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Collaboration with Peter Schuck (2000-2006)

2 / 26



Imbalanced nuclear systems

Isospin polarization suppresses T = 0 pairing

Isospin asymmetric the dominant T = 1 pairing is suppressed;
competition in T = 0 and T = 1 channels.
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Imbalanced nuclear systems

Spin polarization suppression of T = 1 pairing

Ne nucleus in B field: left panel B = 0 right panel B = 1017 G
Nuclear DFT calculations by Stein, Maruhn, Sedrakian, Reinhard, Phys. Rev. C 94, 035802
(2016).
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Imbalanced nuclear systems

Dilute alkali gases

Critical temperature for condensation Tc ∼nK, EF ∼ mK.
Interactions can be manipulated in the range [−∞,∞] and the unitary limit |a| → ∞ is
universal

aeff =
aS

B − B0
(Feshbach resonance mechanism)

Several hyperfine states or atomic species can be trapped n↑ ̸= n↓ creating population
imbalance (6Li, ... )

Clouds of atomic gas evolved from highly polarized (left) to unpolarized limit (right).
Vortices act as indicators of superfluidity, [from Zwierlein et al Science, 2006, vol. 311,
p 492-496.]
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Imbalanced nuclear systems

Population imbalance

Conventional BCS pairs particles on a Fermi surface with opposite momenta and spins:
Cooper pair wave-function is invariant under time-reversal, i. e. simultaneous exchange
of momentum and spin sign.

In systems with population imbalance the pairing occurs between particles lying on
different Fermi surfaces: The Cooper pair wave function is non-invariant under time
reversal.

Classical example (1960’s)

Metallic superconductors with paramagnetic impurities. The effect of impurities is to
induce an average slitting of Fermi-levels of spin-up and spin-down electrons. This can
be described by adding a Pauli paramagnetic term to the spectrum:

ϵ↑ =
p2

2m
− µ↑, ϵ↓ =

p2

2m
− µ↓,

µ↑ = µ+ δµ, µ↓ = µ− δµ, δµ ∝ σB

-Concepts of “gapsless superconductivity” (1961)
-Concepts of moving condensate - “Larkin-Ovchninnikov-Fulde-Ferrel phase” (1964)
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Imbalanced nuclear systems

Sharma and FFLO phases

Large spin polarizations destroy the superconductivity, but Fulde-Ferrell-Larkin-Ovchnnikov
showed that a new phase can appear which is carrying current and is stable.
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Formalism: Continuum GF approach

Pairing with population imbalance

Nuclear matter with imbalance - isospin asymmetry:

Ĥ =
1

2m

∑
α

∫
d3x∇ψ̂†

α(r)∇ψ̂α(r)−
∑
αβ

∫
d3x
∫

d3x′ψ̂†
α(r)ψ̂

†
β(r) V(r, r′)︸ ︷︷ ︸

two−body−int.

ψ̂β(r′)ψ̂α(r).

Dyson-Schwinger equations (DSE) for species 1 and 2

Ĝ−1
α (x1)Ĝαβ(x1, x2) = 1̂δαβδ(x1 − x2) + i

∑
γ

∫
d3x3 Σ̂αγ(x1, x3)Ĝγβ(x3, x2),

where 1̂ is a unit matrix, G−1
α (x) ≡ i∂/∂t +∇2/2mα + µα and GF of the superfluid state

(Nambu-Gorkov space)

iĜαβ(x1, x2) ≡ i

(
Gαβ(x1, x2) Fαβ(x1, x2)

F†
αβ(x1, x2) G†

αβ(x1, x2)

)
, Ĝ−1

α (x) =

(
G−1
α (x) 0

0
[

G−1
α (x)

]∗ )
.

The DSE equations are closed via the approx. for the self-energy matrix (anomalous part reads)

∆αβ(x1, x2) =
∑
γκ

∫
Γαβγκ(x1, x2; x3, x4)Fγκ(x3, x4)dx3dx4.
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Formalism: Continuum GF approach

Quasiclassical approximation

Inhomogeneous systems - separation of CM and relative motions

Ĝ(x,X) → Ĝ(ω, p,R, T), x = x1 − x2, X = (x1 + x2)/2

The DSE now is written as

∑
γ

(
ω − ϵ+αγ −∆αγ

−∆†
αγ ω + ϵ−αγ

)(
Gγβ Fγβ

F†
γβ G†

γβ

)
= δαβ 1̂, (1)

where

ϵ±αβ = (P/2 ± p)2 /2mα − µα ± Re Σαβ − Im Σαβ , (2)

The quasiparticle excitation spectrum is determined in the standard fashion by finding the poles
of the propagators

ω±± = ϵA ±
√
ϵS +

1
2

Tr (∆∆†)±
1
2

√
[Tr (∆∆†)]2 − 4Det

(
∆∆†

)
.

