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Pairing in Nuclear Matter

Motivations:

Pairing calculations with realistic interaction could provide for additional constrain to
the interaction (e.g. non-locality, scalar,vector , tensor force, ...)

Applications to rotational (glitches) and thermal properties of neutron stars
( CasA cooling ). Three kinds of superfluidity

Hints to understand pairing in nuclei
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Pairing vs. Interaction
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Self-Energy Corrections

effective mass (m* < m) and Fermi surface depletion conspire to
reduce the pairing r 2
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medium-polarization effects in neutron matter

spin-singlet nn pairing

B&B Theory: one-bubble
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B&B Induced Interaction Model

F(p,p’;q) = D(p,p’;q) -+ 2" F(p,p
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From particle-hole to particle-particle:

spin-singlet

spin-triplet
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Neutron Matter vs. Nuclear Matter
spin-triplet pairing

P. Schuck, PRC 2006

that, in a nuclear rather than neutron matter environment, the
medium polarization of the interaction can favor the formation
of Cooper pairs similar to the lattice vibrations in ordinary
superconductors. These indications come both from nuclear
matter calculations and from finite nuclei. In nuclear matter
the medium enhancement of neutron-neutron 'Sy pairing is to
be traced back to the proton particle-hole excitations [4], and
in finite nuclei to the surface vibrations [S]. Milano group
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Nuclear Matter
neutron-proton spin-triplet pairing

np vs. nn pairing
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» A,,=4 4, innuclear matter
» despite V(3SD,) is just sligthly stronger than V (1S,), but 4= exp(-1/V)
» strong X-suppression, 4,,=6 MeV, ininfluent at low density

p =0.05 p, (nuclear surface) , but still much bigger than the spin singlet

» the question arises: why the np pairing is not observed ?



The puzzle of the missing neutron-proton pairing in nuclei
short history

* A.M. Lane.(Nuclear Theory, Benjamin 1964)

« The neglect of the neutron-proton interaction is the major weakness of the pairing force

theory. This interaction is just as strong as that between a pair of like nucleons. In fact in
the T=0 state is stronger»

G.F. Bertsch et al ( PRC 2010)
Study the effect of spin-orbit splitting on the pairing in N=Z nuclei and predict a crossover
from spin-singlet to spin-triplet pairing at A ~ 140
_ L N >>Z Fermi energy splitting prevents np pairing
N moving from lighter to heavier nuclei the pairing force
' - quenches down due to the surface dependence of spin-orbit force
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H. Sagawa et al (Physica Scripta,2014
Study interplay between S=1 np and nn S=0 pairing in pf-shell of
N=Z nuclei, based on the pairing w.f. projection on the jj coupling
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P. Schuck, PRC 2019

In the case of spin-triplet np pairing BCS calculations
with bare interaction in nuclear matter predict sizable energy
gaps of the order of 12 MeV, i.e.. four times that of the spin
singlet [14]. Even if significant rescaling is expected from
the self-energy effects, the energy gap could be still large
enough by antiscreening due to the induced interaction [12].
Therefore the predicted effect of the spin-orbit energy splitting
could be resized by the large spin-triplet pair correlation
energy.



Competition between isoscalar and isovector flcts
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Vertex Corrections
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Calculations of induced interaction need to extend B&B to
interaction with tensor forces
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Medium-polarization effects in S D, spin-triplet pairing
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FIG. 3. Driving p-h interaction %’ from the G matrix in the
SD channel.
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Conclusions

The medium-polarization effects on the spin-singlet pairing gap

have been presented in the framework of the spin B&B theory of

the induced interaction. A substantial compensation has been reported
between self-energy and vertex corrections according to Peter-Schuck’s
antiscreening prediction.

RPA calculations of the spin-triplet induced interaction have been
presented. The results give indications in support of the same
antiscreening for the np pairing.

The competition between spin triplet and spin-singlet pairing

in nuclei and nuclear matter is briefly discussed.
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