
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Elementary excitations

Ground state breaks U(1)xU(1) symmetry: 2 Goldstone modes -  
coming from no cost to change the global and relative phase of the 2 order parameters  

ga = gb = g

g = gab

Spin mode soft: 
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respect to phase 
separation
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Note: 
the static structure factors 
are qualitatively the same

Two Component (mixture) BEC