∆ ≡ ∆αβ ϵS = (ϵ+ + ϵ−)/2, ϵA = (ϵ+ − ϵ−)/2
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Formalism: Continuum GF approach

ω±± = ϵA ±
√
ϵS +

1
2

Tr (∆∆†)±
1
2

√
[Tr (∆∆†)]2 − 4Det

(
∆∆†

)
.

Four-fold split spectrum: - isospin asymmetry and finite momentum
- competition between spin-1 and spin-0 pairing

Solve coupled equations for densities

ρn/p(Q⃗) = −2
∫

d4k
(2π)4

Im[G+
n/p(k, Q⃗)− G−

n/p(k, Q⃗)]f (ω), (3)

and pairing gap

∆(Q) =
1
2

∑
a,r

∫
d3k′

(2π)3
Vl,l′ (k, k

′)
∆l′ (k′,Q)

2
√

ES(k′)2 +∆l′ (k′,Q)
[1 − 2f (Er

a)], (4)

where Vl,l′ (k, k′) is the interaction in the 3S1-3D1 partial wave.
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Phase diagram and BCS-BEC crossovers

Phase shifts and pairing channels in nuclear matter
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The low-density limit in nuclear systems corresponds to the deuteron Bose-Einstein condensate.
Therefore, we have a density driven BCS-BEC crossover!

regime log
(

ρ
ρ0

)
T [MeV] d [fm] ξrms [fm] ξa [fm]

WCR −0.5 0.5 1.68 3.17 1.41
ICR −1.5 0.5 3.61 0.94 1.25
SCR −2.5 0.2 7.79 0.57 1.79
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Phase diagram and BCS-BEC crossovers

Studying the phase diagram of dilute nuclear matter (Stein et al, 2012, 2014, 2016)

  

   rotational/transl. symmety     rotational/symmetry, time reversal broken

rotational/trans sym. broken only rotational symmetry is broken to O(2)

δµ = 0BCS: k = −k, δ µ = 0/ASYMMETRIC BCS: k = − k,

LOFF:    k + P = −k’, δµ = 0/ δµ = 0/DFS phase:  k ~ k’,

Possible phases, including “spatial mixing” for s and n phases by a factor 0 ≤ x ≤ 1


Q = 0, ∆ ̸= 0, x = 0, BCS phase,
Q ̸= 0, ∆ ̸= 0, x = 0, LOFF phase,
Q = 0, ∆ ̸= 0, x ̸= 0, PS phase,
Q = 0, ∆ = 0, x = 1, unpaired phase,
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Phase diagram and BCS-BEC crossovers

The phase diagram of SD-paired nuclear matter

Temperature-density phase diagram for varying asymmetry

-2.5 -2 -1.5 -1 -0.5 0
log    (ρ/ρ

10           0
    )

0

1

2

3

4

5

T
 [

M
eV

]

α=0.0
α=0.1
α=0.2
α=0.3
α=0.4
α=0.5

Unpaired

PS-BCS

BCS

BEC

PS-BEC

LO
FF

- Competing phases: BCS, LOFF, PS, Unpaired
- BCS - BEC crossover, with LOFF disappearing in the low density limit
- tetra-critical points (Lifshitz point), i.e., an inhomogeneous phase terminates at the point
- triangle: LOFF quenched by BCS-BEC crossover, quadrangle: quatro-critical-point
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Phase diagram and BCS-BEC crossovers
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- Competing phases: BCS, LOFF, PS, Unpaired
- BCS - BEC crossover, with LOFF disappearing in the low density limit
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Phase diagram and BCS-BEC crossovers

Density and polarization dependence of the gap
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- the anomalies in the T-dependence are lifted by the LOFF phase
- the LOFF allows for the paired state for larger polarizations
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Phase diagram and BCS-BEC crossovers

Density probabilities of Cooper pairs
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regime log
(

ρ
ρ0

)
T [MeV] d [fm] ξrms [fm] ξa [fm]

WCR −0.5 0.5 1.68 3.17 1.41
ICR −1.5 0.5 3.61 0.94 1.25
SCR −2.5 0.2 7.79 0.57 1.79
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Phase diagram and BCS-BEC crossovers

Occupation numbers of majority and minority components
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Dependence of the particle occupation numbers on momentum k in units of Fermi-momentum
for the three coupling regimes and various asymmetries indicated in the plot.
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Phase diagram and BCS-BEC crossovers

Dispersion relations for majority and minority components
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Critical field effects on neutro radiation processes

Spin-polarized matter
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(a) Magnetic field required to create a specified spin polarization as a function of the density for
two polarization values.
(b) Same but for two temperatures T = 0.25 MeV and 0.5 MeV.
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Critical field effects on neutro radiation processes

Cooling of compact stars
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 Rc∫
0

ncv(r, T)dVp

 dT′

dt
= −

Rc∫
0

nϵν(r, T)e2ΦdVp + 4πσR2T4
S e2Φc
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Critical field effects on neutro radiation processes

Neutrino and photon radiation processes

Modified Urca/brems process

n + n → n + p + e + ν̄,

n + n → n + p + ν + ν̄,

Crustal bremsstrahlung

e + (A, Z) → e + (A, Z) + ν + ν̄,

Cooper pair-breaking-formation

[NN] → [NN] + ν + ν̄,

Surface photo-emission

Lγ = 4πσR2T4

Urca process

n → p + e + ν̄, p + e → n + ν.

All axial vector neutral current process lead to axion emission
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Critical field effects on neutro radiation processes

Spin-polarized matter
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(a) The suppression of proton pairing with increasing field; (b) the suppression of the neutrino
emissivity from proton condensate as pairing disappears.
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Critical field effects on neutro radiation processes

Computing the PB emissivity

The neutrino emissivity is expressed in terms of the polarization tensor of baryonic matter

ενν̄ = −2
(

GF

2
√

2

)2 ∫
d4qg(ω)ω

∑
i=1,2

∫
d3qi

(2π)32ωi
ℑ[Lµλ(qi)Πµλ(q)]δ(4)(q −

∑
i

qi),

Four polarization tensors in Nambu-Gorkov space:

�

(a)

+

�

(b)

+

�

(c)

+

�

(d)

To describe a superfluid we need the propagators

Gσ,σ′ (iωn, p) =
(

Ĝσσ′ (iωn, p) F̂σσ′ (iωn, p)
F̂+
σσ′ (iωn, p) Ĝ+

σσ′ (iωn, p)

)
.

which in the momentum space is given by

Ĝσσ′ (iωn, p) = δσσ′

(
u2

p

iωn − εp
+

v2
p

iωn + εp

)
,

F̂σσ′ (iωn, p) = −iσyupvp

(
1

iωn − εp
−

1
iωn + εp

)
,
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Critical field effects on neutro radiation processes

Vertex functions
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To leading order in the small q/ω expansion, the temporal (00) and spatial (jj) components of
density (D) and spin (S) response functions may be written as

Π00
D = −

4q4v4
F

45ω4
G, Πjj

D = −
2q2v4

F

9ω2
G, Π00

S = −v2
F G, Πjj

S = −
q2v2

F

ω2
G,

G(v, ω, q) = ∆2

+∞∫
−∞

dξp

[
ϵ+ − ϵ−

ϵ+ϵ−

f (ϵ−)− f (ϵ+)

ω2 − (ϵ+ − ϵ−)2 + iη

−
ϵ+ + ϵ−

ϵ+ϵ−

1 − f (ϵ−)− f (ϵ+)

ω2 − (ϵ+ + ϵ−)2 + iη

]
.
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Critical field effects on neutro radiation processes

Vector and axial vector current ν-ν̄ emissivity

The emissivities are given by

ϵV
ν =

16G2c2
V

1215π3
ν(0)v4

FI
(
∆

T

)
T7,

ϵA
ν =

4G2g2
A

15π3
ζAν(0)vF

2I
(
∆

T

)
T7,

0

1

2

3

4

5

6

I(
y

,z
)

0,2 0,4 0,6 0,8 1
 τ

-0,2

-0,1

0

0,1

0,2

R
I
(

∆

T

)
=

(
∆

T

)7 ∫ ∞

1

dy y5√
y2 − 1

f
[(

∆

T

)
y
]2 [

1 +

( 7

33
+

41

77
γ

)
v2

F

]
.

Systematic expansion in v2
F , axial current emission is dominant

The emissivity has a maximum at τ = T/Tc = 0.6, i.e., affects cooling close to the
phase transition
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Conclusions

Conclusions

Peter Schuck was an inspiration as a scientist and as a human being for many of us, definitely
for me. His memory and legacy will stay with us for many decades to come.
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